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A b s t r a c t .  This article proposes a non-Bayesian procedure for constructing 
inferential distributions which can be used for producing predictive distribu- 
tions. The concepts of bootstrap and of predictive likelihood are employed for 
developing the method. A result is obtained for exponential families, and the 
Bayesian prediction based on Jeffreys' prior is newly justified. 
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1. Introduction 

Let f (y)  be the dis t r ibut ion of a future  observat ion y. Suppose tha t  we can 
use n independent  observat ions z n = ( X l , . . . ,  an)  f rom the dis t r ibut ion g(x). We 
desire some probabi l i ty  s t a t ement  abou t  y using the  observat ions z n. Here we call 
any  dis t r ibut ion employed for this purpose  a predict ive dis t r ibut ion for y. 

Assume tha t  y and x ~ are independent  but  t ha t  z n provides informat ion  on 
y th rough  the  same indexing paramete r .  W h e n  pa ramet r i c  families { f (y  I O) : 0 C 
O} and {g(x ] 0) : 0 E O}, where O c_ R k, are given, a predict ive d is t r ibut ion 

f (Y I x~) is ob ta ined  by the  m e t hod  of es t imat ive  fit 

(1.1) f (y  l x ~) = f ( y  l O~), 

using the m a x i m u m  likelihood es t imate  0~ = O~(x ~) of 0, or by the  me thod  of 
predict ive fit 

(1.2) f (Y l Xn) f f (Y l O)p(O l xn)dO' 

using a s tandard ized  weighing function p(O z n) on 0 based on the observat ions  z n 
or using a poster ior  d is t r ibut ion p(O I xn) of 0 given z n if a prior  d is t r ibut ion  p(O) 
for 0 is available. An ' inferential '  d is t r ibut ion for 0 is any s tandard ized  weighing 
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function on 0 based on x ~, and is employed for producing a predictive distribution 
by (1.2) (Akaike, 1978). 

Since the estimative fit implicitly assumes that 0 is known to be 0n, it can 
lead to serious underestimation of the dispersion of y. In fact, if we evaluate the 
badness of a predictive distribution f (y  I an) by the expected net-entropy 

(1.3) Eo[I{I(. p 0),/(. I xD}] 

= / i { f ( .  I o),f(. I xnD}9(xn]ODdx n 

= f(ylO) log f ( y lxn)  

then the estimative fit (1.1) often gives higher values of (1.3) for all 0 than the 
Bayesian predictive fit (1.2) with an inferential distribution based on a vague prior 
on 0 (Aitchison (1975), Murray (1977), Ng (1980)). This fact demonstrates that 
the device of using inferential distributions is effective in producing predictive dis- 
tributions. The problem then is to choose an inferential distribution. Although 
an inferential distribution can be formally constructed by way of a prior distri- 
bution p(O) of 0, this procedure leads to the still debated question of specifying 
p(O). Thus, we are interested on how to construct inferential distributions without 
assuming any prior knowledge about 0. 

Recently, two approaches were introduced. The first is the bootstrap method 
(Harris (1989)). Let f(y I 0,~) be an estimative fit and p(. I 0) the sampling 
distribution of 0n. Evaluating p(. I 0) at the estimated value 0n of 0, we have 
an inferential distribution pH(. I xn) = P(" I On). This in turn gives a predictive 
distribution 

# 

= / f (Y l r )PH("-]  zn)dw. 

Here r is a generic symbol for possible values of 0n(xn). The second method by 
E1-Sayyad et al. (1989) is applicable when a sufficient reduction tn of X n exists. 
Let f (y I O~ 1) be an estimative fit based on n - 1 observations x n-1. Then the 
conditional distribution of 0~ 1 given tn can be used as an inferential distribution 
because it is independent of 0, and therefore it gives a predictive distribution 

fZ(y l xn ) = / f ( Y l r ) P E ( r  ] tOdr, 

where pE(. I t~) denotes the conditional distribution of 0n ~ given t~- 
The purpose of the present paper is to develop a non-Bayesian procedure 

for obtaining inferential distributions. Section 2 describes the method. Here the 
concepts of bootstrap and of predictive likelihood are employed for the construction 
of inferential distributions. Section 3 deals with the case where 9(x I O) belongs to 
an exponential family. Here the Bayesian predictive fit based on Jeffreys' ((1961), 
Section 3.10) prior is looked at from the view presented in Section 2. Section 4 
illustrates our method with gamma model. 
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2. A non-Bayesian procedure for constructing inferential distributions 

