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A b s t r a c t .  We study the asymptotic behavior of vectors of point processes 
of exceedances of random thresholds based on a triangular scheme of random 
vectors. Multivariate maxima w.r.t, marginal ordering may be regarded as 
a special case. It is proven that  strong convergence that  is convergence of 
distributions w.r.t, the variational distance--of such multivariate point pro- 
cesses holds if, and only if, strong convergence of multivariate maxima is valid. 
The limiting process of multivariate point processes of exceedances is built by 
a certain Poisson process. Auxiliary results concerning upper bounds on the 
variational distance between vectors of point processes are of interest in its own 
right. 
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i .  Introduction 

Our a t t en t ion  will be restr ic ted to R2-valued r a n d o m  vectors  (X~, Y~), n E N ,  
to keep the  technical  details as s imple as possible. Let  (X~,i, Yn#), i = 1 , . . . ,  n, be  
a sample  of independent  copies of (Xn, Y~). Using the  concept  of point  processes, 
this sample  and  the margina l  samples  m a y  a l ternat ive ly  be represented by the 
empirical  process 

n 

(1.1) An= E C(x~,~,y~,~) 
i=l 

and the margina l  empirical  processes 

n 

(1.2) N~,I = ex~,i and N~,2 = E e ~ , i  
/=1 i=1 

(with cx denot ing the Di rac-measure  at x). 

* The author was supported by the Deutsche Forschungsgemeinschaft. 
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Given t = ( t l ,  ~2) denote by -/V=,t and N,~,j,to the truncations of N,~ and N~,j 
outside of (t, co) := (tl, oc) x (t2, oc) and (tj, oc), respectively. Hence, N~,t = 
N~(. A (t, ~o)) and N,~,j,tj = N,~,j(. N (tj, oc)). This notation will also be utilized 
for other point processes and for measures as well; e.g., if z~ is the intensity 
measure of N~ then t,.~,t := y~(- A (t, 0o)) is the intensity measure of N,~,t. We are 
going to study the asymptotic behavior of vectors of point processes of exceedances 
of random thresholds ~j - Tj (N~d), namely, 

(1.a) ( N,~,I,rI ( N~,I ) , Nn,2,r~(x,~,~)). 

Within this framework we may also deal with the bivariate sample maximum w.r.t. 
marginal ordering given by 

(1.4) 

where X.~:rz = max(Xn,1, . . . ,  Xn,r~) and Yr~:r~ = max(Yn,1,. . , ,  Yr~,r~). 
Classical extreme value theory concerns (a) the weak convergence of normal- 

ized maxima Xn:~ of i.i.d, random variables and (b) the use of a sample of max- 
ima within sub-periods (Gumbel or annual maxima method) to estimate func- 
tional parameters of the tail of a distribution. Statistical inference is carried out 
in parametric extreme value models that are motivated by (a). An adequate 
link between (a) and (b) is achieved when utilizing approximations in terms of 
the variational and Hellinger distances (for a comprehensive account see Reiss 
(1989)). Statistical inference based on extreme order statistics--instead of 'an- 
nual' maxima--was initiated by Pickands (1975). Likewise one may deal with 
point processes of exceedances of high thresholds introduced above (see Resnick 
(1987), Davison and Smith (1990), Falk and Reiss (1992) and the literature cited 
therein). There also exists a rich literature concerning the weak convergence of 
multivariate maxima taken w.r.t, marginal ordering (for results and further refer- 
ences see the monographs by Galambos (1987), Resnick (1987) and Reiss (1989)). 
As well one may jointly study extreme order statistics or point processes of ex- 
ceedances in each component. The joint asymptotic behavior of point processes 
of exceedances (Nn,l,tl, N,~,2#2) was studied in Reiss (1990) in the special case of 
asymptotic independence. The aim of the present paper is to discuss the proba- 
bilistic part of the questions indicated above in a general setting that includes the 
treatment of 'multivariate extreme order statistics'. 

