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Abst rac t .  For estimating an unknown parameter 0, the likelihood principle 
yields the maximum likelihood estimator. It is often favoured especially by 
the applied statistician, for its good properties in the large sample case. In 
this paper, a large deviation expansion for the distribution of the maximum 
likelihood estimator is obtained. The asymptotic expansion provides a useful 
tool to approximate the tail probability of the maximum likelihood estimator 
and to make statistical inference. Theoretical and numerical examples are 
given. Numerical results show that the large deviation approximation performs 
much better than the classical normal approximation. 
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1. Introduction 

Let s = ( X l , . . .  ,Xn)  be a sample of independently identically distr ibuted 
(i.i.d.) observations with a common density function f ( x  I 0), where the param- 
eter space (9 is an open interval of the real line. Let l(x I 0) = l o g f ( x  I 0)~ 
l~(s I O) = }-]in=l l(xi I O) be the log-likelihood function of the sample s, and 

l(~i)(s l 0 ) =  (d~/dOi)l~(s l 0) for i =  1, 2, 3 , . . .  be the corresponding derivatives. 

The likelihood principle yields the maximum likelihood est imator (mle) 0n. It 
is usually favoured by many statisticians for its large sample optimal properties. 
Under certain regularity conditions, the mle 0n is a consistent and asymptotical ly 
normally distr ibuted est imator whose asymptot ic  variance achieves the CramSr- 
Rao lower bound: i.e., for any est imator T~(s), if 

(1.1) v /~ (T~-O) - -~N(O,v (O) )  as n --* co, 
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then 

(1.2) v(O) >_ 1/I(0), 

where I(0) is the Fisher information, and the equality holds when T~(s) is mle. 
Consequently, the mle is an asymptotically efficient estimator in the sense of (1.2). 
Its tail probability is traditionally approximated by its limiting distribution; i.e., 

(1.3) c~n(O,O,e)=Po(On(s)-O>_e)~l-g2(~e),  as n -+ oc, 

where ¢) stands for the distribution function (dr) of a standard normal. The 
above normal approximation often performs poorly, especially for estimating the 
tail probability. Further, the normal approximation is not found to be satisfac- 
tory for statistical inference by many statisticians for various reasons, both in 
practice and in theory (Cram6r (1937), Weiss and Wolfowitz (1966, 1967, 1970)). 
Recently, several different approximations have been developed by, for instance, 
Cram6r (1937), Daniel (1954), Barndorff-Neilsen and Cox (1979), Field (1982), 
and Hougaard (1985). 

Typically, for a good consistent estimator T~, the rate of convergence is usually 
exponential and its tail probability has the following large deviation expansion: for 
c > 0 ,  

(1.4) ( l n ( T  , O, E) = e -n/3(T'O'() 1  {a0 + + . . .  + + 

as n --+ oo. The positive constant /3(T, 0, c) is called the exponential rate for the 
consistent estimator Tn. The/3 is an indicator of the performance of the estimator, 
the larger the exponential rate, the better the estimator. It has been studied by 
many researchers, for example, Bahadur (1971), Chernoff (1952), Fu (1973, 1975), 
Kester and Kallenberg (1986), Rubin and Rukhin (1983), and Sievers (1978). For 
any consistent estimator T~ and c > 0, the exponential rate obeys the following 
inequality 

(1.5) 9(T, 0, < B(0, 

where 

(1.6) B(O, c) = iS{K(0 ' ,  0) 10' - 01 > e} 

and the Kullback-Leibler information of f(x 0') with respect to f(x [ 0) is defined 
a s  

F(,,io,i) (1.7) K(O',O) = oo log f(x [0) f(x ]O')dx. 

The exponential rate/3(0, 0, e) of the mle 0 achieves the lower bound (1.5) if and 
only if the underlying distribution belongs to the exponential family (Kester and 
Kallenberg (1986), Cheng and Fu (1986)). Kester and Kallenberg (1986) also 
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showed that if the parameter space is not convex, which occurs, for instance, in 
curved exponential families, then in general, no estimator achieves the lower bound 
(1.5). 

The objectives of this manuscript are two-folds, (i) to obtain a large deriva- 
tion expansion similar to (1.4) for the role, which provides a good approximation 
of its tail probability, and (ii) to show its applications in large sample statistical 
inference. In order to illustrate our results, several examples and numerical com- 
parisons are given in Section 3. The numerical results show that the large deviation 
approximation performs much better than the usual normal approximation. The 
detailed mathematical proof for the large deviation expansion of the mle is given 
in Section 4. 

2. Large deviation expansion of mle 

In order to get the large deviation expansion (1.4) for the mle, we first obtain 
a large deviation expansion for the sum of i.i.d, random variables. Let {Xi} be 
a sequence of i.i.d, random variables having distribution function F ( x )  defined 
on the real line and characteristic function ¢(t).  We assume that the following 
conditions hold: 

CONDITION A. F satisfies Cram~r's Condition (C) (Cram4r (1937), p. 81), 
i.e. 

(2.1) limsup I~(t)l < 1. 
Itl--+oo 

CONDITION B. Let ¢(t) = E e  ix1 be the moment generating function (m.g.f.) 
of X1. Assume that 

(2.2) sup{0 < t < ¢(t) _< = t0 > 0. 

Note that to can be finite or infinite. 

Assume that E X 1  < e < limt_~t ° ¢ ' ( t ) /O( t ) .  Let h(z)  = ez - log¢(z). From 

the Cram(r-Hoeffding theorem (Petrov (1975), p. 234) there exists r, 0 < r < to, 
such that (i) h ' ( r )  = 0, and (ii) h(r)  > 0 and h" ( r )  < 0. The point r is called 
saddle point. Denote cr = ~ ) .  

