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A b s t r a c t .  A lot of discrete approximation schemes for stochastic differen- 
tial equations with regard to mean-square sense were proposed. Numerical 
experiments for these schemes can be seen in some papers, but the efficiency 
of scheme with respect to its order has not been revealed. We will propose 
another type of error analysis. Also we will show results of simulation studies 
carried out for these schemes under our notion. 
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1. Introduction 

We consider s tochast ic  initial value p rob lem (SIVP) for scalar au tonomous  I to  
s tochast ic  differential equat ion (SDE) given by 

d X ( t )  = f ( X ) d t  + g ( X ) d W ( t ) ,  t E [0, T], 
(1.1) 

x ( 0 )  -- x, 

where W( t )  represents  the s t anda rd  Wiener  process and initial value z is a fixed 
value. In m a n y  l i teratures,  whose par t ia l  list can be seen in the references of the 
present  paper ,  numerical  schemes for SDE (1.1) were proposed,  which recursively 
compute  sample  pa ths  ( t rajectories)  of solution X ( 0  at  s tep-points .  Numer ica l  
exper iments  for these schemes can be seen in some papers  (Pa rdoux  and Talay  
(1985), Liske and P la ten  (1987), Newton (1991)). However,  the efficiency of nu- 
merical  schemes has not been revealed in those works. We will propose  error 
analysis separa t ing  error t e r m  into two par t s  (stochastic and determinis t ic  par ts) .  
In this paper ,  we will show results of error behaviour  in various numerical  schemes 
on several SDEs under  our notion. Then,  in s t rong sense, the numerical  features 
of schemes well reflect in the determinis t ic  par t  of error. 

In the  next  section, we describe several  numerical  schemes in mean-square  
sense. Section 3 discusses our notion of error analysis in detail  wi th  five examples  
and Section 4 shows the numerical  result  of order of convergence of scheme for 
these examples.  Finally, Section 5 is devoted to describe our conclusion on error 
analysis and several future  aspects.  
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2. Numerical schemes for SDEs 

In the following, we present numerical schemes. 
discretization of the time interval [0, T] with stepsize 

Furthermore,  

They adopt an equidistant 

T 

N 
for fixed natural  number N. 

tn = nh ,  n 6 {1 ,2 ,  . . . , N }  

denotes the n-th step-point. We abbreviate 

2 ~  = 2 ( t ~ )  and ¢,~ = ¢(X~),  

for all n c { 0 , . . . ,  N} and functions q5 : R ~ R.  
When X ( t )  and 2 ~  stand for the exact and the numerical solutions of SIVP 

(1.1), respectively, the local error from t = t~ - i  to t = t~ and the global error 
from t = to to t = T = t N  are defined by the following: 

E ( I X ( t ~ )  - 2~12 I X ( t ~ - l )  = x n - 1  = Xn--1), 

E ( I X ( T )  - 2 N I  2 I X 0  = X0 = 20), 

where x n - 1 ,  xo are arbi t rary real values. Then, the local and global orders are 
defined as follows. 

The numerical scheme )(~ is of local order 7, of global order DEFINITION 1. 

E(IX(tn)  - 2hi  2 I X(t~_~)  = 2 ~ _ 1  = X~_l) = O(h ~+1) (h l 0), 

E ( ] X ( T )  - 2NI  2 I Xo = 2 o  = ~o) = O(h~) (h t 0), 

respectively. 

Remark. While the equation 7 = /~ holds in numerical methods  for ODE 
under a mild assumption, it isn't satisfied for SDE (see Saito and Mitsui (1992)). 
Also, another  definition of order of convergence may be given by 

E(IX(T) - 2NIl Xo = 20 = 20) = O(hS) (h ~ O) 

to be consistent with the deterministic order of convergence (Kloeden and Pla ten  
(1989)). But  we use the order concept in Definition 1 to make it easy to investigate 
the global error. Thus, the reader might read as/3 = 2/3 ~. 