In Section 2, we study our main question, namely the convergence of vec- 
tors of point processes of exceedances of random thresholds. Moreover, upper 
bounds on the variational distance between distributions of truncated empirical 
processes and limiting vectors of Poisson processes and, in Section 3, between dis- 
tributions of vectors of Poisson processes are established. In Section 3, the density 
of (X,~:,~, E~:~) w.r.t, an appropriate dominating measure is established without 
imposing any regularity conditions on the underlying d . f .F .  
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2. Rates and comparison of convergence 

Let F~ denote the d.f. of (X~, Y~). Recall that F2 is the d.f. of (Xn:,z, Yn:~). 
If F,~ weakly converges to a d.f. G then we know (cf. Resnick ((1987), Proposition 
5.1)) that G is max-infinitely divisible (in short: max-i.d.); that is, for every 
positive integer n there exists a d.f. G~I such that G~ = G. Subsequently, let 
G denote a max-i.d.d.f.  The starting point of our approach is a representation 
of max-i.d.d.f. 's  due to Balkema and Resnick (1977) that was frequently applied 
since then. Define the 'lower endpoint' of a max-i.d.d.f.  G by a = (c~1,c~2) =- 
(ct((71), oz(G2)) where a(Gj)  denotes the left endpoint of the support of the j -  
th marginal, say, Gj of G. Recall from Resnick ((1987), Proposition 5.8) that a 
max-i.d.d.f. G can be represented by 

(2.1) G(x)  = { exp ( -u ( [ -o o ,  x]~)), x _> c~, 
0, otherwise, 

where a C [-oc,  oc) and v, is the exponent measure (called max-L6vy measure in 
Gin~ et al. (1990)) pertaining to G. According to (2.1), G(x)  > 0 if x > a  and 
hence a is the lower endpoint described above. Keep in mind that an exponent 
measure u has the following properties: (i) u has its mass on [a(G), oo)\{a(G)},  
(ii) u([-oo,  t] ~) < co for every t > a(G),  (iii) u defines a d.f. in (2.1). 

In the sequel, u will always denote the exponent measure of the max-i.d.d.f. 
G. Note that an important sub-class of max-i.d.d.f. 's is built by max-stable d.f.'s 
G that possess the property 

(2.2) + = e N ,  

for normalizing vectors an > 0 and bn. 
Denote by M ( S )  the set of point measures on S = R or S = [-oo, oo). The 

vector of processes N,~,l,tl and Nn,2,t~ may be represented by means of N~ using 
a 'projection-truncation' operation. For that purpose consider the j - th  projection 
rrj (given by rcj(x) = xj) .  Then the 'projection-truncation' map IIt is defined by 

(2.3) Ht(#) = ((rcz#)(. N (tl, oo)), @2#)(" • (t2, oo))), # E M ( [ - o c ,  oc)), 

where rcj# is the measure induced by 7rj and # and the single components of Fit (#) 
are regarded as measures on (R, B) .  Notice that 

(2.4) (Nn,l,tl, ]Vn,2,t2) - -  IIt(~n). 

The limiting distribution of that vector can be described by a Poisson process 
N* with intensity measure u. Let Nil, t1 and N~,t2 be the Poisson processes with 
representation ( N~,tl , N~,t2 ) = Fit ( N* ). 

The intensity measures of N~,i,t~ and N~t ~ are denoted by u~,i,t~ and ui,t~. 
Keep in mind that, in our notation, we do not distinguish between a d.f. and 
the pertaining probability measure. Moreover, the variational distance between 
distributions £ ( X )  and g(Y) will be denoted by lie(x) - c ( g ) l l .  
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THEOREM 2.1. Let G be a max-i.d.d.f, with exponent measure ~. We have 

(2.5) q- An,c) 

where 

PaOOF. Arguing like in Reiss ((1990), proof of Theorem 2), we obtain 

where (Nn,l,ta,N*2,t2) = IIt(N~) and N~* is a Poisson process having the same 
intensity measure ~'n as Nn. Moreover, applying the triangle inequality we deduce 
from Lemma 3.1 tha t  

<-2C(-l°gG(t) ) + A~,t • 

The proof is complete. [] 

One possible direction of further research work is to find conditions under 
which the upper bound in (2.5) can be replaced by a more accessible one. Omey 
and Rachev (1991) obtained rates of convergence for distributions of multivariate 
maxima w.r.t, weighted Kolmogorov distance and L~vy-Prohorov distance. 

