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A b s t r a c t .  A clustering process which generates simple and uniform random 
partitions is studied. It has a single parameter and generates, for a special 
value of the parameter, the partition of a random permutation into its cycles. 
The limit distribution of the size index of the generated partition is the joint of 
the independent Poisson distributions with means determined by the size and 
the parameter. 
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1. Random clustering process 

Suppose the balls labeled 1, 2 , . . .  (one ball for each number)  are thrown at 
r andom into an infinite number  of indistinguishable urns as follows. Ball 1 is pu t  
into an urn. Ball 2 is put  into an empty  urn with probabil i ty  pl  and into the 
urn with Ball 1 with probabi l i ty  1 - P l .  Ball 3 is put  into an empty  urn with 
probabi l i ty  p2 whichever Ball 2 is thrown in. If Balls 1 and 2 are in the same urn, 
Ball 3 is put  into it with probabi l i ty  1 - P 2 ,  otherwise Ball 3 is put  into the urns 
with Ball 1 or 2 with equal probabil i ty  (1 - p 2 ) / 2 .  

Let  the pa t t e rn  11213 denote  tha t  Balls 1, 2 and 3 are in separate urns, let 
1213 denote  tha t  Balls 1 and 2 are in the same urn but  Ball 3 is in a different one, 
and so on. If P2 = p l / ( 2  - Pl),  the pat terns  1213 (or 2311 ) and 1312 are equally 
probable,  and the probabili t ies of the pat terns  11213 , 1213 and 123 are 

p~/(2 - -P l ) ,  Pl(  1 - - P l ) / (  2 - -P l )  and 2(1 - p l ) 2 / ( 2  - P l ) ,  

respectively. 
We generalize the steps for Balls 2 and 3 to define a random clustering process. 

A cluster means a set of balls thrown into the same urn, and the patterns of clusters 

are our concern. Mathematically, the clusters at the n-th step form a partition 
of the finite set U~ -- {I, 2, ..., n}, i.e. the set of labeling numbers on balls up to 

Ball n. The family of all partitions of//. is denoted by An. If a partition A E A~ 
has sj subsets of cardinality j (i.e. sj clusters of size j or sj urns with j balls), 
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j = 1 , . . . ,  n, this condition is denoted by 

(1.1) S(A)=sE&~, Sn={S=(S1;...,Sn); sj>O,~jsj=n}',j=l 
and s will be called the 'size index' of A. Further  define 

P -- (~ 0 < p < l ,  0 < c t < o o ,  k = 1 , 2 , . . .  (L2) P ~ -  k - ( k - 1 ) p  k + a '  

where c~ = p/(1 - p). 
Now a ' random clustering process' is defined as follows. If Ball 1, . . . ,  Ball k 

are thrown to form a part i t ion A E A~, then Ball h + 1 is put  into an empty urn 
with probability Pk (1.2) and into an urn with j balls with probability ( 1 - p k ) j / k .  
This ball throwing is continued for k = 2, 3 , . . .  

PROPOSITION 1.1. At  the n-th step of the random clustering process men- 
tioned above, the probability that Ball 1 , . . . ,  Ball n form a partition A E An is 

(1.3) 
n 

P(A; A,~) = f~(s)  = f~(s; p) = ~:~-1,- - - - - - - -  ((J - FL=2 1)p) = 

_ I 1(( c~[~ ] j - l ) ! )  ~ ,  0 < p <  1, 0 < a < o o ,  

7~ 
where s = S (A)  E $~, u = E y = I  sj, and a[~] = a(c~ + 1 ) . . .  (a + n - 1). 

PROOF. The probability (1.3) is shown by induction on n using the recur- 
rence 

(1.4) f n + l ( s l , . . . , s n + l ) =  f n ( s l -  l, s2, 

+ ~ f~ ( s l , .  
j = l  

og 
.,sn)'--'l[n+l ~ {n+l}]  

n-Fo~ 

. , s j  + 1, s j+l  - 1 , . . . , s .~)  

J .l[n+l CcZ  ,lcl=j], 
rt 4- c~ 

where 1[-] is the indicator function of the bracketed event in An+l.  [] 

An important  feature of (1.3) is tha t  it is determined by the size index S(A) 
and independent of the elements of the subsets of A. Tha t  is, P(.;  Ak) is inde- 
pendent of the order of n balls thrown in, and is invariant with respect to the 
permutat ion of the indices of the balls. Another feature is the Markovian prop- 
erty implied by (1.4) and typically shown by the following example (4). These 
facts are useful in calculating the probability of an event in the sample space An 
as the following examples. 
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(1) Any pair of elements of b/~ is in different subsets or in the same subset 
with the probabilities P(112; A2) = Pl and P2(12; A2) = 1 - p~, respectively. 