The following three random variables will be used in the (n + 1)-st t ime step 
of the schemes: 

,~W,~ = W ( t n + O  - W(t ,O,  

t n + l .~L.,I 
AZn  = dW(r)ds ,  

J fJn 

A 2 ~  = d~dW(s) .  
J t n  
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They are obtained as sample values of normal random variables using the trans- 
formation 

AW~ c ~1/2 = ~n,llb 

= ~ ~n,1 J- h3/2, 

A2~d 1( ~33 ) h 3/2 =~ ~,~,1 

and, together with them, we further use AI~,~ = {~,2h 1/2, where {n,1, {n,2 are 
mutually independent N(0, 1) random variables. 

Remark. In the mean-square sense AZ~ and A2~ cannot be expressed in 
terms of the random variables ~n,1, ~ , 2 , . . . ,  ~,,~ which are mutually independent 
X(0, 1) ones. Thus, any numerical scheme cannot attain order 3 (Riimelin (1982), 
Pardoux and Talay (1985), Newton (1991)). However, we derived the above expres- 
sions for AZ~ and A2~ in the weak sense. In the simulation on digital computer 
with pseudo-random numbers we might expect these random variables behave well 
for the approximate solution. 

Numerical schemes. 
1. 7 =  1 , /3=  1. 
Euler-Maruyama scheme (Maruyama (1955)): 

(2.1) z~'-n+l = X n  -- fn  h -F g~AW,,~. 

2. 7 2, 3 = 2. 
Heun scheme (McShane (1974)): 

(2.2) 

where 

1 1 [G1 + G2]AWn, 

Ga = g(2.~), 

F2 = F(Xn  - Fib + G1AW, d,  

Taylor scheme (Mil'shtein (1974)): 

1 , AW 2 (2.3) 2,~+1 2,~ + A h  + g,~xv<~ + ff [g g],~(( ,d - h). 

Derivative-free scheme (Kloeden and Platen (1989)): 

(2.4) Xn--i = Xn @ Flh -- GlZ~Wn Jr- [G2 - G1]A -1/2 (AVOn)2 -- h 
9 
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where 

FRKI scheme 

(2.5) 

F1 : f()(~), 

G1 = g(Xn), 

G2 = g(Xn + G1h1/2). 

Newton (1991)): 

X~+I = 52~ + F ib  + G2AW~ + [G2 - G j h  1/2, 

where 

(2.6) 

F1 = f (2~) ,  
Cl  = g ( 2 ~ ) ,  

G 2 = g ( X  n -~- G I ( A W  n - h l / 2 ) / 2 ) .  

3. 7 =  3, /9= 2. 
Improved 3-stage RK scheme (Saito and Mitsui (1992)): 

1 1 
)£n±1 = J(n + ~[Y1 -F 3F3]h -~- ~[Cl -~- 3G3]AWn 

1 F 1 11 2] 
LYg-g'/- g j ha<, 

where 

G2 = 9 ( 2 ~  + ~FIh + ~G1AW~)  , 

F(x) = I f  - ~g'gl (x) • 

Taylor scheme (Mil'shtein (1974)): 

1 I 2 
(2.7) 2~+~ = 2,~ + A h  + g~Aw~ + ~[g g]~((zxw~) - h) 

1 ,, 2] 
+ [f'g]~AZ~ + J / +  i g  g j ~ A2~ 

. 2~ HAW ̀ ~3 3hAW,~). + [g12g + g g j~< ~) _ 
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4. 7 = 3 ,  3 = 3 .  
Taylor scheme (Kloeden and Platen (1989)): 

(2.8) Xn÷l = ff(n -~- fn ~ + gnAWn ~- ~[glg]n((AWn)2 - -  h) 

i ,, 2l 
÷ [f' g]~AZ~ + g' f  + ~g g j, A2,~ 

,, 2~ HAW . ~3 3hAW~) + f ' f  d- [g,2g_Fg g ]n[[ n) -- 

5. 7 = 2, ,~ = 2 but ? = 3, fl = 3 for linear equation. 
ERKI scheme (Newton (1991)): 

Z Jn 

(2.9) 
1 1 

2 ~ . 1  = Rn + ff[F~ + F2]h + 76 [37G~ 

-- ~p_ [SG1 -- G 2 -- 9 G 3 ] ' b ~ ,  it) 