Another ingredient of our theory is the notion of an admissible threshold. A 
measurable map T :  M ( R )  --* [-oc,  oc) is an admissible threshold (for a univariate 
d.f. G) if 

(2.6) max(x, T(p)) = rnax(x,T(px)) ,  p E M ( R ) ,  x E R,  

with #x denoting the t runcat ion of ff left of x, and 

(2.7) P{T(x*) _< x }  --, o as x Z o (c) 

where N* is a Poisson process satisfying E N(z ,  oc) = - log G(x). 
In the bivariate case, a %hreshold' T = (T1,2172) is admissible (for G) if Tj is 

admissible for the j - t h  marginals Gj of G for j = 1, 2. 

Example 2.1. (i) The constant,  univariate threshold T(#) = t is admissible 
if t > a(G).  

(ii) If G is continuous at a (G)  then 

= f k - t h l a r g e s t  point o f f  i f p ( R ) _ > k  
T(#) 

- o c  if # (R)  < k 
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is admissible. To see this notice tha t  

k 1 
P { T ( x * )  < = < k - 1} = c ( x )  ( -  l °g  

- i !  
i=0  

and the last expression converges to zero as x ; c~(G) due to the continuity of G 
at a(G).  If k = 1 we will write T(#) = m a x ( , ) .  

Our main result unifies and extends several results known in the literature. 
It deals with the joint distribution of the k largest order statistics as well as with 
point processes of exceedanees of non-random thresholds. 

THEOREM 2.2. Let G be a max- i .d .d . f ,  with exponent measure L,. I f  the 
marginal d.f. 's Gj are continuous at a ( G j )  then the following assertions are equiv- 

aleut: 
(i) For every t > a(G) ,  

(2.s) ]]zZ(N~,I,e~, N~,2,t2) - ~(N;,t~,2V~,t=)I] ~ O, n --+ ~ .  

(ii) For every admissible threshold T = (T1, T2), as n ~ o0, 

(2.9) [IA~(Nn,I,TI(N~,I), Nn,2,Ti(N~,2)) -- ~(N;,TI(N;), N~,T2(N~))II ~ 0. 

(iii) 

(2.1o) 

(iv) For every t > a(G) ,  as n --+ oc, 

(2.11) 

The continuity condition is merely required to verify in the proof of (iii) tha t  
the maximum satisfies condition (2.7). This condition cannot be omit ted without  
compensation. This is simply due to the fact tha t  assertion (2.8) merely determines 
the asymptot ic  behavior of d.f.'s F2 of maxima on the set ( -oo ,  a(G)] ~. In the 
univariate case (explicitly formulated in Remark 2.1), assertion (i) holds for F~ = 
G1/n 

1 , where G1 is continuous at a(G~) and G = G1 = G~l[~,o~) with u > a(G1). 
Yet F 2 = G1 and, hence, the convergence in (2.10) is not valid. 

Remark  2.1. Theorem 2.2 entails the following univariate version (for con- 
venience writ ten down in the same notation): Assume tha t  G1 is continuous at 
a(G1). Then the following four assertions are equivalent: 

(i) For every t I > oL(G1) , [ ]~(~n:1 ,~1 ) - - ~ ( N ~ , f l ) ]  [ --+ O, n --+ (~3. 

(ii) For every admissible threshold T1, [I£(Nnj ,Tz(Nn,1))-  E(N;,TI(N;) ) II --~ 0, 
n ---+ OO. 

(iii) I I £ ( X ~ : ~ )  - G1 II -~ 0 ,  n ~ oc. 
( iv )  F o r  e v e r y  ~1 ~ oL(G1),  II/Jn,l,~l --  /ffl:~l II ---+ 0, Tt ----+ oo .  
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From Example 2.1 (ii) we know that  the k-th largest point defines an admissible 
threshold. Hence the equivalence of (ii) and (iii) in Remark 2.1 yields that  the 
joint distr ibution of the k largest order statistics strongly converges if, and only 
if, such a result holds for the maximum. This is well-known in case of weak 
convergence (cf. Galambos ((1987), Theorem 2.8.2)) and was proven in the case 
of strong convergence in Reiss (1989) under the condition that  the underlying d.f. 
possesses a Lebesgue density. Moreover, in the univariate case it was proven by 
Falk and Reiss (1992) that  the standardized maxima X.,~:~ strongly converge to a 
max-stable r.v. if, and only if, strong convergence of the pertaining empirical point 
processes N~,l,t~ to a certain Poisson process holds. Our present conditions are 
slightly weaker. For a related result concerning the weak convergence of univariate 
empirical point processes see Resnick ((1987), Corollary 4.19). 