(2) Let a subset C C LG of cardinality k > 0 be given. The probability of 
the event that C is included in a subset of A E A~ is equal to P(1 • .. k; J k )  = 

k-1  
H j = I  (1 - -  pj). 

(3) Let a subset {i, j l , . . .  , jk}  C lAn be given. The probability of the event 
in An that i is not in a subset (of A E A~) which includes any of j l , . . - , j k  is 
equal to the probability that an element, say k + 1, is a singleton in A E J[k+~, 

~BCAk P(B U {k + l};Ak+l) : Pk. 
(4) Under the condition that 1 E C c b/,~, ICI = k, the random partition of 

b/~\C follows P(.; A~-k) provided that the elements of bG\C are relabeled. 
(5) Let A = A1 U A2, A1 A A2 = 0 and [All = k (0 < k < n). A random 

partition of A disregarding the elements of A2, or a random subpartition of A1 
under the condition that a subpartition of A2 is given, has the distribution P(.; Ak) 
provided that the elements of A1 are relabeled. 

I fp  : 1/2, that is a = 1 orpk = 1 / (k+ l ) ,  f~(s; 1/2) = (n!) -1  1]2_l ( ( j -1 ) ! )  ~ . 
This is the probability distribution of the random partition generated by cycles 
of a random permutation, and appears in many applications, Sibuya (1993). This 
fact suggests another way to generate (1.3), Yamato (private communication). Let 
P~ denote the symmetric group of all permutations of U~, and suppose that an 
element 7r E P~ is chosen with the probability 

(1 .5 )  P(Tr) = 0 < a < o o ,  

where u is the number of cycles of 7r. Then the partition A(Tr) E ~4~ generated by 
cycles of 7r has the probability (1.3). 

The random clustering process is almost the same to a Pdlya urn model with 
balls of a continuum of colors, which was used by Blackwell and MacQueen (1973) 
to obtain Ferguson's Dirichlet process as n ---, oc. The distribution of colors at 
a finite step is studied by Yamato (1992) which is closely related to the present 
paper. In the population genetics, the model is known as Hoppe's urn model, see 
Hoppe (1984) and Ewens (1990). 

2. Size index and number of clusters 

If the balls are indistinguishable, only the size index of a random partition 
is observable. Or one may be interested just in the size index disregarding their 
contents. 

PROPOSITION 2.1. Let S = ($1, . . . ,  Sn) be the size index of the partition at 
the n-th step of the random clustering process of Section 1. Then the probability 
that S = s c S~ is 

(2 .1 )  = p)  = 
[I j=13 ~sj 11i=2 <z- - 

n!a ~ 
0 < p < l ,  0 < a < o o ,  

a b ] I ] j  lY~Jsj !' 
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n where u = ~ j = l  sj. 

PROOF. The number of permutations of LG having a size index s is n!/  
l-[j~=~(j!)SJsj!. Multiplying this number and fn(s) given in (1.3) we obtain g~(s) 
because of the invariance of f~(s) with respect to the indexing of balls. [] 

The fuction gn(s) satisfies the recurrence relation, 

( a - I -  n)grt__l(8) ~- agn(s I -- 1, S2,... ,8n) 
n 

+ E J ( s j  + 1)gn(sl~. . . , s j  + 1,sj+l - 1 , . . . , sn ) ,  
j = l  

which is essentially the same as that in the proof of Proposition 1.1. In population 
genetics theory (2.1) is called the Ewens' sampling formula. See e.g. Hoppe (1984) 
and Ewens (1990). 

The joint factorial moment of S is as follows. 

j = l  ( I ~ 2 - - 1 J r J ) ( a  ÷ n - 1)(n) ' 

r j = 0 , 1 , 2 , . . . ;  j = l , . . . , n ,  

T t  T~  - where n (n) = n(n - 1) . . .  (n - R + 1), r = ~-:-j=l rj and R = ~'-j=l ffJ '  Especially, 

E ( S j )  : an(J)  / j ( a  + n - 1) (/) 

and 
a2 ( n(i+J) n(i)n(J) ) 

Cov(Si, Sj) = ~ ( a + n - 1 ) ( i + j )  - ( a + n - 1 ) ( i ) ( c ~ + n - 1 ) ( J )  ' i_<j.  

