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A b s t r a c t .  We have studied the asymptotics of two special two-matrix hy- 
pergeometric functions. The validity of the asymptotic expressions for these 
functions is seen in several selected numerical comparisons between the exact 
and asymptotic results. These hypergeometric functions find applicat{ons in 
configuration statistics of macromolecules as well as multivariate statistics. 
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1. Introduction 

Hypergeometr ic  functions of mat r ix  argument  have found wide applications 
in expressing certain probabil i ty density functions of the principal components  
of some chosen positive definite symmetr ic  matrices. Two areas where principal 
component  analysis is used are mult ivariate  statistics and configuration statistics 
of macromolecules.  In the former, a classical example is the joint  dis tr ibut ion of the 
latent  roots of a sample covariance mat r ix  (James (1964), Muirhead (1982)). In the 
field of macromolecular  configuration statistics, it has been found (Eichinger (1977, 
1985), Wei (1990a)) tha t  bo th  size and shape distr ibution functions for Gaussian 
macromolecules can be expressed in terms of hypergeometr ic  functions of mat r ix  
argument .  As in the case of mult ivariate  statistics (see, for example,  Muirhead 
(1978)), a s tudy of the asymptot ics  of the hypergeometr ic  functions appearing 
in these distr ibution functions can provide much insight into the na ture  of the 
extended configurations of macromolecules,  an unders tanding of which is essential 
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in the theory of rubber elasticity (Eiehinger (1983), Eichinger et al. (1989)) and 
the reptation dynamics of DNA (see Zimm (1988) for instance). 

In this paper, we first review the mathematical analysis that leads to asymp- 
totic results for two special two-matrix hypergeometrie functions. Numerical com- 
parisons between the asymptotic results and the exact evaluations in the asymp- 
totic regions of the functions then follow. Finally, several conclusions are drawn 
from these comparisons. 

2. Analysis 

We consider here a single macromolecule (Flory (1953, 1969), deGennes (1979), 
Doi and Edwards (1986)) imbedded in a k-dimensional space. The molecule is 
pictured as a molecular graph with each of its n vertices corresponding to a selected 
atom along the backbone, and each edge representing a submolecule or segment 
consisting of a number of chemical bonds. This approximate representation of 
the configuration of a molecule becomes increasingly accurate as the size of the 
molecule increases. For simplicity, the mass of each vertex or bead, as it is often 
called in polymer theory, is taken to be the same fixed number, and all segments 
have the same length. 

This model of a polymer molecule has a potential energy function that is 
quadratic in the coordinates of the beads, and is often called a Gaussian model (for 
details and the development of the model, see Fixman (1962), Coriell and Jackson 
!1967), Fujita and Norisuye (1970), Yamakawa (1971), Sole and Stockmayer (1971), 
Sole (1971, 1972), Eichinger (1972, 1977, 1980, 1985), Sole and Gobush (1974), 
Stockmayer (1974), Martin and Eichinger (1978), Shy and Eichinger (1986), Wei 
(1989, 1990a), Wei and Eichinger (1989, 1990a, 1990b, 1990c, 1991)). The Boltz- 
mann factor for the system, which is proportional to the probability density for 
finding the system in a particular equilibrium configuration, takes a form that is 
frequently encountered in multivariate statistics. 

Define a non-negative definite symmetric matrix, called the gyration tensor, 
as the product of a k x n matrix and its transpose, the matrix elements of which 
are the Cartesian coordinates of the n beads relative to the center of mass of 
the molecular system (see for example Eichinger (1985)). This matrix is simply 
related to the inertial tensor for the mechanical system that the masses represent, 
and it is further similar to the covariance matrix found in multivariate statistics. 
Here the matrix measures the shape of the molecule. The distribution function of 
this matrix may then be formulated from the fundamental principles of statistical 
mechanics. We note that the gyration tensor does not, in general, have the well- 
known Wishart distribution except for the k = n - 1 case, where a macromolecule, 
when imbedded in a 3-dimensional space, can only have 4 beads. 

Let Sd = diag(S1, $2 , . . . ,  Sk) denote the k eigenvalues (latent roots or princi- 
pal components) of the gyration tensor for a Gaussian macromolecule of rt beads 
imbedded in a k-dimensional space. The trace of the matrix Sd, tr(Sd), is the 
radius of gyration g2, which is a measure of the size of the molecule. For nonde- 
generate Sa, i.e., all the principal components are distinct, the shape distribution 
function or the joint density function of the principal components P(Sd) is given 
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by Eichinger (1985). 