Let z "~ = ( Z l ,  . . . , z m )  be a random sample of size m from g(x l 0). We assume 

tha t  it is unobservable. Consider an estimative fit f ( y  I ~)~), where ~),~ = ~,~(z ~)  
is the maximum likelihood est imate of 0 based on z ~.  Although the value of 
~)~ is unobserved, the distribution p(- I 0) of 0 ~  can be specified except for the 

true value of 0. Thus adjusting uncertainty in ~ by integrating with respect to 
this distr ibution evaluated at the est imated value 0~ of 0, we have a predictive 
distr ibution 

/(yl  -- / f ( y  I ~-)P0- 

Here T is a generic symbol for possible values of the unobserved ~,~(z~).  If we 
take m -- n, this is identical to the boots t rap predictive distr ibution f H ( y  [ x ~) 

of Harris (1989). If ~ is consistent, then ] ( y  I x~) works like the estimative fit 
(1.1) when m is sufficiently large. 

This observation suggests the use of functions which assess the relative credi- 
bility of the possible outcomes of the unobserved ~,~ in the light of the observed 
x ~ as inferential distributions. The fundamental  point in this view is tha t  we are 
dealing with functions which express evidence of z ~ taking into account x ~. In 
the case stated above, the distr ibution of z "~ evaluated at 0 = ~}~ was used. On the 
other hand, since all information about  z "~ is contained in the joint distr ibution 
of (x ~, z~) ,  a function obtained by elimination of 0 from it will be an alternative 
choice for our purpose. Such a function is called a predictive likelihood of z "~ 
given x% Of course, different ways of eliminating 0 produce different predictive 
likelihoods (Bjornstad (1990)). Let plik(z "j I x~) denote a predictive likelihood for 
z ~ given x% We now consider the problem of making some predictive s ta tement  
about  ~ using plik(z "~ [x~). 

Suppose for the time being tha t  we can use a function 7r(z "~) with which 
the knowledge about  the occurrence of z ~ is a priori assessed. By analogy with 
the role of the likelihood function in Bayes' formula, we can view the predictive 
likelihood plik(z ~ [ x ~) as the function through which the observation x n modifies 
our knowledge about  the values of z ~.  Then the evidence of each z ~ is expressed 
a s  

(2.1) 7r(z'~)plik(zm l x '~) 

using the observation x% Let S~ be the set of all unobserved samples z "~ satisfying 
v ~ ( z  '~) = ~- for a particular value T of ~,~. Then the a posteriori plausibility of 7- 
is obtained by accumulating (2.1) with respect to z ~ E S~. 

Here, it should be noted tha t  each value of z ~ is not necessarily uniform in its 
possibility of occurrence. Thus, it will be inadequate to take always ~r(z '~) -- c. 
(In fact, see Section 4.) However, we now know the probabili ty law of z m. Thus, 
we can use this knowledge for the choice of ~r(z~). If the value of the unobserved 
sample is z "~, then the probability with which the value z ~ will be observed can 
be est imated by the parametric maximum likelihood est imate 

(2.2) ~(z~)  = M g { z i  I ~ ( ~ ) } .  
i = i  
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This procedure is the parametric bootstrap (Efron (1982), Section 5.2). The same 
idea is also used by Harris (1989) as mentioned in Section 1. 

From the arguments above, we define the cumulative function ¢,~(~- [ z ~) of 
(2.1) with (2.2) by 

I xn) = Jtfz~:0~(z'~)_<-} ~ g{zi I ~ ( z ~ ) }  plik(z~]xn)dz ~. (2.3) 
i=1 

In discrete case, the right-hand side is replaced by 

(2.4) E g{z~ ] 0,~(z'~)} plik(z~ I S~). 

Let ¢,~(T ] Z ~) denote the density of ~ ( T  i X~) with respect to the Lebesgue mea- 
sure on R k or the counting measure on Z k, where Z denotes the set of integers. 
Then, we can regard ¢ ~ ( ~  ] z ~) as the function which orders the possible out- 
comes of the unobserved ~)~ in the light of x ~. Normalizing it to be a probability 
distribution, we obtain an inferential distribution 

pB~(~ ix  ~) = ~ ( ~ n ) ¢ ~ ( ~  i ~ ) ,  

where 7m(X ~) is a normalizing constant. Thus, from an estimative fit f(y I ~)~), 
we can produce a predictive distribution fB~ (y I x~), adjusting uncertainty in ~ 
by integrating with respect to pB~ (. I x~): 

fB.~(y l x ~) = /f(ylT)pB.~(~_ [ x~)dT. 