+ 30G3 - 27G4]AWn 

where 

Cl  = g(Y<~), 

F2 = f(2,~ +Flh  + G~AW, J,  

lO 
- ~  1 + ~ (  ~-G~)AW,~-  

3. Stochastic and deterministic parts in the global error 

We apply the numerical schemes described in the last section to five examples. 
For obtaining the mean-square error of the approximation, it is important that  
the exact value of the realizations of the solution X(T)  can be determined. As 
mentioned in Introduction, the error analysis has not been carried out successfully. 
In our view, it could be solved by separating mean-square error into two parts 
(stochastic and deterministic), namely 

(3.1) IIXCTD - xNII ~ IIXCT) - XNII + Ib2N - XNII, 

where [1" [] denotes 

IlXll = {E(Ixl~)}  1/2, 

and XN the discretized exact solution realized by using pseudo-random numbers 
generated in digital computer (see the following Examples). From this reason, 
we will call X~¢ the realized exact solution, and the first term in the right-hand 
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side as stochastic part,  the second term as deterministic part. We anticipate 
tha t  the effect of order of numerical schemes appears in deterministic part.  A 
similar notion in weak sense is seen in Talay (1984). However, we don ' t  expect the 
stochastic part  could be minimized by means of taking sufficiently large sample 
number. The discussion can be seen in Janssen (1984) and Kanagawa (1989) from 
mathematical  point of view. However, stochastic part  will have to be investigated 
by some stochastic tests. 

For example, if the solution X(t) of SDE (1.1) can be expressed 

(3.2) x ( t )  = f ~; w(~),  w ( s )d s ,  8 d w ( s ) , . . .  , 

for F E C °°, then the realized exact solution is 

(3.3) : F Z Aw , Z Az , Z Azi,...]. 
\ i = 0  / : 0  i : 0  

Therefore, we can easily calculate the deterministic part,  whereas stochastic part  
will be calculated with the distances between ~{=0 AWi and W(t), ~-1 ~{=0 AZi and 

fo W(s)ds, and so on at each step points (t = ih; i = 0 , . . . ,  n - 1) in distribution 
s e n s e .  

Note tha t  our error analysis is slightly different from one carried out by Liske 
and Platen (1987) or Newton (1991). They est imated directly the error ]IX(T) - 
)~Ntl 2. Here our realized exact solution corresponds to the t runcated one for the 
exact solution they  thought  of. In the sequel, we s tudy  only the deterministic part.  

Example 1. Linear case (Martingale). 

(3.4) dX = XdW(t), t E [0, TI, )to = 1. 

The exact solution of (3.4) is 

(3.5) X(t) =exp{-12t + W(t)} , 

while the realized exact solution X~ is 

Example 2. Linear case (Submartingate). 

(3.7) dX = Xdt + XdW(t), ~ e [0, T], Xo = 1. 

The exact solution of (3.7) is 

(3.8) X(t) = exp { l t  + w(t) } , 
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while the realized exact solution X~ is 

Example 3. Linear case (Supermartingale). 

(3.10) dX = - X d f  + X d W ( f ) ;  t e [0, T], X 0 =  1. 

The exact solution of (3.10) is 

(3.11) X( t )  = exp { - ~  + W(~)}, 

while the realized exact solution X~ is 

In Examples 1 to 3 I#V~ is given by 

Wn = ~ ~,ah ~/~. 
i = 1  

Example 4. Non-linear case (Liske and Platen (1987)). 

( 1 ) 
(3.13) ~ x = -  s i n 2 X + ? s i ~ 4 x  ~ t + ~ ( e o s X ) ~ W ( t ) ,  

The exact solution of (3.13) is 

(3.14) 

with 

X(t) = a r c t a n ( V ( t ) )  

(3.15) v ( t )  = Vo~ -~ + ~ ~ -~dw(~) ,  Vo = tan(l). 

s [0, T], X0 = 1. 

Case 1. y =  l ,2.  

( ) 9 ~ = e  t V o +  e t~-IAW~ . 

/ 1 

The realized exact solution Xn is Xn = aretan(~Tn) where I),~ is computed by the 
following three ways according to the order of numerical scheme; 
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Case 2. 7 = 3, use ~,1 and ~,2. 

9~=e -~ v 0 + ~  e ~ - ~ ( A w ~ + ~ x 2 0  . 
i=1  

Case 3. 7 = 3, use only ~,1 but no ~,2 and ERKI scheme. 