THEOREM 2.1. Under Conditions A and B we have 

(2.3) P X i  ~ n (  e_nh(r  ) 1 = + a l n  - l + ' . . + a m n  m + O ( n  m-l)) ,  

where the coefficients a~, i = 0, 1 , . . .  ; m are independent  of n; in particular 

1 
and 

aO ~ ~ O ' T  

(2.4) 1 [ 1 1~(3) (T) h(4) (T) 5(h(3) (T)) 2 ] 

__ -- ~ 270 .4 80-4 240.6 j al x /~0.7  q- - -  - - -  " 
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Let {X~} be a sequence of i.i.d, nondegenerate  random variables defined on 
{ra : r = 0, =kl , . . .}  which satisfies the following conditions: 

CONDITION A'. Let  {k~} be a sequence of integers satisfying 

(2.5) - - a ~ e ,  
n 

as n -~ oc for some e such tha t  E X  1 < ( < lim ¢ ' ( t ) / ¢ ( t ) .  
t - + t  o 

Let h(e ,z)  = ez - logqS(z), r0 be a solution of h'(ro) = 0, and {T~} be a 
sequence of positive numbers such tha t  

) OZ a ,z  Iz=~, = 0, 

02 f k_ "~ 

It follows from (2.6) and (2.7) tha t  ro < to and 

(2.8) % --+ ro > O, as n --+ oc. 

Denote  

(2.9) ~ =  ~ z 2 h  a , z  I . . . .  • 

THEOREM 2.2. Under Conditions A'  and B, we have 

(2.10) P(~Xi>_k~a)i=l 

= e_nh((k~/n)a,r~) 1 v ~ [ a o  + a l n  1 ÷ . . .  + a , ~ n  m @ O ( n - m - 1 ) ] ,  

where aj, j = O, 1 , . . . ,  m are real numbers; in particular 

a 

(2.11) ao = , / ~ ( 1  - e-~,~a)" 

I f  k~ /n  = k, then aj, j = O, .. . , m  are independent of n. 

The  above two theorems are modified versions of results due to Cram~r (1937) 
and Bahadur  and Rao (1960). Our proofs are based on a modification of Laplace 's  
me thod  (Oliver (1974)) applied directly to the inverse formulas, which are new 
and quite different from the original proofs given by Cram~r (1937) and Bahadur  
and Rao (1960). Theoret ical ly  speaking, these results are basically equivalent. The  
major  advantage of our expansion is tha t  the first two coefficients in our expansion 
are given explicitly for easier use in statistical applications. On the other  hand, 
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the coefficients of third order and above in the Bahadur  and Rao method  are given 
by recurrence formulae but not in our method.  The details of our proofs are given 
in Section 4. 

Let 0~(s) be the role, and _0n(s ) -- inf{0 : l(nl)(8 ] 0) = 0} a n d  On(s ) = sop{0:  

l(~ ~)(s ] 0) = 0} be the smallest and the largest roots of the likelihood equation 

l(~l)(s 1 0 ) =  0, respectively. Since 

(2.12) _0~(s) _< 0n(s) _< 0~(s), for every s and n, 

the following two inequalities hold: 

(2.13) Po(O~(s) >_ o + ~) <_ P0(l(1)(~ [ 0 + ~) _> o) _< Po(O~(s) _> 0 + ~) 
and 

(2.14) po(0~(s )  _< 0 - ~) _< Po(l(~)(s  l0  - ~) <_ 0) _< Po(O,~(s) _< o - ~). 

To obtain our main result (1.4), we need the following additional conditions: 

CONDITION C. For given n and every s, the max imum likelihood est imator 

0n(s) is the unique solution of the likelihood equation l(nl)(s l 0) = O. 

CONDITION D. For each 0 E O and e > 0, the moment  generating function 

(2.15) qS(t, 0, c) = E0[exp{tl(1)(x 10-}-e)}] < oo 

exists for 0 < Itl < to, and the characteristic function ~(t ,  O,e) of the random 
variable l (1) (x I O + s) satisfies Condition A. 

Let, for c > 0, h~(z) = - log ¢(z, 0, e). By Cram~r-Hoeffding theorem, there 
exists a saddle point ~-~, 0 < ~-~ < 7-0, such tha t  

(2.16) h'~(~) = 0 

and 

(2.17) h~(~-~) > 0 and h~'(T~) < O. 

In the following, we assume tha t  the ~-~ exists, and denote 

(2.18) ~ = ~ ~ ) .  

THEOREM 2.3. For any e > O, under Conditions C and D, the e-tail proM- 
bility of the mazimum likelihood estimator On has an asymptotic ezpansion 9iven 
by 

(2.19) 

wheTc 

g~(O, O, c) = e -ns(°,s,~) 1 x /~{bo + b i n  -1 _:_ . . .  + bm~t -rn + O ( n - m - 1 ) } ,  

(2.20) 3(8 ,  o, ~) = - log ¢(~-~, o, ~) 
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is the exponential  rate of  the m a x i m u m  likelihood es t imator  O~ and the coefficients 
bi, i = 0, 1 , . . .  , m are independent  of  n; in part icular  

1 
(2.21) b0 = 

X / ~ O "  e T e 

and 

1 [ 1 h~S)(T~) 
(2.22) bl -- v/~cre ~ - c r 2 ~  q- - -  

h~)(~) 5(h(~)(~)) ~ 
2~ S~ 4 o o z4crc 

PROOF. It follows from Condition C and the inequality (2.13) and (2.14) 

that we have _0~(s) = ~)~(s) = O~(s) and Po(On >_ 0 + e) = Po(l(~l)(s I 0 + e) >_ 0). 
For given 0 and e > 0, l(1)(X~ I 0 + e), i = 1, 2 , . . .  , n  are i.i.d, random variables. 
Hence, the result follows immediately from Theorem 2.1. [] 