When applying this procedure, we must determine the size m of the unob- 
served sampling. The parameter 0 can be regarded as summarizing the infinite 
unobserved (Zl, z2, . . . ) .  This suggests the use of asymptotic approximations for 
pB~ (T I xn) • To illustrate this idea consider a normal model with 

{1 } 
f ( x  I O) = 9(x I 0) = (271) - 1 / 2  e x p  - ~ ( x  - 0) 2 , - o 0  < 0 < 0o.  

Let us compute pB.~(~- I x~) by using O~(T I X~) defined by (3.1) of the next 
section. Then we obtain 

pB'~(T I X n) = ( 2 7 r o - 2 , n ) - l / 2 e x p  - -~(T -- On) /Crm, n 

and 

fiBm(y I Xn) = {271-(1 -~- O-2,n)}  - 1 / 2  e x p  -- (y --  0 n ) 2 / ( 1  @ O-rn,n ) , 

2 2 = 1/n as m -~ oo, where ~m,~,~ = ( ~  + ~ ) / ( ~ ) .  Since ~ , ~  -- ,  ~ 

p ~ ( ~ - i x  ~) ~ p~(~-I~ '~) = ( 2 ~ ) - ~ / ~ e x p  - ~ ( ~ - -  ~ , 
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as rn ~ oz. Let f B ( y  I an) denote the predictive distr ibution corresponding to 
pB (T I Z~) • Then the former predictive distr ibution is inferior to the latter because 

Eo[I{f(" I 0 ) , f~ (  • I ~=)}] < EoEI{f(. I 0 ) , f ~ ( - I  ~ ) } ]  

for all 0 E O; this inequality follows immediately from 

1 {log(1 + Eo[I{f(. I 0 ) , ] ~ ( .  I ~)}1 = 1 + 1 / ~  1} 
cr~,~) + 1 + ~r~,~ 

by differentiating it with respect to 2 O-TTt ~ ~ • 

This result supports  the idea of approximating pB~ (r  [ z ~) asymptot ical ly  in 
rn. Let pB(T ] z ~) denote such an approximation. Then for large m, pB(O,~ [xn) 

expresses the relative credibility of the unobserved ~,~. If ~,~ is a consistent 
est imate of 0, then replacing ~,~ by 0, we can view pB(o I z~) as the function 
which assesses the plausibility of the possible true values of 0 in the light of x ~. 
Hence if there exists a function p(O) such that  

;B(01 x ~) ~ p(0)lik(0 I x~), 

then pB(O I z~) can be regarded as incorporating prior knowledge p(O), and so 
using pB(O I z'~) will mean that  (1.2) will be the Bayesian predictive distr ibution 
for y. Here lik(0 I x~) denotes the likelihood function for 0 given z~: 

lik(0 I m ~) = 12[g(zi  ]0). 
i = 1  

3. A sampling justification of the Bayesian predictive fit based on Jeffreys' prior 

Suppose that  the x l , . . . ,  x~ are independent  and identically dis t r ibuted with 
exponential  family density with a canonical parametr izat ion of the form 

9(x l 0) = a(O)b(x)exp{O'T(x)}, 0 E (9 C_ R ~, 

relative to either Lebesgue measure on R k or counting measure on Z ~. This family 
is assumed to be regular. Then t~ = r (z l )  -- . . .  + T(zn) is the minimal sufficient 
reduction of z ~. The statistics t~ has an exponential  family density of the form 

g~*(t I 0) = ~(o)~b'~*(t)exp(0't), 

for some function b~*(t). Let h(z  ~ ] t~) denote the conditional distr ibution of m ~ 
given t~. 

