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A b s t r a c t .  In a self-correcting point process model a boundary point of the 
parameter set is shown to be singular. This means a local behavior of the 
model which is qualitatively different from the LAN (or LAMN) condition sat- 
isfied at the other parameter points. As a consequence we obtain a nonnormal 
limiting distribution of the ML-estimator normalized with the random Fisher 
information. 
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1. Introduction 

We consider the simple self-correcting point process model of Inagaki and 
Hayashi (1990). Let  N = (Nt)t>_o be a point  process on (ft, 5 c) and let (St)t>0 
denote  the fi l tration tha t  it generates. For 0 E (0, oc) s, let Po be a probabi l i ty  
measure on (f~, 5 )  such tha t  N has predictable intensi ty 

(1.1) A(O,t) = 011(-oo,0](t - Nt- )  + 021(0,oo) (t - Nt- )  

with respect to (St)  under  Po. The likelihood ratio process Lt(O,r) = (dPr I 
St)/(dPo I.Pt) is given by 

(1.2) L~ ~(7-, s) L ~ log Lt(O, 7-) log A~,s@ dNs - (A(7-, s) - A(O, s))ds 

7-1 L t = log ~ 1( ~,0](s - Ns-)dNs 

+ l o g E  1(0,~)(~ - Xs-)~Ns 

* Work supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft. 

445 



446 HARALD LUSCHGY 

jr0 t -- (T 1 -- 01) 1( oo,0](8 -- ]~s)d8 

/0 - (72 - 02 )  1 ( 0 , ~ ) ( ~  - 5 < ~ ) d ~ .  

Let @ = (0, 1) × (1, oc). For 0 E O, the model has the standard properties of a 
locally asymptotically normal (LAN) model. In particular, the ML-estimator of 0 
is asymptotically efficient as t ~ oc (see Inagaki and Hayashi (1990)). 

a t theboundarypo in tOo=( l l )o f (gwhen theproces sNreduces toaPo i s son  

process the log-likelihood ratio exhibits a qualitatively different behavior. It still 
admits a quadratic approximation such that the model is locally asymptotically 
quadratic (LAQ) but it is not locally asymptotically mixed normal (LAMN) at 0o. 
In Luschgy (1992) such parameter points are termed singular. As a consequence 
we obtain a nonnormal limiting distribution for the ML-estimator normalized with 
the random Fisher information under the hypothesis 0 = 0o. This suggests a 
nonnormal approximation of the distribution of the ML-estimator under 0 E 0 for 
moderate sample size t when the difference 02 - 01 of the intensity levels is small, 
more precisely, when P/2(02 - 01) is small. 

This note provides further insight into the occurrence of singularities for 
stochastic process models. While quite often singularities occur under the hy- 
pothesis that the observation process is a martingale (see, for example, Luschgy 
(1992)), here the singularity occurs under the hypothesis that the release process 
(t - Nt)t>_o (see (1.1)) is a martingale. 

2. LAQ condition 

In this section we describe the local behavior of C~ = (Po [ 5~ : 0 E 0o), 
@o -- O U {0o}, as t ~ co. Let /~(0) denote the first derivative of Lt(O, T) with 
respect to ~- at 7 = 0, that is 

( 2 . 1 )  L ( o )  = i t 

where 

/0 M~(0)  = N~ - ~(0 ,  ~)d~. 

Note that M(O) and L(0) are P0-martinales with Eo[],t(O)l 2 < oc and EolMt(O)12 < 
oc for every ~ _> 0. The Fisher information process is given by the brackett process 

( / (2.2)  (L(o)l~ = ~ 1 ( - ~ , o 1 ( ~  - X~)d~ 0 

1 fO t * ~ 1(o,oo) (s - Ns)ds 
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Let 6t be a net of positive numbers with 6t --+ 0. Then the net of experiments Ct 
is said to be LAQ at 0 E t9o with localization rate (51 as t --+ oc if 