<2.1) P(s~) = ~ / z l X ? / =  r [ ( ~ 7 ) / 2 ]  H I& - SWI 
c~=l c~</3 

where /c < n - 1, S~_~ = (Sd,0) is a ( n -  1) x (n - 1) diagonal matrix,  a = 
diag(As, k 2 , . . . ,  A~-I) denotes the nonzero eigenvalues of the symmetr ic  Kirchhoff 
matr ix  tha t  describes the architecture of the molecule, IAI is the determinant  of A, 
and oF0 is the well-known hypergeometric  function of matr ix  argument.  The size 
distribution function P(a 2) takes the form (gichinger (,977), Wei (1990a, 1990b)) 

IA,~[ ~/z(g2)~/2 *oFo(A.~, gu) (2.2) P ( ~ ) -  r ( ~ / 2 )  

where m = _k(n - 1) and Am = lk ® ~* is the direct product  of a k × k unit 
matr ix  and A. Note tha t  0F0(A~,  _g2) in (2.2) is the notat ion of James (1964) 

for oF(o'~)(A~,-g211) where I1 = diag(1,0, 0 ,0 , . . .  ,0) is m by m. 
We now s tudy the asymptotics of the two hypergeometric  functions in (2.1) 

and (2.2) for large values of the principal components.  We first make use of the 
following integral representations (Eichinger (,977, 19s5), Wei (1990a, 1990b)): 

(2.3) o F o ( A , ~ , - g  2) 

_ r(m/2)iA.~l_l /2(g2)_( .~/2_~) eig~zl 1 + ixA, 11_l/2d z 
27r oo 

and 

(2.4) 01D 

k 

= (4~) -k/2 I-[ r[(n - ~)/2] IAI k/21Sdl-(~-k-2)/2 
k k 

x / I 1  + ix @ Zk-xI-U2oF(ok)(Sd, ix) H Ix'~- x~l E dx~ 
a</~ a = l  

where x = d i a g ( x l , x 2 , . . . , x ~ )  with - o o  _< xk < "-" < xl _< c~. To take into 
account any degeneracy of the n - 1 eigenvalues of A, i.e., multiplicity of roots of 
A, we write 

p 

(2.5) Ixb = 1-[ '~Y' 
j = l  

with 0 < nl < n2 < . . .  < np and ~j  being the degeneracy of the j - t h  distinct 
eigenvalue ~j of A. From (2.3), it is found (Wei (1989)) tha t  

F(m/2) B~/21A~I 1/2(g2)(,~ k ~ ) / 2 e - ~ 2  (2.6) oFo(A~,  _ g 2 ) ~  V(hCOa/2) 
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for large g2 where By is defined as 

p 

(2.7) Sj  = njJ H ( 1  - e~3/~l) -~°~. 
l#j 

For large values of the principal components, the integral in (2.4) may be 
evaluated approximately with use of the multidimensional saddle-point me thod - - a  
multivariate extension of Laplace's method for integrals developed by Hsu (1948) 
(see also Muirhead (1982) and Wei and Eichinger (1990a)). This proceeds as 
follows. First write 

(z8) 
k k 

ll + ix ® .4 I/-U20F0(k)(Sd, ix ) I I  I:C~ -- XZI I I  dxc~ 
c~<fl ce=l 

= f exp[f(x)] I I  ~;~ 
c~=1 

Next, make use of the identity (Bingham (1974)) 

(2.9) oF(ok)(a, b) = etr(ab - &D)0F(k)(&, b) 

where etr(.) = exp[tr(.)] and & = a - a01~ and D = b - b01k with ao and b0 being 
any numbers, and write 

(2.10) 0Fo~) (S d, ix) : etr(iSdx)W(S~, ix) 

where the W-function is chosen according to (2.9). We have from (2.8) 

k p 
1 

(2.11) f (x )  ---- i t r(Sdx) -- ~ E E wj ln(1 + ix~/~j) 
c~=1 j= l  

k 
+ ~ ln(x~ - xg) + ln[W(S~, ix)]. 

c~<p 

Solving Of(x)/Ox = 0, we find that  f (x)  is maximized when ix~ = -tc~ +w~/2S~ 
k ~ I • 

for large ,9~. We further notice that  the product [1~=2 [1•=1 [z(1 t~a/~2) ~s/2] 
must be real to ensure a real-valued asymptotic expression (see also Wei and 
Eichinger (1990a, 1990b, 1991) and Wei (1990a)). The multidimensional saddle- 
point method finally gives (see Wei (1990a)) 

(2.12) 0 F0(~- 1) (-A, - S,~ 1) 