Similarly, the large deviation expansion for the left hand e-tail probability can 
be obtained by replacing all the ¢ in the Theorem 2.3 with the value -e .  For 
small e, the saddle point ~-, defined by equation (2.16) has a Taylor expansion (Fu 
(1982)) given by 

(2.23) T~ = e + Ae 2 + Be  3 + o(e3), 

where 

A = - E l O ) l ( 2 ) / 2 I ,  

1 [__1 El(4 ) 1 
B = - 7  L3! - 7 (El(~)z/2))2 + El(1)l(3) + E(l(~))21(2) 

@~J~l(1)l(2)~_~(l(1))3 @ ~E(l(1))41 , 

and E and l (i) stand for Eo and l (i) (X I 0) respectively. 
Usually, the saddle point ~-c cannot be obtained explicitly from the equation 

hl~(t) = 0. We suggest to replace T~ in the Theorem 2.3 with e + Ae 2 + Be a. For n 
large and e small, (2.19) yields the well-known result 

(2.24) ~n(0,0, e) ~ ~ e -(nI/2)c~ 
x/27rnle 

3. Large sample point estimation 

The large deviation expansion (2.19) of the role 0 contains two parts: (a) the 
exponential rate fl(0, 0, e) and (b) the non-exponential term (1/v~){b0 + D1 n - I  -F 
• .. + b ~ n  - ~  + O(n- '~ - l )} .  The predominate exponential term exp{-nfl(0,  0, e)} 
is directly associated with the asymptotic exact distribution of the mle which 
plays an important role in large sample point estimation. For approximating the 
exact tail probability of the mle, both exponential and non-exponential terms are 
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vital. Four examples, involving the normal, Poisson, exponential and binomial 
distributions which satisfy the regularity conditions, are given to illustrate our 
results. They are of interest in both statistical theory and practice. 

Traditionally, the distribution of the mle is approximated by a normal distri- 
bution (central limiting theorem). To our knowledge, at present, there has been 
no direct theoretical comparison between the large deviation approximation and 
the normal approximation. Numerical comparisons are very much needed; there- 
fore, we provided numerical comparisons between the normal approximation and 
the large deviation approximation in two of our examples (exponential and bino- 
mial distributions). Since most statistical inferences and decisions such as 95% 
(or 99%) confidence intervals and 5% (or 1%) critical regions are often involved 
in computing the tail probabilities, our numerical comparisons will concentrate 
around tail probabilities of .025 or less. 

Example 1. Let {Xi} be a sequence of i.i.d, normal random variables with 
unknown mean 0 and known variance a2. The mle for 0 is the sample mean )?~. 
Taking m = 1, it follows from Theorem 2.3 that the e-tail probability of the role 
0~ has an asymptotic expansion given by 

~ ( 0 ,  0, e) ~ e -~2/~"2 [1 or2 
~ e  7t(~2 

Example 2. Let {X/} be a sequence of i.i.d. Poisson random variables with 
mean A. The maximum likelihood estimator for ~ is An = X~ the sample mean. 
By Theorem 2.2, for an integer sequence {kn} satisfying k~/n ~ e > A, we have 

Px (X~ > n ~ ) =  e-(k~'l°g(k~/nX)l~+n),) X/~n ( 1 + O ( 1 ) ) .  

Example 3. 
density function 

(3.2) 

Let {Xi} be a sequence of i.i.d, random variables with common 

f(x I A) = Ae -ax, A,x > 0. 

The sample mean Xn is the mle for 1/A. Since the sum S~ has a Gamma 
distribution with parameters n and A, it follows that the exact e-tail probability 
of 2(~ is 

1 Z( e + 
(3.3) P 2 ~ - ~  > e  = 

j=O 

The normal approximation for the e-tail probability of Xn is 

(3.4) P 2 n  - 3 > e = P (v )-la - _> ,/ ae 



484 J. C. FU ET AL. 

A p p l y i n g  T h e o r e m  2.3, we o b t a i n  a t w o - t e r m  la rge  d e v i a t i o n  a p p r o x i m a t i o n  

for t h e  c- ta i l  p r o b a b i l i t y  of X n  

(3.5) 

whe re  

1 ) e_nhO_ ) P .z~ n -- ~ > E ~'J (~V/~) - a [ a  0 --  7~ l a l ]  , 

h(7) = Ac - log(1 + t e ) ,  ao = ( x / ~ A e )  -1 ,  

a I = - ( V / ~ , ~ e ) - I [ ( . ~ E )  - 2  @ (.~E) -1  @ (12) -1] .  

T h e  n u m e r i c a l  c o m p a r i s o n s  a m o n g  t h e  e x a c t  e - ta i l  p r o b a b i l i t y  PE  g iven  b y  

(3.3),  t h e  n o r m a l  a p p r o x i m a t i o n  PN given  b y  (3.4),  a n d  t h e  la rge  d e v i a t i o n  ap-  

p r o x i m a t i o n  P c  g iven  b y  (3.5) a re  p r o v i d e d  b y  t h e  fo l lowing t a b l e  for va r i ous  va lues  

of  A a n d  e. 

T h e  n u m e r i c a l  r e su l t s  in T a b l e  1 show t h a t  t h e  l a rge  d e v i a t i o n  a p p r o x i m a t i o n  

p e r f o r m s  well  a g a i n s t  t h e  n o r m a l  a p p r o x i m a t i o n  in a l m o s t  al l  cases,  e spe c i a l l y  for 

t h e  e x t r e m e  t a i l  p r o b a b i l i t i e s .  