(2.3) log Lt(O, 0 + 6t~t) = ~ 63-~(0) - !uT 62 2 ~ ~ < L ( 0 ) h ~  + opo (1) 

for every eventually bounded net (ut) in ~2 (T denotes transposition),  

(2.4) £(6tLt(O), 5~(]-(0)}t I Po) E (S(O), G(O) ) 

with a random symmetric  2 x 2 matr ix  G(O) which is positive definite a.s. and 

(2.5) Eexp(uTs (o ) - -~ tTG(O)~)  = 1  for every % t ~  2 

(see Jegana than  (1988), LeCam and "fang (1990)). The LAMN case appears if 
£(S(0), G(O)) = £(G(O)U2Z, G(O)), where £(Z) = N(0, h )  and Z and G(O) are 
independent.  The case where G(O) is nonrandom is called LAN. In the LAMN 
case the condition (2.5) is automatical ly satisfied. 

It has been shown by Inagaki and Hayashi (1990) tha t  gt satisfies LAN at 
every 0 E (9 with rate t -1/2 and 

( 0 )  
G(O) = (02 -- 01) -1  (02 - - .1) /01  (1 -- 01) /02 ' 

We show tha t  gt satisfies LAQ at 0o with the same rate but  not LAMN. 

THEOREM 2.1. 

(2.6) 

where  

$t satisfies LAQ at Oo with rate t -1/2 and 

S(0o)  = V1, G(0o)  = <V}l , 

(// // , Vs = 11o,~ ) (w~)~v~, I(~,o) (w~)dw~ 

// l[o,oo)(W~)dr 0 
<v>~ = r ,  

* / 1 ( -o~ ,0 ) (<)d r  
Jo 

and W is a standard Wiener process. 

T 

, s > 0 ,  

The form of the limit S(Oo) = V1 shows tha t  gt even has locally asymptotical ly 
Brownian functional (LABF) likelihood ratios at 0o. 

PROOF. For t > 0, let Y~ = t 1/2L~t(Oo) and M t = t-1/2Mst(Oo), s > O. 
These processes are POo-martingales with respect to the filtration (Sst),_>o with 
finite second moments  and Yo t = Mo t = 0. Note tha t  

t t ~ t y t  = l[o,~)(M;_)dM; ' l(_~,o)(M;_)dM ~ 

and 
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(Yt}.s = ~-l(L(0o)}st = ( ~0s 

y t  . We claim that 

0 ) 
f[ 

/ w \  
(2.7) c(z t  l Poo) ~ ~ V ) as t --+ oc 

(weak convergence in D(~+,  ~3) equipped with the Skorokhod topology). Fix a 
sequence (t~) going to infinity. Since 

(Y?}s + (Y~}s = s for every t, s, 

the sequence (Ye~) is tight in D(~÷,  ~2) (see Jacod and Shiryaev (1987), VI.4.13). 
It is well known that 

E(M ~" [ POo) ~ W. 

Therefore, (Z tn) is tight in D(~+,  ~3). Let Q be a limit point of the sequence 
(£( Zen I Peo)) and let Z denote the coordinate process on D(~+,  ~3). Clearly 
Zo = 0 @ a . s .  

In order to identify the predictable characteristics (B, C, z~) of Z under Q we 
first compute the characteristics (B e, C t, z ,t) of Z t under Poo with respect to a 
continuous truncation function h:  Na -+ Ra. Since 

AZ~ = t-1/2(ANse, l[0,oo)(Mse_), I(_~,o)(Mse_))TI{AN~#O}, 

t where AZ  t = Z t - Z,_,  one obtains for the random measure 

#t = E e(~,zxzDl{Az~¢°} 
s>O 

on R+ × ~3 associated with the jumps of Z t 

/~t([0, s] × A) = 1k(~-l/2(1.][o,oc)(_/Vfr_),l(_oo,o)(Mr_))T)d_/Vr 

for every Borel set A in N3 with 0 ~ A. Here e~ denotes the point measure at z. 
Thus the compensator ~t of #t is given by 

f0 ** ~t([0, s] × A) = 1a(t */2(1,1[o,~)(Mr),I(_~,o)(M<))T)dr. 