PROOF OF THEOREM 2.2. The implication (iv) ~ (i) is immediate  from 
Theorem 2.1. It remains to prove (i) ~ (ii) ~ (iii) ~ (iv). 

(i) ~ (ii): Let t > a. Denote by Nt,~ subsequent  t runcat ion left of f and s. 
We have 

(2.12) II~<N~,~,TI<N~,~>, N~,~,Ti<N,~,~>) - ~ - (~n , l , t i , T l (N ,~ , l ) ,  Nn,2, t2,T2(N~,2))]]  

¢ (Nn,I,h,TI(N,~,I), ~'n,2,t2,T2(N~,2))} 
<_ P{TI(X~,~) _< ~} + P{T~(X~) <_ t~} 
= P{T~(X~,~,~) < t~} + P{T~(X~,~,~) <_ t~} 

where the final step is immediate from condition (2.6). According to (i), N~,j,tj 
can asymptot ical ly be replaced by N],tj as n --+ oo and applying (2.6) again we see 
that  N],tj can be replaced by AT]. Moreover, (2.7) implies that  P{T j (N] )  <_ tj} 
can be made arbitrarily small for tj sufficiently close to c~j. Notice that  (2.6) 
implies #~,T(,) = #~,T(u~) and, hence, N~,j,tj,Tj(N~,5) = N~,j,tj,T~(N~,j.~j). Because 

the last te rm only depends on N~,j,tj (i) implies 

(2.13) ]l£(]Vn,l,tl,Tl(Nn,1), ~n,2,ta2,r2(N~,2)) -- .~-.(N;,I.I:TI(N[,tl ) , -~,I .2,T2(N~,t2))  H 
- - + 0 ,  r? --+ OO. 

Again, N* j,tj,Tj (N},~j 
tha t  

- N *  ) - j,t~,mj ( ~ )  and repeating the arguments  in (2.12) we see 

(2.14) IIz;(1,~l,rl(N;), X~,~2,r2(N;)) - C(N;,TI(N;), 2V~ir2(N;))ll 

can be made arbitrarily small for tj sufficiently close to c~j. 
Combining (2.12)-(2.14) the proof can easily be completed. 
(ii) ~ (iii): Apply (ii) to thresholds Tj(/~) -- max(/~) as defined in Exam- 

ple 2.1(ii). Identify (]Vr~,l,max(Nn,1) , ]Yn,2,max(N,~,2)) with (X~:,~, Y~:~) and identify 
N*j,max(~) with max(Nj*). Moreover., notice that  

P { ( m a x ( N ; ) ,  max(N~))  _< x} = P { N * ( [ - o o ,  x] ~) = 0} = G(a:). 
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(iii) ~ (iv): Let p be a a-finite measure with marginals Pl and P2 such that  
t ;(Xmi ,Y~#) has the p-density f~, G has the p-density g, and Pl × P2 has the 
p-density hl,2; e.g., let p = /3 +/5 i  x ¢5 2 where ¢5 = G + ~oOn=l 2-n£(Xn,1, Yn,1) 
(see Section 3 for details). Denote by F~,j the j - t h  marginal of F,~ and by f,~,j the 
pj-densi ty  of F~,j. 

We will show that  ~,he pt-densities of u~,t, namely, nf~ converge to the Pt- 
density of Yt in Ll(pt) for every t > a. 

Lemma 3.2 implies tha t  (X~:~, Y~:~) has the p-density 

f(~)(x, y) = n f~(x, y)S,~,~ (x, y) 

+ (hn,~(x, y)&,~(*, y )h~,~¢- ,  y) 
q- hn,l(X, y--)Sn,a(X, y)hn,2(x, y))hl,2 (x, y), 

where S~,i and h,~,j are defined as Si and hi, respectively, in (3.5) with F and f 
replaced by F~ and f~, respectively. Let 

F~,s(. ] y ) : =  P(X,~ <_. I Y,~ = y) and F~,2(. Ix) := P(Y,~ < .  I X~ = x). 