Table 1. The exact and approximate e-tail probabilities of mle Xn with n = 11 and 51. 

n ~ e PE PN PL 
11 0.5 1.320 .0267 .0143 .0218 

0.5 2.100 .0026 .0002 .0024 

1.0 0.660 .0267 .0143 .0218 

1.0 0.800 .0120 .0040 .0107 

2.0 0.325 .0282 .0155 .0228 
2.0 0.400 .0120 .0040 .0107 

3.0 0.230 .0226 .0111 .0190 

3.0 0.320 .0046 .0007 .0043 

4.0 0.170 .0239 .0121 .0199 

4.0 0.230 .0058 .0011 .0054 

51 0.5 0.575 .0268 .0200 .0228 

0.5 0.650 .0156 .0101 .0140 

1.0 0.300 .0225 .0161 .0195 

1.0 0.420 .0034 .0014 .0033 

2.0 0.150 .0225 .0161 .0195 

2.0 0.180 .0091 .0051 .0084 

3.0 0.096 .0266 .0199 .0227 

3.0 0.150 .0020 .0007 .0020 
4.0 0.072 .0266 .0199 .0227 

4.0 0.084 .0132 .0082 .0120 

Example 4. Let { X i }  be a sequence  of  i.i.d. B e r n o u l l i  r a n d o m  va r i ab l e s  w i t h  

P ( X  = x) = pX(1 - p ) l - x ,  x = O, 1. 
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The maximum likelihood estimator for the parameter p is 15 = J(~. In this 
example we give only the numerical comparison. 

The numerical results in Table 2 also show that the large deviation approxi- 
mation is far superior to the classical normal approximation. Even at the sample 
size n = 11, the large deviation approximation performs reasonably well while the 
normal approximation performs poorly. Furthermore, an important phenomenon 
(which can be seen especially from Table 2) is that the normal approximation 
becomes worse as the underlying distribution becomes more skewed. The accu- 
racy of the large deviation approximation is much less sensitive to the skewness of 
underlying distribution. This is because that the normal approximation involves 
only the variance of the underlying distribution where as the large deviation ap- 
proximation involves not only the variance but also the skewness of the underlying 
distribution. For instance, the dominant term of the expansion, the exponential 
rate, has a strong connection with the skewness (Fu (1982), p. 764). Based on 
our limited numerical experience, a two-terms large deviation expansion of (1.4) 
is sufficiently accurate for statistical applications. 

Table 2. The  exact  and approx imate  c-tail probabili t ies for binomial  r a ndom variables. 

n p e PE PN PL 

10 0.5 0.300 0.0107 0.005? 0.0125 

10 0.7 0.250 0.0282 0.0192 0.0308 

25 0.6 0.175 0.0294 0.020? 0.0269 

25 0.8 0.150 0.02?4 0.0228 0.0270 

50 0.7 0.120 0.0183 0.0154 0.0178 

50 0.9 0.080 0.0053 0.0091 0.005? 

100 0.6 0.100 0.0148 0,0123 0.0138 

100 0.8 0.100 0.0023 0.0030 0.0023 

200 0.6 0.070 0.0173 0.0152 0.0160 

200 0.8 0.050 0.0283 0.0262 0.0267 

All the conditions, except Condition C, are very mild and easy to verify. Condi- 
tion C, which states that the mle 0n(s) is an unique root of the likelihood equation 

l (1)(8 ] 0) 0, is somewhat strong, but is vital to the proof of our results. This 
condition is required by almost all other types of expansions (see, for instance, 
Field ((1982), p. 673) and Hougaard ((1985), p. 162)). The following two remarks 
pertain to those cases where the condition of uniqueness fails. 

Remark  1. For the Cauchy distribution with location parameter, the log- 
likelihood function is very smooth and all derivatives exist. The likelihood equation 

(3.6) l(1)(s 10) = - ~ 1 ~ ( ~ - ? ) 2  - 0 
i=1 
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is a polynomial  of degree 2n - 1. It has (2n - 1) roots (real and complex), and 
the number  of roots increases with the sample size. Hence it does not satisfy 
our conditions. Reeds (1985) shows that  all the real roots but  one (the global 

maximum: mle) of the likelihood equations l(~l)(s I 0) = 0 tend to +oc  or - o c  

almost surely as n ~ ec. Bai and Fu (1986) have proved that  the role ~}~(s) still 
converges to 0 exponentially; i.e., for e small, 

(3.7) Po(On ~ 0 ~- C) = e -n{e2[l+O('V~)]/4} 

as n --* oo. The same results also have been s ta ted by Kester  and Kallenberg 
((1986), Remark  3.2). Although the likelihood equation has multiple roots we do 
believe that  the asymptot ic  expansion exists in this case. Mathematically,  we have 
not been able to obtain its asymptot ic  expansion. 

Remark  2. If there is more than one mle, they all usually converge to the 
unknown parameter  0 (i.e., they are all consistent estimators).  It is tradit ion- 
ally believed that  the statistician can use any one of them. Contrary to the 
above notion, they very often have different exponential  rates, and hence, dif- 
ferent asymptot ic  expansions. For example, consider the uniform distr ibution 
U[O - 1/2 ,0  + 1/2] with location parameter  0. Any point between the points 
X(n) - 1/2 and X(1) + 1/2 is a maximum likelihood estimator.  They  are all con- 
sistent, have different rates of convergence to 0. For example, for p E [0, 1], the 
mle @ = p ( X o )  + 1/2) + (1 - p ) ( X ( n )  - 1/2) has an exponential  rate given by 

/3(@, 0 ,  e )  = - l i m  _1 l o g  P(I@ - 0l >- e )  = - l o g ( 1  - apc), 

where ap = 1 /max(p ,  1 - p). Consequently, the mle's X(1 ) + 1/2 and X0~ ) - 1/2 
have same exponential  rate - l o g ( 1  - c), the role (X(~)/8 + 7X(1)/8 - 3/8) has 
an exponential  rate - log(1 - 8e/7), and the mle (X0~) + X(1))/2 has an expo- 
nential rate, - l o g ( 1  - 2e), which is the fastest  among all the m a z i m n m  likelihood 
estimators. Clearly, one should only use the optimal role (X(1) + X(~))/2.  Note 
that  neither the mle X(~) - 1/2 nor the mle X(! ) - 1/2 is asymptot ical ly  normally 
distributed. The asymptot ic  normali ty criterion of selecting an optimal consis- 
tent est imator  collapses completely, at least in this simple example. On the other 
hand, the large deviation approach is applicable and provides a good solution to 
this problem. 