Since Z t is a martingale, 

: ( h ( . )  - d . )  
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(see Jacod and Shiryaev (1987), II.2.29). In view of the fact that h(z) = x in a 
neighborhood of 0 this yields Bt~ = 0 for every s > 0 and t large enough. Clearly 
C t = 0 for every ~ > 0. The modified second characteristic Ot therefore takes the 
form 

(Y% 
,k 

for every s _> 0 and t large enough. Now we apply the "limit identification theorem" 
(see Jacod and Shiryaev (1987), IX.2.11). Define the continuous process C as ~t  
with M t replaced by the first component Z1 of Z. For every s _> 0, the function 

D(R+, ~3) --+ R3×3, a --+ Cs(a) 

is Q-a.s. Skorokhod continuous since Q(ZI,s = 0) = 0 for every s > 0 (see 
Billingsley (1968), p. 232). All other conditions of the above mentioned theorem 
concerning the behavior of B t~, O t ,  pt~ and C are easily seen to be satisfied 
with B = 0, ~ = 0 and C = C. The theorem gives that Z is a continuous local 
martingale under Q with characteristics (0, C, 0) relative to the right continuous 
filtration that it generates. 

It follows that 

((/o /o / ) L(zI@) = c  Za, l[o,oo)(Zl,r)dZl,r., l (_~,o)(Zl ,r)dZl ,r  Q 

(see Jacod and Shiryaev (1987), IX.5.6). Since Z 1 is a standard Wiener process 
under Q, one obtains 

Hence g ( ~ ) i s  the only limit point of the sequence (Zt~) which yields our claim 

(2.7). 
The limit assertion of (2.4) is satisfied for the random variables given in (2.6). 

This is an immediate consequence of (2.7) and the continuous mapping theorem 

D(~+,  R 3) --~ [R 2 × IR 2×2, 

/ 
--* \ \ ~ ( 1 ) )  ' ) 

where Ds is defined as (Yt}s with M t replaced by Z1. Furthermore~ L6vy's arcsine 
law for the occupation time f01 l[0,oo)(l/Kr)dr shows that <V}I is positive definite 
a.S.  
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The condition (2.5) is satisfied by Novikov's criterion (see Revuz and Yor 
(1991), VIII.l .16).  Using log(1 + x) = x - (x2/2) + o(x 2) as x ~ 0, we find 

log Lt(Oo, Oo ÷ ~-l/2ut) -t-1/2uTLt(Oo)÷ ~-l~tT(L(Oo)}tut 

1 -1" 2 ,U2,t) L t ( O o ) ÷ o ( t - 1 ) X t  ~ - ~ t  (Ul, t 2 T" 

-~ 0 in Poo-probability, 

tha t  is (2.3). The proof is complete. [] 

From this result and Oirsanov's theorem one can deduce tha t  gt does not 
satisfy LAMN at 0o (see Section 3). Thus 0o is a singular parameter  point. 

3. Limiting distribution of the Mk-estimator 

As a consequence of the local properties of the model we derive the limiting 
distribution of the ML-estimator of 0. For t > 0, let 

At = {(/%(0)}t is positive definite}. 

By (2.2), this set does not depend on 0 and we have 

{/( } } At=  1( o o , 0 ] ( s - N ~ ) d s > 0  = _ m i n ( s - N ~ )  < 0  C S t .  
s<t 

Note tha t  for every 0 C Oo, Po(At) < 1 for every t > 0 and Po(At) --~ 1. By (1.2), 
Lt(Oo, O) has a unique maximum on At. A ML-estimator t)t is given by 

01,~ £ 1(-~,o1(~ - N~_)dXs 
= on At, 

L 1(-~,ol (~ -  N,)d~ 
(3.1) ct l  l 

' ~ l(0,oo)(S -- N~)ds " 

For 0 E O, 

(3.2) £(tl/2(Ot - O) I Po) ~ N(0, G(O) -1) 

and under random norming 

(3.3) c((L(o))~/~(o~ - o) I Po) ~ x(o, h) 