Now set #(0) = Eo(T) and E(0) = Eo[{T-  # ( 0 ) } { T -  #(0)}']. Let ~(0) 
denote the cumulant  generating function of T(z) :  tha t  is, ~(0) = - l o g a ( 0 ) ,  and 
let i(O) denote the Fisher information that  z contains about  the parameter  0. The 
maximum likelihood est imate ~,~ based on the unobserved z "~ is a function of the 
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minimal sufficient reduction s.~ = T(zl) + ... + T(z.~) of z'~: it is the unique 
solution of o~(0) 

s ~  = m # ( O )  = m 0 0  

Hence, we have only to assess the plausibility of s. ,  in the light of x ~, because 

m 

~(~) = r [ g { ~  i o ~ ( ~ ) } :  h(~ ~ I ~,,)g-,,{~,, i ~ ( s ~ ) } .  
i = 1  

Furthermore, note that  

°2~(°) - r(0) = i(0). 
(9000' 

Here we apply the concept of predictive likelihood by Lauritzen (1974) and 
Hinkley (1979) to this problem. Hinkley ((1979), Definition 1) specifies the pre- 
dictive likelihood for s.~ given ~ as 

lik*(s.~ I ~ )  = bm*(s'~)b~*(tn) 
b(n+'~)*(t~ + s.~)" 

This is the conditional distribution of t~ given t~ + Sm. The predictive likelihood 
for Sm given x ~ is then defined by 

plik(s.~ Ix ~) = h(x n I t~)lik*(s.~ Its) .  

For this, see Bjornstad (1990). 
First, consider the continuous case. Since 

if{{ h(z'~ , s.~) dz~ = ff{ l ds.~, 
z~:~(~)<~} ~..:~.~(~)_<~} 

the cumulative function (2.3) becomes 

= f h(z'~ls.,)h(x'[f~)gm*{s.~ I ~.~(s.~)}lik*(s.~ I~.~)dz" 
J{ zm:¢..(~.d<_~} 

= h( ~n I t.) f g'~*{s~, I ~m(S,~)}lik*(sm I ~)ds.~ 
J{ 

= "~h( ~ I ~") ~,~L <~ g~*{ '~ f f (~)  I ~ } l i k * { . ~ f f ( ~ )  I t ~ } l i ( ~ - . ) l ~ ,  

where s, ,  = m#(O,~). (See Pi tman ((1979), Appendix) and Kuboki (1984) for 
the operation employed in the integrals above.) Hence the density ¢,~(~- I x'~) of 
(I)~(~- Ix ~) is given by 

(3.1) ¢~(T Ix ~) = mkh(x ~ I t~)g'~*{rnp(T) I ~-}lik*{mp(T) I t~}li(T)l. 
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When m is sufficiently large, it follows from the saddle-point expansion of 
g'~*(s~ I0) (Barndorff-Nielsen and Cox (1979)) that 

(3.2) gm*{mff(T) ] ~-} = (2~rm)-k/2lE@)]-l/2{1 + O(m 1)} 

uniformly in s~,, provided ~- = t ~ ( s ~ )  belongs to a given, but arbitrary, compact 
subset K of 0. In addition, the following consistency property of lik*(s~ I t,,) is 
discussed by Hinkley (1979) and Mathiasen (1979): 

(3.3) lik*{m#(~-) I t~} = g~*(t~ ] T){1 + O(m-1)} 

uniformly in s~ such that ~- = O~(s.,)  c K, and in t~ on every bounded sub- 
set of the support of 9 ~*. Thus, under some regularity conditions which ensure 
the validity of the saddle-point expansion and the consistency, we can give an 
approximation to the right-hand side of (3.1) by 

m 
(3.4) (~)k/2h(x~lt~)g~*(t~ I T)Ii(7)I 1/2. 

Next, let us see that when the family is discrete we can also regard (3.4) as 
an approximation to the density of ~,~(7 ] x~). It follows from (2.4) that 

¢~(~-I x~) = h(x~lt~) ~ g~*{s~ I ~ ( s~)} l ik*(s ,~  I ts)  

=mkh(x~lt~) E 9m*{mN~l~(mNm)} 

1 
• l i k * ( m ~  I t , , ) m  k , 

= s~/m. Under some regularity conditions, (3.2) and (3.3) is also true where ~ 
for discrete case. Then for sufficiently large m, 

, ~ ,  h(x" I t,d Z 

• l i { ( ) ~ ( m ~ ) } l _ , / 2  1 
7ytk" 

Since 9~*{t~ ] t ~ ( m ~ ) } l i { ~ ( f n ~ ) } 1 - 1 / 2  is continuous in g~, we have a further 
approximation 

• ~ (~-+  ~ I ~ ~ ) - ~ . ~ ( ~ - I ~  ~) 