Remark 3. Even in the case where there is a unique mle, Kraft  and LeCam 
(1956) gave a very disturbing example that  the role satisfies the likelihood equation, 
but  it is not consistent. Note that  the large deviation approach remains applicable 
and has an exponential  rate of zero. 

Under smooth conditions, it is well known that  the role has all the classical 
optimal properties. For example, it is a first and second-order efficient est imator  
(see Efron (1975)). However, in a large deviation context,  the picture is rather  
different. If the underlying distr ibution belongs to an exponential  family of dis- 
tributions, then its exponential  rate ~(0, 0, e) achieves the Bahadur  bound (1.5) 
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(Kester and Kallenberg (1986), Cheng and Fu (1986)). Outside the exponential 
family of distributions, the exponential rate/3(0, 0, ~) given by mle is not always 
optimal. Let us give the following example. 

Example 5. Let {Xi}i~__l be a sequence of i.i.d, logistic random variables hav- 
ing common density function 

f(x I 0) -- e-X+°/(1 ÷ e-X+°) 2, z E ( -oc ,  oc). 

For given e, let 0~ be the likelihood ratio estimator for 0 (which is the best trans- 
lation invariant estimator), the unique solution of the following equation: 

2 
A~(s, 0, e) = 2e + - E log[(1 + e-x '+°-~)/(1 + eX'+°+~)] = 0. 

n 
i = 1  

It has an exponential rate given by 

~(O, 0, e) = e + {log[1 - exp(-2e)]/2e} 

which reaches the Chernoff bound (see Fu (1985) and Kester and Kallenberg 
(1986)). 

The mle 0n is the solution of the following equation: 

E { 1  + exp(xi - 0)] 1 Tt __ 0. 
2 

i = 1  

It has an exponential rate given by 

/3(O'O'~) = -l°g {inf e-t/2 / ~  } [.t>0 ~[exp(t/(1 + exp(x - e)))]f(x)dx . 

As e tending to zero, we have 

lira 0, - /3(0 ,  0, = { 0, i = 1, 2, 3, 4, 5 
~--+0 0.000079, i = 6. 

The exponential rates differ only at the coefficient of e 6. This shows that for e small, 
the likelihood ratio estimator 0n is superior to mle 0~. Our results substantiates 
that, in general the role 0 is second order efficient estimator. Both Efron and Rao 
(Efron (1975)) seemed to suggest that if a theory of third-order efficiency were 
to be developed, mle would still emerge as the "optimal" estimator. The above 
counterexample shows this claim to be false. 

Remark 4. Note that the above mentioned likelihood ratio estimator 0~ is an 
M-estimator. If the underlying density and the ¢ function are sufficiently smooth, 
then the large deviation expansion of M-estimator derived from the ¢ function can 
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perhaps be obtained by a simple modification of the method developed in Section 
2. 

Remark 5. We would like to point out an important fact that the large devia- 
tion approximation (2.20) for the tail probability of maximum likelihood estimator 
has a pole at r~ = 0 (e = 0). Hence, if the large deviation approximation (2.20) 
is misused, for instance fixed n and as e ~ 0, then the approximation could be 
inaccurate. There are several approaches, for example, Lugannani and Rice (1980) 
and Daniels (1987) to overcome this problem. The conditions in their paper (see 
Lugannani and Rice (1980) Condition (ii) on p. 481) are much stronger than that 
used in our paper. Their approximation performs very well numerically in the 
region as c nears the zero and uniformly up to a factor O(1/x/~ ). The approxi- 
mation becomes less accurate in the region when the deviation of S~ is of order 
O(n). This region is one of the most important region especially for the statisti- 
cal inferences. For example, the statistical inferences such as confidence interval 
and critical region of testing hypothesis, based on mte's are always involved in 
computing the tail probabilities of Sn at the order O(n). 

In view of all the above examples, numerical results, and remarks it suggests 
that the large deviation theoretical approach is more applicable than the central 
limit theory as a method of selecting the optimal estimator. It is also superior for 
approximating the tail probabilities than the normal approximation. 

4. Proofs 

To prove Theorem 2.1 and Theorem 2.2, we need the following lemmas. 

LEMMA 4.1. If  F: satisfies Condition A, and if F1 is absolutely continuous 
with respect to F2, then F2 also satisfies Condition A. 

PROOF. See Lemma 4 of Bahadur and Rao (1960). [] 

LEMMA 4.2. Suppose that G is a distribution function and its m.g.f, exists 

F ¢(t) = et~dG(u) < ~ ,  for 0 < It[ < to. 

If  e > 0 is a continuity point of G, then for any 0 < a < to 

l f a + i e ° !  
(4.1) P ( Y  > e) = ~ ~,~-ioo 

PROOF. 