The rest of the proof is organized as follows. We verify that  
(a) S~, , (x) ,  ( 2 / n ( n -  1))&,2(x) ,  ( 2 / n ( n -  1))S~,3(*) are bounded  away from 

0 and Pc uniformly for x _> t and large n and converge on (t, Pc) for every t > a.  
(b) (Sn,2/Sn,s)h,~,lh,~,2('-, ")+(S~,3/S~,s)hrz,l(', "-)hn,2 converges in LI((p~ x 

p ~ ) d  

(c) If nf~ --+ g, n --+ Pc, in Ll(pt) for every" t > a,  then ~ is a p~-density of 
/20~. 

It is immediate  from (a) and (b) tha t  

f(~) ( S,~,2 &~ a ) 
~--h~ , lh~ .~( . - , . )  + .... h ,~( . , . - )h~,~ <,~ 

\ ~'n,1 " Sn,1 ' 

has a limit, say ~, in Ll(pt) for every t > a. According to (c), ~ is a p~-density of 
~a. Hence, II~,~ - .~ll --+ 0, n -+ Pc, for every t > a.  Analogously, one may prove 
I]P,~,j,t¢ - Yj,t5 II --+ o, n --+ Pc for j = 1, 2. 

To prove (a) notice that  S~,a(X, y) ~ [ F ~ - l ( x  - ,  y - ) ,  F~- l (x ,  y)]. This implies 
S~,s(x,y) ~ G(x,y) if (x,y) is a continuity point of G. If G ( x - , y - )  < G(x,y) 
then, as n --+ 0% 

7~ 

-- ~ r ;  (x, y) ~ ( F ~ ( x - ,  y-) /Y~(x,  y))~ i S n , l ( X , y )  -L n - 1  

i = 1  

v~(x, y) - F;~ (~- ,  y - )  a(x,  y) - a ¢ - ,  y - )  
F~(x,y) - F ~ ( x - ,  y - )  logO(x,y) - log a ( x - ,  y - )  

Moreover, (iii) implies tha t  there exist $1, $2, Sa such that  

(2.15) ( 2 2 ) 
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as n ~ ec. Each component on the left-hand side is bounded from below and 
from above by F n - l (  . . . .  ) and ~-2 , , E~ , respectively. Moreover, F ~ - I ( . - , - - )  and 
F~ -2 converge pointwise to G ( . - , - - )  and G. This implies (a). 

To prove (b) define 

r~,l(x,y) = ~F~(x,y)  ~ 1F~(x-,y) ~-~ 
i=1 

= ~ y) F~(x,y-) Tn,2(X ' y) Fn(X ' i--1 n i 

i=1 

and 

and denote by 91(x, y) and 92(x, y) the pl-density of G(- × ( -oc ,  Yl) and the P2- 
density of G ( ( - o c ,  z] x .). 

Elementary calculations as in (2.15) show tha t  Sn,2/(S~,IT~,IT~,2(.-, .)) con- 
verges to a limiting function on (a, ec) as n --+ oc, which is bounded on (t, c~) for 
every t > a.  

Next, we show 

gn,l~n,2('-- , ' )  ~ gig2( ' -- , ' ) ,  ~--+ OO, in Ll ( (p  1 x P2)t) 

w h e r e  gn,1 (X, y) = Zn, 1 (x, y)hn, 1 (x, y) is the density of P{X~:~ C -, Y~:~ < y} w.r.t. 
Pl, and g~,2(x-, y) = T~,2(x-, y)h~,2(x-, y) is the density of P{X~:~ < x, Y~:~ E 
• } w.r.t, p~. It follows from (iii) tha t  

(2.16) f ig,,l(', Y) - gl( ' ,  Y)]dPl --+ 0 uniformly over y E R U {oo}, 

f lgn,2(x-, ") - 92(x-,  ")ldp2 ~ 0 uniformly over x E R U {oe} 

as n --* oc. Hence, 

Ign,l(X', Y)gn,2 (X--, y) -- gl(X, Y)g2(X--, y)ld(D1 x P2)(x, y) 

