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A b s t r a c t .  In this paper, we consider the estimation of the slope parame- 
ter /3 of a simple structural linear regression model when the reliability ratio 
(Fuller (1987), Measurement Error Models, Wiley, New York) is considered to 
be known. By making use of an orthogonal transformation of the unknown 
parameters, the maximum likelihood estimator of/3 and its asymptotic dis- 
tribution are derived. Likelihood ratio statistics based on the profile and on 
the conditional profile likelihoods are proposed. An exact marginal posterior 
distribution of/3, which is shown to be a t-distribution is obtained. Results of 
a small Monte Carlo study are also reported. 
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1. Introduction 

The  classical s t ruc tura l  simple linear regression model  is defined by the equa- 
t ions 

(1.1) 

Yk = a + /3zk ,  

Y~ = Yk + e~, 

X~ = xk + uk 

where ek, uk and xk are independent  and normal ly  d is t r ibuted  with  means  0, 0, and  
2 2 and 2 respectively, t ha t  is, ek ~ N(0 ,  cr~ 2) uk ~ N(0 ,  cr 2) #z ,  and variances ~e, ~ crx, , , 

and xk ~ N ( p x ,  cry), k = 1 , . . . ,  n. The  main  idea behind the  equat ions (1.1) is 
tha t  (xl ,  y l ) , . . . ,  (x~, Yn) are not  observed direct ly and  the es t imat ion  has to be 
based on (X1, I / 1 ) , . . . ,  (X~, Yn). Extensive bibl iographies on the s t ruc tura l  and 
funct ional  s imple regression models  are given in Kendal l  and Stuar t  (1961), Sprent  
(1990) and Fuller (1987). Examples  of pract ical  s i tuat ions where the  xk are not 
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observed directly are provided in Fuller (1987). An interesting situation is the 
case where xk is the amount of nitrogen in the soil and Yk is the yield of a certain 
cereal. Values for X~ in this case can only be determined by laboratory analysis 
and are only estimates of the true x~ values. 

From the previous assumptions, it follows that the joint distribution of 
(Yk, Xk) is bivariate normal, that is, 

, 2 2 , 

/~ = 1 , . . . ,  ft. Bayesian estimation of ,G when the ratio A = ere/o_ ~ 2  2 is known and 
#x = 0 is considered in Lindley and E1-Sayad (1968). Likelihood based inferences 
are considered in Fuller (1987) and Wong (1989). In the present paper we assume 
that the reliability ratio, 

2 

(1.3) k~ - Gx 
+ 

is known. As pointed out by Fuller (1987), there is a great number of situations, 
particularly in psychology, sociology and survey sampling where kx is so well esti- 
mated that it may be treated as being known. Table 1.1.1 in Fuller (1987) describes 
values of kx for several variables. For example, measurement error is about 15% 
of the observed variation for income. By considering kx as known, we may write 

2 kcr~, where/~ (1 kx)/k~. Hence, the covariance matrix in (1.2) may be O'V, z z - -  

written as 

2 2 2 
(1.4) ( 9 + 

In Section 2, we consider an orthogonal parametrization (Cox and Reid (1987)) 
of the unknown parameters which simplifies considerably the task of deriving the 
maximum likelihood estimators and approximate confidence intervals for/3. Like- 
lihood ratio statistics based on the profile and on the conditional profile likelihood 
(Cox and Reid (1987)) are also considered. Additionally, we perform a small Monte 
Carlo study in order to illustrate the performance of the confidence intervals based 
on the asymptotic distribution of the maximum likelihood estimator of/3 and also 
on the profile and conditional profile likelihoods. A conditional model which yields 
an exact confidence interval for/3 is proposed in Section 3. In Section 4 we con- 
sider the noninformative Jeffrey's priors for the unknown orthogonal parameters 
and show that the marginal posterior distribution of/3 is a t-distribution centered 
about the maximum likelihood estimator. Thus, exact inference for/3 can also be 
based on this posterior distribution. 
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2. The orthogonal transformation 

It follows from (1.2) and (1.3) that  the log of the likelihood function of the 
2 and 2 is proportional to unknown parameters #x~ c~ f l ,  o- z o- e 

% 

(2.1) 2 

where 

1 {  
- - l o g ( D )  - ~ ( 9 ~  + ~[) Z ( X {  - ,~)~ 

{ : 1  
?% 

i 1 

+~(k + i) Z(Y~ - ~ - 9~) 2 , 

/:I 

D 2 4  (~ 2 2  =k/3 %+ +1)%%. 