% = e -~ v0 + ~/7 e ~-~(A~V~ + A u 0  
i= 1  

where 
1 h3/2" 

In this case, we simplify the expression for the realized exact solution in the 
schemes (2.7 / and (2 .8/by replacing the terms AZ~ and A2~ with AU~ or in the 
scheme (2.6) by removing the correction term (1/2x/~)[fig - 9 ' f  - ( 1 /2 )g ' g2]~h  • 

Examp le  5. Non-linear case (Gard (1988)). 

(3.16) d X  = X(1 - X ) d t  + X d W ( t ) ,  t e [0, T], Xo = 0.5. 

The exact solution of (3.16) is 

(3.17) X ( 0  = 
exp(0.S~ + w(~)) 

2 + / d  exp(0.Ss + W(~))Ss 

On the other hand, the realized exact solution Jfn is computed by the following 
three ways, similar in Example 4. 

Case 1. 

Case 2. 

Case 3. 

where 

7 = 1 , 2 .  

2 n  = exp(0.5~ + W~) 

2 + ~ i ~ s  exp(0.5t~ 1 -- l/~i-1)h" 

2' = 3, use ~,1 and {~,2. 

-~n = exp(0.5t~ + I/K~) 

2 + E L 1  exp(0.5~_~ + W~_~)th + ZXZ~ + h2/2)' 

7 = 3, use only ~ , l  but  no ~,2 and ERKI scheme. 

2~  = exp(O.St~ + Wn) 
2 + E~\I  exp(0.5~i_l + w~ 1)(h + Aui  + h2/2)' 

n 

I/V~ X-" ~ ~1/ 2 1 = ~ q i , l ' ~  , AUi = ~ i , l h  3/2. 
i=1  

The realized exact solution is expressed as in similar way for Example 4. 
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4. Numerical results 

W e  chose  T = 0.5, the  s a m p l e  n u m b e r  = 10000,  and  the  s t e p s i z e s  h = 

2 . 4  , 2 . 5  , 2 . 6  . To each s c h e m e s ,  we  ca l cu la te  the  error: 

10000 
1 

(4.1) e -  1000  2, 
k = l  

where superscript k means the k-th trajectory of each solutions. This quantity 
tends to the square of the deterministic part in (3.1). We show the computed 
mean-square error (4.1) for Example I in Table 1 or Figs. 1 and 2; for Example 2 

in Table 2 or Figs. 3 and 4; for Example 3 in Table 3 or Figs. 5 and 6; for Cases i, 

2 and 3 of Example 4 in Table 4 or Figs. 7 to 9; for Cases 1, 2 and 3 of Example 

5 in Table 5 or Figs. 10 to 12, respectively. 
Note that scheme (2.4) is just same as scheme (2.3) in Examples 1, 2, 3 and 5 

or scheme (2S) is (2.7) in Example i 

Tab le  1. E x a m p l e  1. 

h\Sch~.~e (2.1) (2.2) (2.3) S~ (2.4) S~ (2.5) 
2 - 4  3.25 x 10 - 2  2.33 x 10 - 3  7.36 x 10 - 4  

2 - 5  1.29 x 10 - 2  4.23 x 10 - 4  1.44 x 10 - 4  

2 - 6  6.29 x 10 - 3  8.90 x 10 - 5  3.32 x 10 . 5  

h\Sche.~e (2.6) (2.7) & (2.8) & (2.9) 
2 - 4  9.49 x 10 5 1.92 x 10 - 5  

2 5 1.16 x 10 .5 1.53 x 10 -6 

2 - 6  2.06 x 10 6 1.59 x 10 - 7  

% 

- 4  

-6  

-8  

- I 0  

- ! 2  

- 1 4  

- 1 5  
-7  -5  -5  -4  -3 

L o g  z h 

a C21) • (2.2)  m ( 2 3 ) & ( 2 4 ) & ' , 2 5 )  

% 

- 12  

- ' 4  

- i 5  

- l ~  

- 2 0  

- 2 2  " 

- 2 4  
-7  -6 -5 -4  5 

L og 2h 

m ( 2 6 )  • ' ,27)  & ( 2 8 )  & ( 2 9 )  

Fig. 1. S c h e m e s  (2.1),  (2.2),  (2.3),  (2.4) and  Fig.  2. S c h e m e s  (2.6),  (2.7),  (2.8) and  (2.9) 
(2.5) for E x a m p l e  1. for E x a m p l e  1. 
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Table 2. Example  2. 