<_ f g~,l(X, y)lg~,~(x-, y) - g2(~-, y)ld(pa × p2)(x, y) 

+ / g~(~-, Y)Ig~,l(~, Y) - gl(~, y) la(~ × ~)(~.~ y) 

j gn,l(X, (N3) / I g n , 2 ( x - - , Y ) -  g 2 ( x - , Y ) l d p 2 ( y ) d p l ( X )  

+ gl(x,y)ldll(X)dfl2(y) 

----~ 0, rt----+ (X). 

Using the preceding arguments once more, one may show tha t  

Sn,3/(Sn,1 hn,1 (', "--)hn,2)hl,2 
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has a limit in Ll(pt)  for t > a .  
Moreover, (c) is valid if ~ is a pa-density of ua. Since 

n ( 1 - F ~ ( x ) ) - - + - l o g G ( x ) ,  r~--+oo, for x > a  

we obtain 
f f 

r'(x, o o ) :  / dlog(G) = lim I d(nF~) 
J(~ :o~) ~ d(~,o~) 

=l~m/ r t f~dp= L [7dp, 
~,oo) ,~) 

for every x > a. Hence, ~ is a pa-density of ua. The proof is complete. [] 

3. Auxiliary results 

The following lemma provides an upper bound on the variational distance 
between certain vectors of Poisson processes by means of the sum of the variational 
distances between intensity measures. 

LEMMA 3.1. Let N* and N** be Poisson processes on [-oo, oo) with finite 
(N** N** intensity measures u* and L,**. Put (N* N* ~ = HtN* and ~ 1,t~ \ 1 , t l ,  2 , t 2 2  , 2 , t 2 }  -~- 

IItN**. Denote by ~] and ~,]* the intensity measures of N]  and N]*, respectively, 
for j = 1 , 2 .  We have 

N* N* £ r N  ** N** IlL( 1,tl, 2 , t~)-  , ~,t~, ~,~2,11 
** * __ //,** ** 

for some universal constant C > O. 

P R O O F .  P u t  . / ) (1 )  = ( t l ,  oo)  x [ - o o ,  t2] and D(2) = [ - c o ,  tl] × ( t2 ,  o c ) .  For 
N c {N*, N**} we get Nj,tj = rcj(NlD(a))+rcj(Nt),  where NID denotes the trun- 
cation of N outside of D. Recall tha t  Nt = N](t,~).  Applying the monotonici ty 
theorem (see, e.g., Liese and Vajda (1987)) we obtain 

* * £ ¢ N * *  N * *  ]IZ;(NI#~,N2,~=) - ~ 1,~, 2,~=~11 

_< IIZ(~(N*lz)(~)), ~(N*ID(~)), N;) 

+ 11£(~2(X*lz)(2)))  - Z(~2(N**Iz)(2/) )II  + I IZ(N/ )  - Z(N;*)II  

where the second inequality holds because of the independence of the involved pro- 
cesses. From Matthes  et al. ((1978), Proposit ion 1.12.1), it follows tha t  lieU%*) - 
Z;(N•*)II < CIlu• - ~;*11. 

Moreover, check tha t  for j = 1, 2, 

][Z;(rr#(N*lD(#)))  -- £ ( r c j ( N * * l D ( j ) ) ) ] [  < C l l r c j ( z , * lo (3 ) )  -- ~ ( ~ * * l D < j ) ) l l  

_< c(11~2,~, - d,7,11 + II-; ~2"11) 
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and, hence, the asserted inequality holds. [] 

Hereafter, let (X~:~, Y~:~) be the sample maximum of n copies (Xi, Yi) of a 
random vector (X, Y) with d . f .F .  Denote by Fj the j - th  marginal of F.  Let 

/~1(' l Y) : =  P(X ~" I Y = y) and F2(. Ix) := P ( Y  <_. I X  : x). 

