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A b s t r a c t .  In a recent article Pillai (1990, Ann. Inst. Statist. Math., 42, 157- 
161) showed that the distribution 1 -  E~( -x~) ,  0 < c~ _< 1; 0 _< x, where E~(x) 
is the Mittag-Lettter function, is infinitely divisible and geometrically infinitely 
divisible. He also clarified the relation between this distribution and a stable 
distribution. In the present paper, we generalize his results by using Bernstein 
functions. In statistics, this generalization is important, because it gives a new 
characterization of geometrically infinitely divisible distributions with support 
in [0, c~). 
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i .  Introduction and results 

Pillai (1990) showed tha t  the distr ibution 1 - E~( -x~) ,  0 < a <_ 1; 0 _< x, 
where E~(x) = ~ = o  xn/F(  1 + na) is the Mittag-Leffter function, is infinitely di- 
visible and geometrically infinitely divisible (for the definition of geometric infinite 
divisibility, see below). He also showed tha t  this dis tr ibut ion is equal to the dis- 
t r ibut ion  of Z~(S(1)) ,  where Z~(t) is the stable process with E exp{ -uZ~( t ) }  = 
e x p { - t u ~ } ,  u > 0, and S(t) is the gamma process with the density xt -Xe-Xdx/  
r ( t ) ,  x > o. 

The  aim of the present paper  is to generalize his results by using Bernste in  
functions. In statistics, this generalization is impor tant ,  because it gives a new 
character izat ion of geometrically infinitely divisible distr ibutions with suppor t  in 

A C ~ - f u n c t i o n  f from (0, oe) to R is said to be a Bernstein function, if 
f ( x )  > 0, x > 0, and ( -1)PdPf /dx  p _< 0, x > 0, for all integers p >_ 1 (cf. Def. 9.1 
of Berg and Forst (1975)). Thus  df /dx  becomes a completely monotone  function. 
Such a function f is character ized by 

L 
~ 

f (x )  = a + bx + (1 - e-~X)p(ds), x > O, 

where a, b are non-negative constants  and #(ds) is a positive measure on (0, oc) 
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such tha t  

fo s 1 + s #(ds) < 

(see Theorem 9.8 of Berg and Forst (1975)). In the present paper  we assume tha t  

(1.1) l i m f ( x )  = 0, lim f (x )  = oc. 
x.[0 x~ec 

It is easy to see tha t  limxl0 f (x )  = 0 if and only if a = 0, and tha t  l i m x ~  f (x )  = 
oo if and only if b > 0 or #((0, ec)) = ec. Then,  since f is a non-zero Bernstein 
function, f (x )  > 0, x > 0, and 1 / f  is completely monotone  (cf. Exercise 9.9 of 
Berg and Forst (1975)). Thus,  there exists a unique positive measure W(dx)  on 
[0, oo) such that 

~0 ~ 
1 e-SXW(ds), x > O. ( 1 . 2 )  f ( x )  - 

We denote  by W~*(dx) the  n-t imes convolution measure of W(dx).  For )~ > 0 
define the function Ua (x) on R by 

( 1 . 3 )  { u (x) = - x > 0,  
n=l 

0, x < 0 .  

We shall show tha t  Ux(x) is a distr ibution function and it is a generalization of the 
distr ibution function 1 - E ~ ( - x a ) ,  0 < c~ < 1; 0 _< x. Remark  tha t  the funct ion 
f (x )  = x ~ is a Bernstein function. In this case wn*([O,x]) = { l / F ( 1  + nc~)}x ~ 
and U](x) = 1 - E~( -x~) .  

Now, we s ta te  the main results of the present paper.  All theorems of this 
section are proved in Section 2. The  first theorem shows tha t  Ux is infinitely 
divisible. 

THEOREM 1.1. Let f be a Bernstein function with (1.1). Then, for every 
,~ > 0, U~ is an infinitely divisible distribution with the Laplaee-Stieltjes transform 

(~  + f ( . ) ) - l .  

In Theorem 1.2 below, we construct  the L~vy process which has the distribu- 
t ion UA for t = 1. This theorem corresponds to Theorem 4.3 of Pillai (1990), which 
clarifies the relation between the distr ibution i - E ~ ( - x  ~) and a stable process. 

THEOREM 1.2. Let f be a Bernstein function with (1.1). Then, the Ldvy 
process with the distribution function U~ for t = 1 is Z(S~(.)). Here Z(t) is 
the non-negative and non-decreasing Ldvy process such that E e x p { - u Z ( t ) }  -- 
e x p { - t f ( u ) }  for u > 0; S~(t) is the gamma process with the probability density 
Atst- le-~Sds/F(t) ,  s > 0; Z and S~ are independent. 

Next,  we show tha t  U~, A > 0, is geometrically infinitely divisible. A distribu- 
t ion function G with G(0) = 0 is said to be geometrically infinitely divisible if for 
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every p, 0 < p < 1, there exists a distr ibution function Hp with Hp(O) = 0 such 
tha t  

a(x)  = Z p ( 1  - p)J-tH~*(x), x > O, 
j = l  

where H j* is the j - t imes convolution of Hp. For more details, see Klebanov et al. 
(1984). 