h\Scheme (2.1) (2.2) (2.3) &: (2.4) ~ (2.5) 

2 - 4  1.17 X 10 -1  1.00 X 10 -2  2.37 x 10 - 2  

2 -5  4 .04X 10 -2  1.87X 10 3 5.15 X 10 - 8  

2 6 1.78 X 10 -2  3.98 X 10 - 4  1.13 X 10 - 3  

h\Scheme (2.6) (2.7) (2.8) &: (2.9) 

2 - 4  3.53 x 10 - 4  1.79 × 10 - 3  5.35 x 10 - 4  

2 5 3.75 x 10 5 3.28 X 10 - 4  4.16 x 10 -5  

2 - s  6 . 0 8 x  10 - s  7 . 2 2 x  10 - 5  4 . 5 4 x  10 - 6  

-6" 

-8" 

- I 0 "  

- 1 2  

~a 

, i , , ) ' 

- 6  - 5  - 4  - 3  

Log 2h 

-2  

- 4 -  

m ( 2 1 )  o (2.2)  [] (2 3) & (2 4) & (2.5)  

Fig. 3. Schemes (2.1), (2.2), (2.3), (2.4) and  

(2.5) for Exampl e  2. 

- 1 8  

- 8  

- 6  5 - 4  - 3  

Log zh 

[] ( 2 6 )  • ( 2 7 )  [] (2 .8 )  & ( 2 9 )  

Fig. 4. Schemes (2.6), (2.7), (2.8) and  (2.9) 

for E x a m p l e  2. 

Table 3. E x a m p l e  3. 

h\Seh¢.~e (2.1) (2.2) (2.3) a (2.4) ~ (2.5) 
2 - 4  1.20 × 10 - 2  8.48 × 10 - 4  1.93 X 10 - a  

2 -5  5.06 X 10 - 3  1.52 X 10 4 4.77 × 10 - 4  

2 - 6  2.44 x 10 - 3  3.19 X 10 -5  9 . 8 4 x  10 -5  

h \ , S c h e m e  (2.6) (2.7) (2.8) & (2.9) 

2 4 3.68 × 10 -5  1.84 × 10 - 4  4.54 X 10 5 

2 5 4.52 X 10 - 6  4.25 X 10 - 5  5.11 X 10 6 

2 6 7.86 X 10 - 7  9.83 × 10 6 6.44 X 10 - 7  
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- 1 2  
- 5  

- Ej  ° 

- ' 0 -  

- 1 2 "  

- 1 4 "  

15 

- 7  

• i , . , ' 

-6  -5  - 4  -3  

Log 2h 

14 

- 2 0  • 

- 2 2  
-7  

~b 
- ' 6 C~ 

- 1 8 "  

- 6  -5  - 4  - 3  

Log zh 

(2.1) • (22) [] (23)&(24) &(25) 

Fig. 5. Schemes (2.1), (2.2), (2.S), (2.4) 
and (2.5) for Example 3. 

a (26) • (2.7) [] (2.8) & (29) 

sig. 6. Schemes (2.6), (2.7), (2.8) and (2.9) 
for Example 3. 

N 

- 8 -  

- I 0 "  

- 1 2 "  

- 1 4 "  

- 1 6  

- 7  

l l i 

-6  -5 -4 -3  

Log zh 

a (2 ! ) q' (22) ~. (2.3) • (24) o (25) 

Fig. 7. Schemes (2.1), (2.2), (2.3), (2.4) and (2.5) 
for Case 1 of Example 4. 

-IO 

-12" 

-14" 

- ! 8  

- 2 0  • . 

-7 -6  -5 - 4  -3  

Log 2h 

El (26) • (2.7) [] (2.8) 

Fig. 8. Schemes (2.6), (2.7) and (2.8) for 
Case 2 of Example 4. 

= i 0  

=12  

% 

,.-.1 

- 1 6  

- 7  - 6  - 5  - 4  - 3  

Log 2 h 

(26) t (27) II (28) ~ (29) 

Fig. 9. Schemes (2.6), (2.7), (2.8) and (2.9) for 
Case 3 of Example 4. 