~:~-<d., (~)_<~-+Q 

• l i { d ~ ( m s ) } ] - l / 2 d s  
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Thus the approximation (3.4) follows. 
Hence leaving out an irrelevant constant, we may consider tha t  ¢,~(~- I x~) is 

asymptotical ly expressible in the form 

h(x r I = lik@ I xD l / < ) l  1/2 

From this, the evidence of the unobserved value ~,~ is asymptotical ly assessed 
by ]i(~,~)ll/21ik(~,~ ] x ~) by using the observations x ~. Since ~ is a consistent 

est imate of the parameter  0, replacing ~,~ by 0 yields li(O)ll/21ik(O I x~), and 
therefore, this can be viewed also as a function ordering possible true values of 
0 in the light of x ~. Normalizing it to be a probability distribution, we have an 
inferential distribution pB(OIx~ ) of the form 

(3.5) p'(O Ix ~) = 7(x~)li(O)ll/21ik(O I x~), 

where ~/(x ~) is a normalizing constant. 
From a Bayesian point of view, the inferential distribution (3.5) is identical to 

the posterior distribution corresponding to Jeffreys' ((1961), Section 3.10) prior. 
Since the present approach gives an objective way of constructing inferential dis- 
tr ibutions for non-Bayesian prediction fit, we can view (3.5) as a result which 
justifies the use of Jeffreys' prior in Bayesian prediction based on x ~ coming from 
an exponential family. Alternative derivations of this prior have been discussed 
by many authors: Jeffreys ((1961), Section 3.10), Box and Tiao ((1973), Section 
1.3), Akaike (1978), Sernardo (1979), and so on. Among them, Box and Tiao's 
approach uses the likelihood for 0 given x ~z to choose prior distributions. They 
justify Jeffreys' prior on the grounds tha t  it is noninformative or locally uniform 
for the parameter  w such tha t  the reparametrizat ion w = w(O) makes the likeli- 
hood curve 'approximately da ta  translated' .  Our procedure is also based on the 
concept of likelihood. However, the parametric likelihood for 0 given z ~ evaluated 
at 0 = ~ is t reated as a boots t rap est imate of the probability of the outcome z ~ ,  
and employed, therefore, as a priori assessment of the plausibility of z ~.  

If we use 7c(z ~)  = c instead of (2.2), then from the discussion similar to the 
above, we have an inferential distribution of the form 

pV(O I x~ ) oc [i(O)]lik(O I x~). 

This can be regarded as the posterior distribution corresponding to the uniform 
prior to the mean parameter  # = #(0) because d# = li(O)IdO. 

Incidentally, we are interested also in the performance of the inferential dis- 
t r ibution (3.5) when we compare it with other inferential distributions. In the 
following section, we illustrate a superiority of (3.5) for the gamma model. 
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4. An illustration 

We suppose that the classes of models to be observed and fitted are Ga(c~, 0) 
and Ga(/~, 0), respectively, with known shape parameters  c~ and/3: 

The  density of tn = a l  + • " " + an is given by 

Thus  the Lauri tzen-Hinkley predictive likelihood for s.~ = z 1  J r -  . . -  Jr- Zrr~ given t~ 

mc~/~.~, the boots t rap  est imate of the probabil i ty  of the outcome z "~ Since 8rn 

is 

In addition, i ( v~ )  = c ~ / ~ .  Then  it follows tha t  

where 0~ = nc~/t~. This is an inverse be ta  distribution,  wri t ten  InBe(nc~, rnc~ - 

1, (m/n)On). Further  (3.5) is computed  to be 

Note here tha t  pB.~ (0 ] z n) is also expressed as 

and tha t  (rnc~)n~B(nc~, rnc~ - 1) ---+ F(nc~) as rn --~ oo. The  la t ter  follows from the 
asymptot ic  expansion 
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Now combining these facts, we find that pB~'.(O I S~) certainly approaches to 
pB(O ] x ~) as m --* oc, as was claimed in the preceding section. 