(4.2) 

Denote the right hand side of (4.1) by/3@). We have 

/3(e) = lim --1 a+iN le_~ z eZ~dG(u) dz 
N----*c~D 27ci J a - - i N  Z J--c~ 

= l i r a  lfa+ N  N--~ j _ ~  2~i Ja-iN e(~-<)ZdzdG(u) 
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For u > e, let 

f ~ / 2  1 e(~_~)ae(~ ~)Ne~Nie~d~. 1 
JN(u) = l -- 2~i j~/2 a + Ne ~ 

F o r u < c ,  let 

1 [  ~/2 l_Nei~e(~-~)%-(~-~)NP~ Niei~d~" J x  (~) = ~ i  j_ , , /2  a + 

From the residue theorem, we have 

1 [a+iY l_e(~_~)Zdz, u ¢ e. 
(4.3) &~(u)  = ~ Ja-~N z 

Now, when u < e, note tha t  la + N e  i~] > INe~l for ~ ~ [-~/2,~/2], we have 

- 27c a-~/2  7r 

Further,  since sin~ >_ (2/~)~ (~ ~ [0,~-/2]), it follows 

71" dO 

_ 1 e ( ~ - ~ ) ~ ( 1  - e - N ( ~ - ~ ) )  ~ O, a s  N ~ o o .  

Similarly, for u > e, we have 

1 r~/2 
IJN(u) -- i I _< --e (~-~)a [ e-N(~-~12~/~d~ and lim JN(u) = i. 

do N-~oc 

Then we obtain that 

lim JN(u) = [ 1, if u > c (4.4) 
N-.oo [ 0, if u < e 

and 
1 / ' (  ~ ) 

(4.5) IJx(u)l < 1 + ~e (~-~)a with 1 +  e (~-~)~ dG(u) < oo. 
O 0  

It follows from (4.2), (4.3), (4.4) and (4.5), and the dominated  convergence theorem 
that  

fl(c) = lim dN(u)dG(u) = lim dN(u)dG(u) = P(Y  > e). [] 
N - - - +  o c  d - o c  o c  N --+ cx~ 
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For m = 1, 2 , . . .  and any complex number z 

eZ z z~  1 ]z/~elzl 
- 1 - i T  . . . .  ( ~ - 1 ) !  -< m! " 

PROOF. 

/01 /01 {I(Z) = Z e Z t d t  and ~ m ( Z )  = z 

The desired result follows from induction. [] 

Let ~.~(z) = e z - 1 . . . . .  z ~ - l / ( m  - 1)!. Then 

{rn l(Zt)dt for m > 1. 

PROOF OF THEOREM 2.1. 
the density function 

nm+l /e ,  

& ( ~ ) =  0, 

Let 

(4.6) 

Let {Y~} be independent of {X~} where Y~ has 

tt C [--(/(2~m+1), ~/(27~m+1)], 
otherwise. 

~(~) : P(X~ + x~ +... + x. + z~ >_ ~) 

~(~) = P(X~ +... + x. >_ ~). 

and 

Then 

(4.7) 9~(~ + ~ / (2~+2))  _< ~ ( ~ )  < 9.(~ - ~/(2~+2)) .  

It is easily seen that  

n ~ + l  (e=/(2~,,+1) e-z~/(2~<+l)), (4.8) E~z(xl++x"+Y") : ¢"(~) ~ T  

exists for Izl < ~0 Since 2 1  + ' "  + X~ + Y, has an absolutely continuous d.f., by 
Lemma 4.2 we have 

1 /T-- ice  1 
- e  (n~+e/(2n~+~))z¢n(z)EezY'~dz (4.9) 9~(~ + ~ / (2~÷~))  = 5L7 . ~ _ ~  

e -~z~@) [ ~  1 enc i y  e_e(T+iy)/(2n~+l ) 
2~v ] ~ (r  + iy)  2 

" ( ¢ ( T q - i Y ) )  C 

. [e~(~+iv)/2~+~ _ e-4~-+~y)/2~'~+l]dy" 

Def ine / ) (u )  = f~oo(1/¢(T))e~WdF(v) .  Then F is absolutely continuous with re- 

spect to F,  and the c.f. of _P is ¢ ( r  + i y ) / ¢ ( 7 ) .  By Lemma 4.1, ¢(T + iy)/¢(~-)  
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satisfies Condition A. Thus, for any 6 > 0, there exists a constant  c' > 0 which 
depends on 6 such tha t  

(4.1o) I¢(~- + iy)/¢(-r)l <_ e -c' for lyl > 6. 

Denote the integrand of (4.9) by I,~(y). It follows from (4.9) and (4.10), we have 

(4.11) ~1 e-'~hO-) 277 j(yl>e In(y)dy 
?~m+l -nh(z-)--nc s e 

27cc 

= e -~h(~ )O(e  -~) 

2c,~ f dy T2 + y2 

for some constant c such that  0 < c < c'. 
Let 6 > 0 be sufficiently small such tha t  6 < rain(t0 - ~-, ~-). It is easily seen 

that  

(eO-+iv)~/2~'~+~ _ e-O-+iy)~/2~'~+x) 
(4.12) [(T -~- iy)6/7~ re+l] 

e -e@+iy)/2n~+l : 1 -F O(n  - m - l )  

= 1 + O(n - m - l )  and 

uniformly for lYl ~ 6. it follows from (4.9), (4.11) and (4.12) that 

(4.13) /3~(c + C2n "~+2) 

_ 1 e_~m(~_ ) / ~  l e_~[h(~_+iy)_h(~_)]dy(1 + O(n_~_l)  ) 
27c ~ ~- + iy 

+ e-~h(~)O(e-~ 0. 

Similarly, we have 

(4.14) Z~(~ - ~ /2~'~+2)  

1 e_nh(.r) /5  1 
27"( ~--6 T -F i~  e n[h(:-+iy)-h(m)]dY(Z -F O(?%--m--1)) 

+ e-~h(~)O(e-~0. 

By (4.7), (4.13) and (4.14), 

(4.15) 
r ~  1 1 

2:¢ 6 ~r + iy 
+ e-'m(~-)O(e~). 