% 

-6  

- 8 '  

~ ! 0 -  

- 1 2  

- 1 6  
-7  -5  -5 - 4  -3 

Log ~h 

[] (21) * (22) [] (23) &(24) &(25) 

Fig. 10. Schemes (2.1), (2.2), (2.3), (2.4) 
and (2.5) for Case 1 of Example 5. 
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T a b l e  4. E x a m p l e  4. 

Case 1 

h\Scheme (2 .1)  (2.2)  (2.3)  

2 - 4  1 .08 x 10 - 2  3 .55  × 10 - 4  2 .00  × 10 - 3  

2 - 5  5 .62  × 10 - 3  1.36 × 10 - 4  4 .94  × 10 - 4  

2 - 6  2 .77  × 10 - 3  3 .96  × 10 - 5  1.17 × 10 - 4  

h\Seheme (2.4)  (2 .5)  

2 - 4  

2 - 5  

2 - 6  

2 .54  X 10 - 3  9 .57  X 10 - 4  

6 .16  × 10 4 2 .53  X 10 - 4  

1.39 x 10 - 4  6.41 x 10 - 5  

Case 2 

h\Scheme (2.6)  (2 .7)  (2 .8)  

2 - 4  4 .31  x 10 - 5  7 .56  × 10 - 4  6 .59  × 10 - 4  

2 - 5  8 .78  x 10 6 1.45 x 10 - 4  1.06 × 10 - 4  

2 - 6  1 . 6 0 x  10 - 6  2 . 6 6 x  10 - 5  1 . 3 1 x  10 - 5  

Case 3 

h\Seheme (2.6)  (2 .7)  (2 .8)  (2 .9)  

2 - 4  3 .94  x 10 - 5  8 .68  x 10 - 4  7.41 × 10 - 4  2 .73  x 10 - 4  

2 - 5  7 .30  x 10 - 6  1.44 x 10 4 1.02 × 10 - 4  4 .22  × 10 5 

2 - 6  1.49 × 10 - 6  2 .50  x 10 - 5  1 .27  X 10 - 5  5 .54  × 10 - 6  

T a b l e  5. E x a m p l e  5. 

Case 1 

h\Scheme (2 .1)  (2.2)  (2 .3)  &: (2 .4)  8z (2.5)  

2 - 4  6 .34  x 10 - 3  1.25 × 10 - 3  4 .15  x 10 - 4  

2 - 5  2 .78  × 10 - 3  2.41 × 10 - 4  9 .57  × 10 - 5  

2 - 6  1.32 x 10 - 3  5 . 6 3 x  10 - 5  2 . 2 4 x  10 - 5  

Case 2 

h\Scheme (2 .6)  (2 .7)  (2 .8)  

2 - 4  1 .74 x 10 - 5  5 .20  x 10 - 5  2.27 x 10 - 5  

2 - 5  2 .46  × 10 - 6  1.14 × 10 - 5  3 .08  × 10 - 6  

2 - 6  3 .38  x 10 7 2.33 × 10 - 6  3 .88  x 10 - 7  

Case 3 

h\Scheme (2.6)  (2.7)  (2.8)  (2 .9)  

2 - 4  2 . 2 1 x 1 0  - 5  9 . 9 8 x  10 - 5  2 . 1 9 ×  10 - 5  8 . 4 4 x  10 - 6  

2 - 5  2 .19  × 10 - 6  1.46 x 10 - 5  2 .96  × 10 - 6  1.03 × 10 - 6  

2 - 6  3 .06  × 10 7 2 .56  X 10 - 6  3.61 × 10 - v  1.15 × 10 - 7  
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Fig. 11. Schemes (2.6), (2.7) and  (2.8) for 
Case 2 of Example 5. 

( 2 . 6 )  '~ ( 2 7 )  o ( 2 8 )  ~ ( 2 , 9 )  

Fig. 12. Schemes (2.6), (2.7), (2.8) and (2.9) 
for Case 3 of Example 5. 

Table 6. Fitted slopes for error-stepsize curve. 