PROPOSITION 2.2. Let m be a fixed positive integer, 1 < m < ec. The first 
m components ($1, . . . ,  S~) o r s  in Proposition 2 converges as n -~ oc to the joint 
distribution of independent Poisson with means (a, a / 2 , . . . ,  a /m) .  

PROOF. The components have the joint factorial moment 

M(r] ,r~)  ( I W I ( ~ . ) ~ J )  ( 1 R ( a - 1 )  ( ~ ) /  ' " "  = n + 0  , 
j = l  

m where R = E j = l j r j -  Since all the factorial moments converges to those of the 
independent Poisson distribution with means (a, a / 2 , . . . ,  a / m )  the probability 
function (2.1) also converges to the Poisson. See, e.g., Bollob£s (1985) Theorem 
21. [] 

The probability generating function of S = ( S 1 , . . .  , Sn)  is 

1 
(2.2) a~ (Wl , . . . ,  w~) = --~Y~(O!aWl, l !~w~, . . . ,  (n - 1)!~w~), 
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where Y~ is the exponential complete Bell polynomial of n variables defined by 

Y n ( X l " ' " X n )  = E I-[j~-i 8j! 
sESn j= l  

It has an exponential extended generating function 

1 + EY~(xl , . . . ,x ,~)~.T = exp 

See Comtet (1974) for the properties of Y~. The following alternative proof of 
the proposition is more complicated, but shows an interesting property of the Bell 
polynomial. 

PROOF. (Mase, private communication) The probability generating function 
of the components ($1 , . . . ,  S,~), m < n, is 

G,~(Wl, . . . ,w,~)  = G~(w~, . . . ,w,~, l , . . . ,1) .  

Define 

(2.3) H n ( W l ,  . . . ,  Wn ) ~. { oL[n]Cmn(Wl, . . .  , Wn)/~l,! , i f  Tt > 7Tt, 

Yn(O!o~wl, l!c~w2,..., (n - 1)!c~wn), if n _< m, 

and the exponential extended generating function of (H~)~ is 

O~Wk k O~ k 
(2.4) l + E H ~ t ~ = e x p  ~ - - t  + E ; t  

n = l  k = l  k=m--1  

k ? ( l - t )  
k = l  

Expand the exponential function in the last expression as 1 + En%l Kn(Wl,..., 
wm)U to obtain 

c~b-J] 
= 

j = 0  \ d]  

Thus, 

(2.5) G , ~  = 1 + E Kj n!c~[~-J] 

The coefficient cn,j of Kj in the series satisfies cn,j < max(2, 1/a)j and cn,j ~ 1 
(n -~ oc). Since Kj is the coefficient of the expansion of an analytic function, 
Y~d j lKj  ] < ec. The absolute convergence shows that  

(2.6) lim Gmn -- 1 + E Kj = exp c~(w~ - 1) 
n ~ o ~  k ' [ ]  

j = l  k = l  
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The special case 9n(s; 1/2) is as typical as f~(s; 1/2). An application of this 
case to the inelastic collisions of particles moving on a line was studied by Sibuya 
et al. (1990). 

One of the interesting quantities in clustering is the number u of clusters. 
Propositions 1.1 and 2.2 show that u is a sufficient statistic of the distributions of 
f,(s; p) and g~(s; p). The number u of clusters in (1.3) or (2.1) has the following 
distribution function: 

(2.7) hn(u;p)=hn(u) :  [n] p ~ - l ( 1 - p ) n  u = [n] cP 

u = l , 2 , . . . , n ,  0 < p <  1, 

where [n] is the (unsigned) Stirling number of the first kind, a and c~ [~] a r e  
L J 

defined in (1.3). See, e.g., Graham et al. (1989) or Riordan (1968) for Stirling 
numbers. The probability function h~ is well known, see e.g. Johnson and Kotz 
(1977) and Ewens (1990) for a genetic application, and Bartholomew (1982) for 
a sociological application. It was discussed recently by Sibuya (1988) and Sibuya 
(1992).  
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