(2~)-~/21/4l-k/~lSdl-(,~-k 2)/2 
k { l ( s c a - n 2 ) ( S ~ - l - S ~ l ) l X / 2  } 

c~<2 
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where the asymptotic expression (see Muirhead (1982)) for 0F~k)(Sd, i x ) a t  the 
saddle point has been used. Note that for nondegenerate A, i.e., cJ~ = 1 for all 
values of c~, the result given in (2.12), apart from an insignificant constant factor 
resulting from the lower-order approximation to the exact saddle-point, reduces to 
that of James (1969). Substitution of (2.12) in (2.1) yields the following asymptotic 
expansion of P(Sd) (Wei (1990a), Wei and Eichinger (1991)): 

(2.13) 

× < / 

It is gratifying to see here that asymptotic expansions of the matrix hyperge- 
ometric function o/7o with both of its argument matrices having degenerate eigen- 
values can be obtained from easily produced results for the nondegenerate case. 
Although the interesting asymptotics case where only one argument matrix has 
equal eigenvalues has been thoroughly studied in the statistical literature, we have 
seen, to date, no attempt at obtaining asymptotic expansions for the general case 
where both argument matrices may have multiple sets of equal eigenvalues. Our 
results (see (2.12)) thus represent the first such attempt, though it is still limited 
to the cases that interest polymer theorists. 

3. Numerical comparisons 

The exact numerical values of p(g2) computed according to (2.2) and (2.3) 
(wei (19s9, 1990 )) are compared with p(g2) calculated from (2.2) and (2.6) 
for two types of macromolecules--linear (nondegenerate _~) and odd-n circular 
(doubly-degenerate _4) chains of two different values of n imbedded in 3-dimension- 
al space. The relative error c is defined as 

(3.1) = IPasym,/Pex ct - 11 = 10F0~symp./0F0ex~ct - 1], 

and the results are plotted in Fig. 1. As can be seen, ~ decreases monotonically as 
g2 increases in both cases, with very weak dependence of e on n. For linear chains 
with n = 99, the range [0.40, co) of g2, may be regarded as the asymptotic region 
with c < 0.04. Note that the most probable radius of gyration ,g2 for a 99-bead 
linear chain is less than 0.40. In general, the asymptotic region lies beyond ,g2 for 
a given type of molecules. From Fig. 2, it is seen that the monotonic decay of e 
with increasing g2 depends strongly on k. In all cases, we have found that e goes 
to zero as g2 ~ oc. 

Similar numerical comparison between P(Sd) computed from (2.1) and (2.4) 
(Wei and Eichinger (1990b)) and that from (2.1) and (2.12) for a 29-bead linear 
chain in three dimensions has been carried out. We have seen a monotonic decay 
of the relative error with any one of the three principal components when the 
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Fig. 1. Relative error e as a function of N2 for linear (I) and circular (II) macromolecules 
with r~ = 11 (lower curve) and 99 (upper curve). 

other  two are fixed in the asymptot ic  region. In this case, the asymptot ic  region 
is identified as the par t  of the variable domain 0 < $3 < $2 < $1 < oc with 
SI E [*SI, C~), $2 ~ [*$2, CO) and $3 ~ [*$3, cx2)), where the ,S~ denote the most 
probable principal components. For ~2 = 0.15 and Sa = 0.06, for example, it is 
found that the relative error decreases monotonically to zero as $I increases from 
0.20(= *$I) to oc. It is further seen that the relative error decreases considerably 
as the spacing between any pair of the principal components increases in the 
asymptotic region. 

4. Conclusion 

The  asymptot ics  of two special hypergeometr ic  functions of mat r ix  arguments  
have been studied, based on their  new representat ions as single or multiple inte- 
grals in Fourier space. Several selected numerical comparisons between the exact 
and asymptot ic  results of the size and shape distr ibution functions which involve 
these hypergeometr ic  functions show tha t  the analytic  asymptot ic  expressions of 
the hypergeometr ic  functions of mat r ix  arguments  are indeed very good representa- 
tions of the functions in the asymptot ic  regions. The  asymptot ics  s tudy  presented 
here has impor tan t  applications in several areas of statist ical  mathematics ,  includ- 
ing the asymptot ic  distr ibution of the trace of the Wishar t  matr ix,  and polymer  
theory. 
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Fig.  2. (a) P l o t s  of  e vs. 82 for a 99 -bead  l inear  m a c r o m o l e e u l e  in one,  two, a n d  t h r e e  
d i m e n s i o n s .  T h e  n u m e r i c a l  va lue  n u m b e r i n g  each  curve  d e n o t e s  t h e  d i m e n s i o n a l i t y  of  t h e  
space  in w h i c h  t h e  mo lecu le  is i m b e d d e d .  (b) S a m e  as (a) for two a n d  t h r e e  d i m e n s i o n s  
excep t  t h a t  t h e  mo lecu le  is c i rcular .  T h e  cu rve  c o r r e s p o n d i n g  to  k = 1 d i s a p p e a r s  in to  
t h e  far  left of  C u r v e  2. 
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