E x a m p l e \ S c h e m e  (2.1) (2.2) (2.3) (2.4) (2.5) 

1 1.2 2.4 2.2 2.2 2.2 

2 1.4 2.3 2.2 2.2 2.2 

3 1.1 2.4 2.1 2.1 2.1 

4 - c a s e l  1.0 1.6 2.0 2.1 1.9 

5 -ease l  1.1 2.2 2.1 2.1 2.1 

Example\Scheme (2.6) (2.7) (2.8) (2.9) 
1 2.8 3.5 3.5 3.5 

2 2.9 2.3 3.4 3.4 

3 2.8 2.1 3.1 3.1 

4-case 2 2.4 2.4 2.8 - -  

4-case 3 2.4 2.6 2.9 2.8 

5-case 2 2.8 2.2 2.9 

5-case 3 3.1 2.6 3.0 3.1 

In all figures, the least-square linear fitting was incorporated for the error- 
stepsize curve. The fitted slopes are shown in Table 6. From the results we can 
conclude that the third order Taylor scheme (2.8) is superior to other schemes from 
our viewpoint of global error. Also, when the scheme carried out by using only 
one pseudo-random number at each step, ERKI method (2.9) may be preferred to 
the third order Taylor scheme (2.8), because it is easier to implement. 

5. Conclusions and future aspects 

Our numerical examples in the preceding section lead to the following tentative 
conclusions: 

(i) The global order of numerical scheme appears well in the deterministic 
part of error. 
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(ii) We emphasize that approximation for sample path of solution X(t) is 
completely determined by sequences of pseudo-random numbers. Therefore, how 
to generate pseudo-random numbers is the most crucial problem in the simulation 
of SDEs. Namely, the problem reduces how well the Wiener process W(t) and 
the random process fo esdW(s) can be realized by using pseudo-random numbers 
in digital computer. Henceforce, the program for simulation of SDE will have to 
require both numerical scheme and specific pseudo-random number generator. 

(iii) Case 3 of Examples 4 and 5 show that Runge-Kutta scheme proposed by 
Riimelin (1982) may be used if the random process ~ eSdW(s) is realized by only 
one pseudo-random number at each step. 
We investigated only the deterministic part of global error in this paper. However, 
so far it seems very difficult to study the stochastic part. In general, it requires a 
finer analysis through good pseudo-random numbers. 

REFERENCES 

Gard, T. C. (1988). Introduction to Stochastic Differential Equations, Marcel Dekker, New York. 
Janssen, R. (1984). Discretization of the Wiener-process in difference-methods for stochastic 

differential equations, Stochastic Process. Appl., 18, 361-369. 
Kanagawa, S. (1989). The rate of convergence for approximate solutions of stochastic differential 

equations, Tokyo J. Math., 12, 33-48. 
Kloeden, P. E. and Platen, E. (1989). A survey of numerical methods for stochastic differential 

equations, Stochastic Hydrology and Hydraulics, 3, 155 178. 
Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations, 

Springer, Berlin. 
Liske, H. and Platen, E. (1987). Simulation studies on time discrete diffusion approximations, 

Math. Comput. Simulation, 29, 253 260. 
Maruyama, G. (1955). Continuous Markov processes and stochastic equations, Rend. Circ. Mat. 

Palermo, 4, 48-90. 
McShane, E. J. (1974). Stochastic Calculus and Stochastic Models, Academic Press, New York. 
Mil'shtein, G. N. (19Y4). Approximate integration of stochastic differential equations, Theory 

Probab. Appl., 19, 557-562. 
Newton, N. J. (1991). Asymptotically efficient Runge-Kutta methods for a class of Ito and 

Stratonovich equations, SIAM J. Appl. Math., 51, 542 567. 
Pardoux, E. and Talay, D. (1985). Discretization and simulation of stochastic differential equa- 

tions, Aeta Appl. Math., 3, 23 47. 
Platen, E. (1981). An approximation method for a class of Ito processes~ Lithuanian Math. J., 

21, 121-133. 
Riimelin, W. (1982). Numerical treatment of stochastic differential equations, SIAM J. Numer. 

Anal., 19, 604-613. 
Saito, Y. and Mitsui, T. (1992). Discrete approximations for stochastic differential equations, 

Transactions of the Japan Society for Industrial and Applied Mathematics, 2, 1 16 (in 
Japanese). 

Talay, D. (1984). Efficient numerical schemes for the approximation of expectations of function- 
als of the solution of a SDE and applications, Lectures Notes in Control and Information 
Sciences, 61, Springer, Berlin. 