(see Inagaki and Hayashi (1990)). 
Under the Poisson hypothesis 0 = 0o or in the nearly Poisson case we have: 
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THEOREM 3.1. For every convergent net (ut) in ~2 ut ~ u, 

(3.4) £(tl/2(0t - 0o - t-1/2ut) I Poo+t~/2~) 2 A(u), 

(3.5) C((£(0o)>~/~(O~ - Oo - t-I/2~t) I P0o+~/~)  ~ P ( ~ )  

as t ~ ec with 
A(u) ~= {Y}~Y~,  p(u) z~ {y}l l /2y1,  

where 

(f f y~ = 1E0,~ )(z~)dB~, l(_~,o)(Z~)~B~ , 

13 is a standard Wiener process and Z satisfies the stochastic differential equation 

(3.6) dZ~=(ull[o,~)(Z~)+u21(_oo,o)(Z~))ds+dB~, Z o : O ,  0 < s < l .  

PROOF. Let W be a standard Wiener process on a filtered probability space 
(fY, iP', (.T~)t>_o, Qo) and 

d Q ~ = e x p  (uTVl - ~uT<V>lu) dQo, 

where V is the Qo-local martingale from Theorem 2.1. We have 

Ot - 0 = ( £ ( O ) > t l L t ( O )  on At. 

By Theorem 2.1 and "LeCam's first lemma", the nets (Peo+Wl/2u~ I St) and 
(Poo ].T~) are mutually contiguous. Hence, by "LeCam's third lemma" and again 
Theorem 2.1, one obtains (3.4) and (3.5) with 

/~(%) = £ ( < V > I - I ( v I  - <V>l 'a) ] Qu) ,  

~(~) = c ( < v } ~ / ~ ( V l  - <V>l~) I Q~). 

By Girsanov's theorem, the process (Bs)0<s<l given by 

f0 8 fos = Ws - Ul l[o,~)(Wr)dr - u2 l (-~,o)(Wr)dr 

is a standard Wiener process under Q~. We have 

T 

(f' Jo' ) 1/1 - (V}IU = l[o,~)(W~)dBs, l(_oo,o)(Ws)dB~ 

Setting Z -- W yields the assertions. [] 
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The estimator 0t has the disadvantage to take values outside of (30. Since 
Po(Ot E Oo) --+ 1 for every 0 E (3, one may choose a suitable modification of 
0t without changing the limiting distributions under 0 C (3. However, Poo (Or e 
(30) --+ 1 fails. 

To see that St does not satisfy LAMN at 0o, consider R~ = £(fJ l[o,o~)(Ws)ds I 
/ 1 X  

with tile notations of the proof of Theorem 3.1. For u = ( ~ ) ,  we get 

R~, = £(f01 l[0,o~)(s + Ws)ds I Qo) and this distribution is different from /~o. 

Therefore, IV}I is not ancillary for (Qu I ~ E N2). The required property follows 
(see LeCam and Yang (1990), p. 81). 

Remark. The phenomena discussed in this note is not completely new for 
point processes. Assuming (essentially) the exponential form intensity A(0, t) = 
exp[01 + 02(t-Nt-)], Ogata and Vere-Jones (1984) showed that the ML-estimator 
of 0 is asymptotically normal under the hypothesis 0 E O = N × (0, oc), while 

i t s l i m i t i n g d i s t r i b u t i o n a t t h e b o u n d a r y p o i n t 0 o =  (00) i s n o t e v e n a m i x t u r e  

of normals. One can show that the model satisfies LABF (but not LAMN) at 00 
where here the condition (2.4) is much easier to verify than for the model (1.1) 
and it satisfies LAN at all other boundary points of O. Therefore, it is not the 
Poisson hypothesis 02 = 0 for the process N but again the martingale hypothesis 
for the release process ( t -  Nt)t>o under which a singularity occurs (in contrast to 
the statement of Ogata and Vere-Jones ((1984), p. 342)). 
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