If F possesses a Lebesgue density f then one knows (see Reiss ((1989), (2.2.7))) 
that  (X~:~, Y~:~) has the Lebesgue density 

(3.1) f(n) : nFn-a f + ?%(n -- 1)F~-2hlh2 

where hi(x, y) = fl(X)F2(y [ x) and h2(x, y) = f2(y)Fl(x [y) with f l ,  f2 denoting 
the marginals of f.  In the sequel, we will prove an extension of this result that  
will also confirm a conjecture stated in Reiss ((1989), Problem 2.8). 

LEMMA 3.2. Let p be a ~-finite measure with marginaIs Pl and P2 such that 

(3.2) (X, Y) has the p-density f 

and 

(3.3) Pl × P2 has the p-density hl,2. 

Then, (X~:~, Y~:~) has the p-density f(~) given by 

(3.4) f(n)(x, y) = ~Sl(X, y)f(x ,  y) 

Jr- (h i (x ,  y)S2(x,  y)h2(x- ,  y) + hi(x, y--)S3(X, y)h2(x, y) ) 
• h i ,  2 ( x ,  y) 

where h2 (x - ,  y) = limz;x h2(z, y) etc. and 

X l ( X , y )  __ 7t 1Ej~(x,y)i 115n(Z__ y__)n i 
i=1 

S2(x'Y) ~- E F(x'y)i-aF(x-~Y)J-i-I[v(X-'Y-)n-J' 
(3.5) L<i<~<~ 

S3(x ,y)  = E F(x 'Y)J-IF(x 'y- ) i - j - IF(x- 'y- )n- i '  
l<j<i<_n 

h l ( X , y  ) ~- f l ( x ) F 2 ( y  I x ) aftd h2(x,y) = f2(y)Fl(x l Y) 

with f j denoting the pj-densi~y of Fj for j = 1, 2. 

If condition (3.2) holds and (3.3) is not valid then p may be replaced by 
p + pl x p2. If F is continuous then (3.4) reduces to 

(3.6) f(n) = h E n - i f  ÷ n(n - 1)Fn-2hlh2hl,2. 
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In addition, hl,2 =-- 1 if p = p~ x P2. Thus, (3.1) is immediate  from (3.6) with p 
being the Lebesgue measure on R 2. Moreover, one may easily check that  

(x, y) + fl(x)f2(y)hl,2(x, y) 

is a p-density of F1 x F2. Hence, 

= / B  nF~-  ldF + js n(n - 1)F~-2FI(x ] y)F2(y 

which is the formula given in Reiss ((1989), Problem 2.8) 

x)d(F1 × F2)(x, y) 

PROOF OF LEMMA 3.2. Let (x ,y)  E R 2. Then, 

= ~ P{(X~,  ~ )  <_ (~, y), X~o <_ x~, xi~ < x~, io < ~ < i~, 
l <_i,j <_n 

YJo ~ ~J'~Jl < ~j , jo  < j < j l }  

~( ~(%t'v)i-lF(%t-'v-)n-id£(Xi'~J)(%'v) 
= ~ -~,(x.y)] 1<_i j<_n 

f(  P{Xio < Xi,Xil  < Xi,io < i < il, 
-~,(~.v)l - 

+ 
l<iCj<_n 
~o <- ~ , ~  < ~ , j0  < j < jm I X~ = u , ~  = v}dC(X~,~)(u,v). 

The first te rm is equal to f(_~,(x,y)](nSif)dpl. Moreover, we get the following 

equalities for the integrands in the second term for £(Xi ,  Yj) almost all (u, v) if 
l <_ i<j<_n:  

P{Xio < Xi, Xi~ < Xi, io < i < ix, 

~o -<~,~1 < ~ , j 0  < j  < j l  I X ~ = ~ , ~  =v} 

= / P{Xio <_ u, Xil < u, io < i < il, YJo <~ V, ~Jl < V, jo < j < j l  I 
J( OC)~V] 

= [ ~(~ ,v) i - IF(u  - , v ) j  -i IF(U--v--)n-J 
J (  --OO~V] 
× P ( x y  < u I ~ = v)P(Y~ • d8 I X~ = u) 

= r (%,v ) i - lF(~ t - - , v )J - i -1]g (~ t - - , v - - )n -J~ l (~ -  I V)F2(V I ~). 

Similar calculations may be carried out for 1 _< j < i _< n. [] 
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