For lYl -< 6, we have the Taylor expansion 

(4.16) - I h ( 7 + i y ) - h ( T ) - ~ G 2 y 2 ]  

= C3(iy) 3 -F C4(iy) 4 - F " "  4- C2m+3(iy) 2m+3 T Ollyl 2m+4, 
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where G2 = - h ' ( r ) ,  1011 _< M,  Cj = -h (A( r ) / j ! ,  ICjl ~ M f o r j  = 3, 4 , . . . ,  2m+3 ,  
and M represents a positive constant.  Let 

(4.17) 

and 

(4.18) 

. . . .  C ~i o ~2~+3 • ~(iy) C3(iy) 3 + + 2~+3~ ~j 

~l~(iy) = 1 + ngm(iy)  
+ l n 2 ~ 2  (iy) ÷ . . . +  

2! "~ (2m + 1)! 
7 t 2 m +  1 ff,2m+ i/~'. 

"~m t~Y)" 

Inserting equations (4.16) and (4.17)into (4.15), it yields 

(4. ]9)  
1 1 

2~ __~ r + iy 

• e x p ( - ~ b V 2  + ~ .~ ( iy )  + ~o~v~'~+~)ay 

• (1 + 0(';%--m--1)) ÷ e--nh(~')O(g-nc). 

Let 6 < o-2/(4M + ~2). For lYl < 6, we h~ve 

(4.20) I~ ( iy ) I  ÷ MlYl =~÷~ ~ ~/fbl3/( 1 - ~) ~ M @ = / (  1 - 6) ~ ~=y~/4, 

2m+4~Mnly l  2~+4 " By Lemma 4.3, ]e °~<vl:~+~ - 1] < Mnly  ] Hence, 

( 4 . 2 1 )  
~ r + i y  

M < - -  
7~T 

M < - -  
7~T 

7"CT 

e n 2~+4 __ 1)dy - -  e x p ( _ _ , l . ~ O . . 2 y 2 / 2  __ ~1~177%(iy) )(C 1 lYl 

f ~ e x p { - ~ b V 2  ~M~V:/(1-6)}ay nIyl 2m+4 + 

fo ~ n]yl2~+4 e- ~2 y~ / 4 dy 

7b% 2m÷4 _G2u2/4 ~ 
rtm+ 2 e - d u = O ( n - ( m + 3 / 2 ) ) .  

Similarly, applying Lemma 4.3 and using (4.18) and (4.20), it yields 

(4.22) ~_~ / 5  1 ~,2y2/2(e~,m(iy ) _ ~,,~(iy))dy = 0(n-(~+3/2)) .  e 
6 r + i y  

Let 

1 1 iy + + + ~ ( i y )  = ~- ~- 

Then, for [Yl ~ 6, 

2o+1- 

- &(iv)  + 02bl 2~+2, 
r + i y  
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where 10~l ~ M. Hence 

I ;( 1 ) 
(4.23) ~ ~ ~- + iy {~(iy) e~:p(-~0.~y~/2 + ~ ( iy ) )dy  

= O(n  (,~+3/2)). 

From equations (4.19), (4.21), (4.22) and (4.23), and the fact that  

F < e - ( ~ - ~ ) ~ / 2  I~.~(iy)n~(iy)le ~Y~/2dy 
oo 

= O(n  (.~+3/2)), 

we obtain 

(4.24) o~(~) = e -~(~)  1 J ~  2G ~ ( i Y ) ~ ( i Y ) e - ~ / ~ d Y ( 1  + O(~-~-1))  
(2'O 

+ e ~t~(~)0(n-('~+3/2)). 

Integrating term by term, the integrals of the odd power of (iy) in the product  
{ , ~ ( i y ) ~ ( i y )  are zero. Since Re[{~(iy)~]~(iy)] is a polynomial of power y2 it 
follows 

c ~ ( e ) = e _ ~ ( ~  ) 1 { al a~  )} a ° + - - 4 - ' " 4 -  -}-0(?% - m - 1  
n ~ ; 

where ao > 0 and aj, j -- 0, 1 , . . . ,  are real numbers independent of n. 
Taking m = 1 and after integrating term by term, the equation (4.24) becomes 

1 { i( 1 h(3) (7) 
2~a7 i+- ---+-- ';% G2T 2 2TG 4 

h(~)<) 5(h(~)(7))~ } 
80.4 240. 6 / -F O ( n  - 2 )  • 

This completes our proof. [] 

LEMMA 4.4. Suppose tO > O, G is a d.f. with 

F ¢(t) = et~dG(u) < oc for 0 <_ t < to, 
oo 

~nd {7~, j >_ 0} c (0, to) satisAcs 7j ~ 70. Then 

¢(7~ + iy) ¢(70 + iy) + 
¢(~) ¢<o) 
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uniformly for y C (-oo, +oo) as j ---+ oo. 

PROOF. Since TO E (0, t0) and Tj ~ TO, there exists bl and b2 such that  
0 < 51 < TO < b2 < to and ]e ~j~ - e~°~ l _< e blu ~- e b2u for j large. Note f ( e  b~ + 
eb~)dG(u) <_ oc, by the dominated convergence theorem. Then 

I¢(rj + iy) - ¢(Wo + iy)] < i le~ju - ~'°~l~a(~) ~ o as j o. 

That  is, ¢(7j + iy) --~ ¢(~-0 + iy) uniformly for y E ( - o o ,  oc). Therefore, Lemma 
4.4 holds. [] 

PROOF OF THEOREM 2.2. 

We have 

Let Y be independent  of {Xj }, with density 

1/a, if u C (0, a) 
f v ( u ) =  O, otherwise. 