The main interest in the present paper is to make inferences about the slope 
parameter fl, considering the other unknown parameters as nuisance parameters. 
As pointed out by Cox and Reid (1987), inference about fl is typically simplified 
by an orthogonal parametrization, where fl is orthogonal to the new parameters 
),0, ),1, ),2, A3. ARer computing the elements of the Fisher information matrix 
needed for finding the orthogonal parametrization (fl,)`0, ),1, ),2, ),3), we arrive at 
the following differential equations: 

k(k + 1 ) / 3 2 ~  - _  + (k + 1) 2 O,~ - -  

[~  + k92~] ° ~  k g ~  °~  k ~ x ~  
x, o~ + 0~ - 

and 

- ( k  + 1)#x. 
9c~ 

~9 + (k + 1 ) ~  : 

One solution to this set of differential equations gives the one to one transformation 

{ )`o = #z, 

(2.2) ),1 = ~ + fl#~, 
),2 = (k + 1 ) ~  + ~),192, 

2 
),3 = O-x. 

Therefore, it follows from (2.1) that  the log of the likelihood function in the new 
parametrization is proportional to 

(2.3) :-]0g(),2),3) 1 / (),2 + ),3/3 2) '~ 
2),2),3 k + 1 E ( X i  - ),0)2 

( 4=i 
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7~ 

- 2 a ~  Z ( x ~ -  Ao) (~  - A~) 
i = l  

+a3(k + 1) Z ( ~ -  a~) ~ • 
i=1 

After some algebraic manipulations, we arrive at the following maximum likelihood 
estimators: 

(2.4) ~0 = x ,  

where ~OLS denotes the ordinary least squares estimator of fl, S~; = ~ i Z I ( X i -  
X)2/n,  S,~ ~ i=l (Yi  - ]?)a/n and Sxy Y~i=a( i - X)(Y~ - Y)/n .  Estimator 
(2.4) appears in Fuller (1987), and was suggested by arguments based on unbi- 
asedness grounds. Using the above orthogonal parametrization we have shown 
that it is not only unbiased but it is also the maximum likelihood estimator of 
ft. Thus, ) is asymptotically efficient. Moreover, after some algebraic manipu- 
lations, it follows that the per observation Fisher information matrix in the new 
parametrization is given by 

(2.5) 

( /32A3 + A2 fl 0 0 0 
(~ + 1)A2A3 A2 

/3 k + l  
0 0 0 

A2 A2 
1 

0 0 0 0 2A~ 
1 

0 0 0 0 

A3 
o o o o \ 

Notice that, in this case, the orthogonal transformation (2.2) does not provide a 
global orthogonalization of the information matrix. An approximate (1 - a) level 
confidence interval for fl is given by 

where z~/2 denotes the upper c~/2 point for the standard normal distribution. The 
above confidence interval is similar in form to the confidence interval (4) given in 
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Wong (1989). However, given the peculiarities of each model, we believe that  one 
interval can not be obtained from the other. This point is also noted in Fuller 
(1987), where a separate analysis is considered for each model. Furthermore,  it 
follows that  the log of the profile likelihood, lp(/3), for the parameter  13 is 

(2.7) 1,,(/3) 

where 

(2.s) ~2(/3)  = ]~x/32~2 --  2/3~Xy -- ]¢21S 2. 