THEOREM 1.3. 
A > O  a n d O < p < l ,  

Let f be a Bernstein function with (1.1). Then, for every 

OO 

(1.4) U~(x) = Z p ( 1 -  p)J-lU~p(X),  x > O. 
j= l  

Thus Ux is geometrically infinitely divisible. 

Theorems 1.1, 1.2 and 1.3 are a generalization of the corresponding results of 
Pillai (1990). As shown in Theorem 1.4 below, this generalization is important  
in statistics, because it gives a new characterization of geometrically infinitely 
divisible distributions with support  in [0, oc). 

THEOREM 1.4. A distribution function G with G(O) = 0 is geometrically 
infinitely divisible, if and only if G is expressed by 

O 0  

( 1 . 5 )  C(X) ---- ~"~( l'lnwn*([O - z _ _ , , -  , ,L , x ] ) ,  x > 0 ,  

f t z l  

where W(dx)  is the positive measure satisfying (1.2) for some Bernstein function 
f with property (1.1). 

2. Proofs 

PROOF OF THEOREM 1.1. Choose z0 > 0 so tha t  f ( z )  > A for z > z0. This 
is possible, since f is non-decreasing and f ( z )  ~ ec as z --* oc. For z > Zo, we 
have 

A 
0 <_ ~ : ~  e -=W~*(dx)  = ( A / f ( z ) p  - 

n=l n=l f ( z )  -- A < Oe. 

Thus the dominated convergence theorem yields 

(2.1) e-ZXdU;,(x) = - -A)  n e - z zwn*(dx )  
n = l  

- -  - 

n = l  

__ A _ (1 f ~ ) )  A ÷ f(z) exp { -  log + - - } .  
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Let g(z) = log(1 + f ( z ) / A ) .  In order to complete the proof, it is sufficient to show 
that g'(z) = f ' ( z ) / [ ~  + f(z)] is completely monotone (see Theorem 1 of XIII 7 of 
Feller (1971)). Since f is a Bernstein function, Criteria 1 and 2 of XIII 4 of Feller 
(1971) shows that both f '  and 1/[A + f(z)] are completely monotone so g' is also 
completely monotone. This completes the proof. [] 

PROOF OF THEOREM 1.2. The existence of Z( t )  follows from Theorem 9.18 
of Berg and Forst (1975). Then the theorem is clear, since 

~0 ~ E e x p { - u Z ( S ~ ( 1 ) ) }  = A E e x p { - u Z ( s ) } e - ~ S d s  

/7 _ )~ _ e-~xdU~(x)  ' u>_O. 

In the last equality we used Theorem 1.1. This completes the proof. [] 

PROOF OF THEOREM 1.3. An easy calculation and Theorem 1.1 show that 

fo ~ e-ZXdx : E p ( 1  __ p)j-1 e-zxdUA/p(X) 
j = l  

= Z p ( 1  - p/J-  a + 
j = l  

j/)o z" z_>0. 
+ 

Thus (1.4) follows from the uniqueness of the Laplace-Stieltjes transforms. This 
completes the proof. [] 

PROOF OF THEOREM 1.4. First, we show "if part". Suppose that G is ex- 
pressed by (1.5). Here W ( d x )  is the positive measure satisfying (1.2) for some 
Bernstein function f with property (1.1). Letting x tend to c~ in (1.2), we have 
by (1.1) W({0}) -- 0. Thus G(0) = 0. Then "if part" follows from Theorem 1.3. 
Second we show "only if part". Suppose that G is geometrically infinitely divisible 
distribution with G(0) = 0. By Theorem 2 of Klebanov et al. (1984), there exists 
a L~vy process X ( t )  such that 

{(i/7 1-1 )} (2.2) E e  - zx ( t )  = exp - t  e-ZXdG(x)  - 1 , Rez = 0. 
0 

For Rez -- 0, let 

[/7 1 (2.3) f ( z )  -= e-ZXdG(x - 1. 
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We shall show that  f is extended to the domain Rez >_ 0 and it is a Bernstein 
function on (0, oc). We have by (2.2) and (2.3) 

(2.4) /0 ~ 
1 

e-~XdG(x) - - exp{-  log(1 + f(z))} 
1 + f(z) 

= exp { /oCC(e -sf(z) - 1 ) s - l e - S d s }  

= exp { /R(e-~x - 1)p(dx)},  Rez = 0, 

where p(dx) = f o  P(X(s)  E dx)s-le-Sds. Thus G is infinitely divisible. Since 
the support  of G is in [0, oo), p must satisfy p( ( -oo ,  0)) = 0. Then the support  of 
X(t), t >_ O, is also in [0, oo), and (2.2) is extended to the domain Rez >_ 0. This 
means that  the function e -tf(z) = Ee -zx(t), z > 0, is completely monotone for 
each t > 0. By Proposition 9.2 of Berg and Forst (1975), f is a Bernstein function. 
By (2.3) and G(0) = 0, f satisfies (1.1). Then we find a positive measure W(dx) 
on [0, oo) satisfying (1.2). By Theorem 1.1, H(x) = V '°° I l~nwn*/[0, x]) --A-~n=I\-- ] ' '  \ 

satisfies 

fo 1 e-ZXdH(x) - 1 + f ( z ) '  z > 0. 

By (2.4), the uniqueness of the Laplace-Stieltjes transforms shows that  G = H. 
This completes the proof. [] 
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