Eczy  __ e za -- 1 
za 

Let o~ = P { X l  + . . .  + X~ >_ k ~ } .  Then o~ = P { X 1  + . . .  + X~ + Y >_ k~a} and 
the d.f. of X1 + ' "  + X~ + Y is continuous. By Lemma 4.2, we have 

I ],fr~+i°° ! eZa _ 
i dz _ ~-k,~¢,~(~) ~ 

an 2~i ~ - i ~  

_ 1 e_nh((k,~/n)a,~.) /~o  
27ca 

i -nh((kn/n)a,T~) 
27ca 

.s_;:,£ 

in ¢(Tn+iy)a-- 1 --knaiy [(~(Tn2_/Y) dy 

{ e( ~+iv+2=u/~)~ - 1 -knai(27rl/a-y) 

• [,(~ + ¢(~iv + 2~Zila)] }@. 

Note that  the d.f. of X1 is of the lattice type, so 

¢ ( ~  + iy + 2~Zila) = ¢(~-n + iy), 

Thus, 

(4.25) 

l : ±i, ±2,... 

c~ = l~e-~h((~'~/~)~"~) 
27ca 

I 

-- --e27cal nh((k~/n)a,7~) J/Tr/a-~'/a 1=-% (7-/T 2 ~ / U  <- Y) 2 e  ( 7 ~ + i y ) a  - -  1 

• e-n(k((k~/n)a,~'~+iY)-h((k,Jn)a,r=))dy. 

dy 



LARGE DEVIATION EXPANSION OF MLE 495 

For each n, ¢(r~ + iy)/O(%) is a characteristic function of a lattice distribution. 
Then by Theorem 6.4.7 of Chung (1974) and its Corollary, we have 

(4.26) ¢(~-+}Y) ¢(r~) < 1 for all 0 < lyl ~ ~/a.  

Let g > 0 such that ~ < rain(To/a, a). Thus, it follows from (2.8) and Lemma 4.4 
that there exists c' which depends on 5, such that 

(4.27) ¢(T~ + iy) , ¢ (~ )  -< e-~,  5-< lYl -< 7r/a, for all n. 

Thus, we have 

(428) 
27ca 

< 1-- e-nh((k~/n)a'r~) [/~ ~_ec er'a+i I e nc' 
- 27ca I<-:r/a 1 7~ + (27cl/a + y)2 dy 

= e-nh((k~/n)a,r~)O(e-nc'). 

It is easily seen that there is an M > 0, such that 

1 

(1 + z)~ 
(1 -1- 2(--Z) ~- 3(--Z) 2 @ ' - "  @ (2fr~@ 2)(--z) 2m-1) ~ M-IzI 2m+2 

for all Izl < c < 1. Thus, for lYl -< 5, 

O0 
1 

(4.29) E (T~ + 27cli/a + iy) 2 
l = - - o o  

oo 1 1 
E (% + 27cii/a)2 iy 2 ,=-oo (1+ ) 

1 ( (-iy) 
= Z (~- + 2~Zi/a)~ 1 + 2 (~_ + 2~z{/~) + 

l :  oco 

+(2m + 2) (T~ - iy  qT~Tli/a) 2~+1) 

oo 1 

+ Y2~*2° ~ (~ + 2~li/~)2m*~ 
l : - - o 0  
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where IOI < M. Let 

o~ 1 ~ 1 
(4.30) ~ ; ( @ =  ~ ( ~ + 2 ~ Z i / a ) ~  + 2  Z < ~ + 2 ~ , / a V  ( - @ + ' ' "  

l = - o c  l=--ec 
0 ~  

1 
+ (2.~ + 2) ~ (~ + 2~./~)~+~ (-@~'~+~ 

l = - - o o  

For lYl <- ~ and 8 < min((to - ~-0)/2, ~-o/2, 7c/a), we have 

(4.31) 

w h e r e  

- + 4 
{'w* f-~ '~ 2m+3 2m+4 = C~(iy)  3 -~- C~(iy)  4 @ . . .  @ ~2rn4_3\~y) -F 0~lyl , 

C ff - -  

1 OJh(e, z) 

2 is defined as (2.16). Let  and cr~ 

~m(iY  ) * . 3 r '* ;~.o ~2.~+3 = C3(zy ) -t-C2(iy) 4+' ' '+ ,~2m+3k~g]  

and 

~?~(iy) = 1 + nq2m(iY ) + f 2qj,2(iy ) + ' "  ÷ 1 Tb2m+lT~m+l(iy). 
2! n "~ (2rn + 1)! 

Wi th  the same argument  which we used in the proof  of Theorem 2.1, we obtain 

(~n e-nh((k~/n)a'~-") 1 / ?  ( (iya)2 ( iya)m ) 
= e~-~a(1 + iya + 2~-yff- " + . . .  + rn~. 1 27ca oc 

, . , . --nerVy2~2 • ~ ( z y ) ~ m ( Z y ) e  dy(1 ~- O ( f t - m - 1 ) )  -F (e nY(T)Tt-(m÷3/2)) 

1 {  al ~ } = e -nh((k~/n)a'T*') V ~  ao -F - -  @ ' ' .  -~- _4_ O(n- rn  1) 
n n-~ ' 

where a0 > 0, and aj,  j = 0, 1 , . . . ,  are real numbers  depending on ~-~ and cr~ 
which are determined by kn. If k~ /n  = k, then  ~-~ = To and cr~ = or0, hence aj,  
j = 0, 1 , . . . ,  are independent  of n. Applying Formula 1.422.4 of Gradsh teyn  and 
Ryzhik (1965), gives 

a 
[] 

ao = E (~- + 27cIi/a)2 (e~'~ - 1) x / ~ G ~ a  
- -OO 

V / 2 ~ o - ~ ( 1  - e - ~ - ~ a )  " 

Remark 6. Our Theorem 2.2 is clearly the case 0N = 0 of Bahadur  and Rao 
(1960). It  also covers case 0 < 0~ < 1 of Bahadur  and Rao. This is immediate ly  
consequence of that ,  let k~ =Ene] (kn/n  --~ c, as n -~ e), 

P X i > _ n e  = P  Xi_> [he 
i=1 

for all n and e > O. 
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