For testing the hypothesis  ,13 = ,~0, we may use the likelihood ratio statistic, 
which is based on the profile likelihood above and is given by 

(2.9) w =  2{lp( ) -lp(/30)}, 

where Ip(~) and lp(/30) are tile profile likelihood (2.7) computed  at the maximum 

likelihood est imator ~ and at /3o, respectively. Thus, a (1 - c~) level confidence 
interval for/3 can be obtained from W < X~ (c~), where X~ (c~) denotes the upper  c~ 
level probabil i ty point for a chi-squared variate with one degree of freedom. 

The log conditional profile likelihood function (Cox and Reid (1987)) of the 
parameter /3 ,  Io(/3), is 

( 2 . 1 0 )  i t ( /3)  - 2 3)log(.),2(/3)), 

where )2(/3) is given in (2.8). Thus, we can obtain confidence intervals for /3 by 
using the conditional likelihood ratio statistic Wc = 2{/c(/))-/c(/30)}, as considered 
with the statistic W, given in (2.9). 

Table 1 below presents the results of a Monte Carlo s tudy based on 500 simu- 
2 1.0,/3 1.0 lated samples generated according to model (1.1) with a = 1.0, a~ = = 

and 4.0, kx = 0.9, 0.5 and 0.1, and #x = 0 and 2.0. We took a significance level of 
10% although simulation studies have indicated that  there would be no significant 
difference in the results if other values such as 1% or 5% were taken. Table 1 shows 
that  the approximate confidence interval [1, given in (2.6), is generally conserva- 
tive, that  is, it presents a coverage level which is bigger than the nominal level 
in most  of the cases considered in the simulation study. On the other hand, the 
coverage level presented by interval 12 is, in most  cases, below the nominal level. 
The best  results seems to be achieved with the interval /3,  which presents coverage 
levels much closer to the nominal level than the other intervals. As expected,  the 
confidence intervals based on the likelihood ratio statistics improve significantly 
for n = 50. 
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3. A conditional model 
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Considering the orthogonal t ransformation (2.2), it follows tha t  the joint dis- 
t r ibut ion of (Y~, X~) is bivariate normal with mean vector and covariance matr ix  
given, respectively, by 

A1 and k + 1 ' . 
Ao ,~A3 (k + 1)~3 

Then, the conditional distribution of Yi given X~ is 

N (~ + ,2Z~; k~A2), 

where c~ = Ai - flk~Ao and Zi = k ~ X i ,  i = 1 , . . . ,  n. 
Using s tandard least squares results, it follows tha t  the estimators of ,J and 

A2 (given X = ( X i , . . . ,  X~)), are given, respectively, by 

(3.1) 

E ,~ = ~ = i  ( i - Y)(X{ - X) and 
X k~ E { = i (  ~ - 2 ) 2  

1 
i~  - k~(~  - 2) ~ ( ~  - ,7 - / ? k ~ ( x ~  - 2 ) )  ~. 

i ]. " ~  

In this case, ~ is also a maximum likelihood estimator. However, the maximum 
likelihood estimator of A2 is as above, but corrected by ( n - 2 ) n  1. Moreover, using 
s tandard  results on the distribution of quadratic forms (see, for example, Searle 

(1971), p. 57), it can be shown tha t  (conditional on X)  (n - 2)A2/A2 follows a 
chi-squared distribution with n - 2 degrees of freedom. Since 

Var[;? I X]  : k~ E i = , (  * - 2 ) 2  n X 

which is est imated by replacing A2 by ~2 given in (3.1), it follows tha t  a condi- 
t ionally exact (1 - c~) level confidence interval for ,3 is given by 

(a.2) 

where t~/2 is the upper a / 2  point for the Student 's  t-distribution. This approch 
leads to the same results as found in Fuller ((1987), Section 1.1.2). This confidence 
interval extends a similar confidence interval derived by Rodrigues and Cordani 
(1990), under the less general assumption tha t  #x and a are known. 
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4. A Bayesian analysis 

As will be seen below, the orthogonal transformation (2.2) simplifies consider- 
ably the task of finding the exact marginal posterior distribution of the parameter 
/3. We assign a uniform improper prior for (/3, ,~0, ,~1). Given (/3, ,~0, A1), we assign 
the Jeffrey's noninformative prior (Zellner (1971)) for (,~2, As). From the Fisher 
information matrix (2.5), the Jeffreys' noninformative prior for (A2, As) is 