Furthermore, calculations similar to the above yield 

( )(n--1)c~ ( )c~--i nnl~ _ n  1 ~ + 0  

pz(O I x~ ) = "{O~, (71~ -- I)OL} Oo~+(n 1)a /(0,oc) (_n-n 10~ +0). 
On the other hand, by considering the sampling distribution of 0~, we have 

PH(O ] Xn) -- r (noz )  0 nc¢--1 ](°'(x~)(O)" 

In addition to these, consider the inferential distributions of the form 

na~-a na+a 1 --tnO 
pvo(Olz ,~)= t~ o e 

F(nc~ + a) :(0,~) (0) 

c< i (0)  (1 ~)/21ik(0 [ x~ ) ,  - n ~  < a < oc. 

Obviously, pV°(o I x~) = PB( 0 I x~) and pV-l(O I XTZ) = PU( 0 I :]7'13") " For a > 0, 
PV~( 0 I x~) is also the posterior distribution of 0 corresponding to the vague 
conjugate prior Ga(a, b), for which b --* 0. 

We show in Fig. 1 the graphs of pB(O I x~), pO(O I x~), PH( 0 I x~) and 
PE( 0 I x~) for c~ = 2, n = 5 and ~)~ = 1. The inferential distribution obtained from 
the procedure of E1-Sayyad et al. (1989) is quite different from the other three 
inferential distributions, as it is much more concentrated around the maximum 
likelihood estimate. Thus fE (y  I x~) will work like the estimative fit f (y I 0~). 
Although the other three densities are similar in shape, the knowledge of ~)~ ap- 
pears to be more effectively used in pB(O I x~) and pH(O I x~) than in pU(O I x~), 
because the mode of pU(O I x~) deviates more from 0~ than those of the other 
two densities. In fact, as demonstrated below, this affects the performance of each 
predictive distribution. 

Unfortunately, the predictive distributions obtained from the above inferential 
distributions are not expressible in explicit forms except those based on pV~ (0 I x~), 
- h a  < a < oc. The predictive distribution fy~(y I x~) corresponding to the 
inferential distribution pV~(O I x~) is InBe(/3, na  + a, t~): 

t~+a ya- z I(o,~) (Y), / v o ( y  I x '~) : B(9,  n~ + a) (t~ + y ) 9 + ~ + a  --~ct < a < oo. 

Now we use (1.3) as a criterion for evaluating the badness of prediction fit. The 
superiority of fva (y I x~) over the estimative fit f (y  I 0~) is discussed by Aitchison 
(1975). Following his discussion there, we have 

(4.2) Eo[I{f(. I O),fv°( • [ z~)}] = c o n s t - W ( 3 ,  n a + a ,  na). 
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density 

3.ff 

1 .  

. . . .  = 

0 .5 I 1.5 2 2.5 0 

Fig. 1. Inferential distribution pB(O I xn), shown by solid line, pU(O ] xn), dashed line, 
P H( 0 I x~), dashed-and-dotted line, and pE(O ] x~), dotted line: for c~ = 2, n = 5 and 
0~=1 .  

However, the  funct ion W(K,  G, k) given by Aitchison should be here corrected as 
follows: ~r(K+G)} ~:k 

W ( K , a , k )  = log [ F(~-) - K l o g k  + k---Z~- ~ 

- ( K  + c ) { ~ ( K  + k) - ~ ( k ) } ,  

where ~b(u) = d log F(u)/du is the  d i g a m m a  function. 

We are interested in the  value of a at  which (4.2) is minimized.  By differenti- 
a t ing (4.2) wi th  respect  to a, we have 

d¢(u + a) ), 
du, 

J du 

which is negat ive for - n e t  < a < 0 and  posit ive for a > 0, because  the  t r i g a m m a  
function d~(u)/du is s t r ic t ly  decreasing in u > 0; this fact follows f rom the ex- 
pression 

dg(u) _ ~-, 1 
du ,----, (u + j )2 ,  u ¢ 0 , - 1 , - 2 , . . .  

j=0 

(see, e.g., Olver (1974), p. 39). Accordingly, we find t ha t  (4.2) is minimized when 

a = 0. T h a t  is, /B(y]:cn) = fV° ( y l xn  ) is bes t  in the class {fV~(y I x~) : -nc~ < 
a < oc}. This  demons t ra t e s  the adequacy  of assessing a priori the  plausibi l i ty of 
z ~ not by 7c(z "~) = c but  by (4.1). 

I t  should also be discussed which of fB(y  [ x n) or fH(y  I xn) is superior  

in t e rms  of (1.3). However, as ment ioned above, fH(y  I x'~) has not  yet been 
compu ted  in an explicit form. Hence, this p rob lem remains  to be settled. 
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