1 

Therefore, the joint posterior density of (/3, A0, A1, A2, A3) is proportional to 

(4.1) ~ exp 2A~(k + 1) Z (x~ - "x°)~ 
i : 1  

{ • exp - - ~ 0  Lk+l E(Xii:x -- A0)2 

-2 /3  ~ ( X {  - a 0 ) ( E  - t l )  + (k + 1) ~ ( Y {  - a l )  2 . 
i = 1  i = 1  

Integrating (4.1) over (A0, A,, A2,/~3), w e  arrive at the marginal posterior density 
of/9, which is 

{/3 
2 

(4.2) p(/31 x ,  Y) oc ~ E ( x ~ -  2 )  2 
i 1 
7~ 

- 2/3 Z ( x { -  2 ) ( Y ~ -  Y) 
i = 1  

.~ (,~ 1)/2 

+(k + 1 ) ~ ( Y ~  - %2 / 
i = 1  

Y = ( Y 1 , . . . ,  Y~)'. 
(4.2) as 

(4.3) 

After some rearrangements, we can write the posterior density 

(9- ;))~ } (~-1)/2 
p(/3 l x ,  g )  o< 1-F(n 2)~ 

where 

~ E ~ X x = {E~=, (x~  - 2 )  2 E~=I( ~ - ?)2 _ (E~=I( ~ - 2 ) ( ~  :/))2} 
(n - 2~]c 2~v '~  ~X~ - 2 ) 2 ) 2  

/ x \ Z . . ~ i = l \  

Thus, according to (4.3), it follows that  the posterior distribution of/3 is a Student 's  
t-distribution with n - 2 degrees of freedom and centered at the maximum likeli- 
hood estimator/3 given by (2.4). This means that  given X and Y, t = (/3 /)) /E 
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has a t-distibution with n - 2 degrees of freedom so that  a 100(1 - c~)% highest 
posterior density (HPD) interval for/3 is given by 

(4.4) 

where ta/2 is the upper a /2  point of a Student 's  t-distribution with n - 2 degrees 
of freedom. It may be noted that  the above (exact) HPD interval and the exact 
conditional interval (3.2) coincide. Moreover, the posterior variance of/3 is given 
by 

2 )  7 t - -  
(4.5) Var[/3 I X, Y ] -  -------~, r .  

As pointed out by Sweeting (1987), the posterior density of ~ given in (4.4) is 
close, for large sample sizes, to the conditional profile likelihood derived in the 
previous section. 

Bayesian inference for/3 may also be obtained by using the conditional model 
of Section 3. By considering the noninformative prior 

1 
p(9, .--, 

2,4 

it can be shown that  the posterior marginal distribution of ,3 is again a t-distribu- 
tion with n - 2 degrees of freedom and centered at ¢) given in (2.4). The posterior 
variance is as given by (4.5) above. 

Ezarnple. The 12 pairs (Yi, Xi) presented next (Fuller (1987), Problem 5, 
Chapter 1), are supposed to follow model (1.1) with kx = 0.85: (3.6, 3.9), (2.5, 2.9), 
(3.9, 4.4), (5.0, 5.9), (4.9, 5.4), (4.5, 4.2), (2.9, 2.3), (5.2, 4.5), (2.7, 3.5), (5.8, 6.0), 
(4.1,3.3), (5.1,4.1). After centering X~ and Y~ it follows that  ¢) = 0.9175, •2 - 
0.4038 and J,a = 1.0200 are the maximum likelihood estimators of/3, A2 and Aa. 
Now, by using (2.6), it follows that  an approximate 95% confidence interval for/3 is 
given by (0.5544; 1.2806). On the other hand, after some numerical manipulations, 
it follows that  the HPD (4.4) (which coincides with the interval (3.2)) reduces to 
(0.4741, 1.3609). 
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