A GENERALIZATION OF THE RESULTS OF PILLAI

YASUHIRO FUJITA

Department of Mathematics, Toyama University, Toyama 930, Japan

(Received April 20, 1992; revised August 3, 1992)

Abstract. In a recent article Pillai (1990, Ann. Inst. Statist. Math., 42, 157–161) showed that the distribution $1 - E_{\alpha}(-x^{\alpha})$, $0 < \alpha \leq 1$; $0 \leq x$, where $E_{\alpha}(x)$ is the Mittag-Leffler function, is infinitely divisible and geometrically infinitely divisible. He also clarified the relation between this distribution and a stable distribution. In the present paper, we generalize his results by using Bernstein functions. In statistics, this generalization is important, because it gives a new characterization of geometrically infinitely divisible distributions with support in $[0, \infty)$.

Key words and phrases: Bernstein function, Laplace-Stieltjes transform, infinite divisibility, geometric infinite divisibility, Lévy process.

1. Introduction and results

Pillai (1990) showed that the distribution $1 - E_{\alpha}(-x^{\alpha})$, $0 < \alpha \leq 1$; $0 \leq x$, where $E_{\alpha}(x) = \sum_{n=0}^{\infty} x^n / \Gamma(1 + n\alpha)$ is the Mittag-Leffler function, is infinitely divisible and geometrically infinitely divisible (for the definition of geometric infinite divisibility, see below). He also showed that this distribution is equal to the distribution of $Z_{\alpha}(S(1))$, where $Z_{\alpha}(t)$ is the stable process with $\mathbf{E} \exp\{-uZ_{\alpha}(t)\} =$ $\exp\{-tu^{\alpha}\}, u \geq 0$, and S(t) is the gamma process with the density $x^{t-1}e^{-x}dx/$ $\Gamma(t), x > 0$.

The aim of the present paper is to generalize his results by using Bernstein functions. In statistics, this generalization is important, because it gives a new characterization of geometrically infinitely divisible distributions with support in $[0, \infty)$.

A C^{∞} -function f from $(0, \infty)$ to \mathbf{R} is said to be a *Bernstein function*, if $f(x) \geq 0, x > 0$, and $(-1)^p d^p f/dx^p \leq 0, x > 0$, for all integers $p \geq 1$ (cf. Def. 9.1 of Berg and Forst (1975)). Thus df/dx becomes a completely monotone function. Such a function f is characterized by

$$f(x) = a + bx + \int_0^\infty (1 - e^{-sx})\mu(ds), \quad x > 0,$$

where a, b are non-negative constants and $\mu(ds)$ is a positive measure on $(0,\infty)$

such that

$$\int_0^\infty \frac{s}{1+s} \mu(ds) < \infty$$

(see Theorem 9.8 of Berg and Forst (1975)). In the present paper we assume that

(1.1)
$$\lim_{x\downarrow 0} f(x) = 0, \quad \lim_{x\to\infty} f(x) = \infty.$$

It is easy to see that $\lim_{x\downarrow 0} f(x) = 0$ if and only if a = 0, and that $\lim_{x\to\infty} f(x) = \infty$ if and only if b > 0 or $\mu((0,\infty)) = \infty$. Then, since f is a non-zero Bernstein function, f(x) > 0, x > 0, and 1/f is completely monotone (cf. Exercise 9.9 of Berg and Forst (1975)). Thus, there exists a unique positive measure W(dx) on $[0,\infty)$ such that

(1.2)
$$\frac{1}{f(x)} = \int_0^\infty e^{-sx} W(ds), \quad x > 0.$$

We denote by $W^{n*}(dx)$ the *n*-times convolution measure of W(dx). For $\lambda > 0$ define the function $U_{\lambda}(x)$ on **R** by

(1.3)
$$U_{\lambda}(x) = \begin{cases} -\sum_{n=1}^{\infty} (-\lambda)^n W^{n*}([0,x]), & x \ge 0, \\ 0, & x < 0. \end{cases}$$

We shall show that $U_{\lambda}(x)$ is a distribution function and it is a generalization of the distribution function $1 - E_{\alpha}(-x^{\alpha})$, $0 < \alpha \leq 1$; $0 \leq x$. Remark that the function $f(x) = x^{\alpha}$ is a Bernstein function. In this case $W^{n*}([0, x]) = \{1/\Gamma(1 + n\alpha)\}x^{n\alpha}$ and $U_1(x) = 1 - E_{\alpha}(-x^{\alpha})$.

Now, we state the main results of the present paper. All theorems of this section are proved in Section 2. The first theorem shows that U_{λ} is infinitely divisible.

THEOREM 1.1. Let f be a Bernstein function with (1.1). Then, for every $\lambda > 0$, U_{λ} is an infinitely divisible distribution with the Laplace-Stieltjes transform $\lambda \ (\lambda + f(\cdot))^{-1}$.

In Theorem 1.2 below, we construct the Lévy process which has the distribution U_{λ} for t = 1. This theorem corresponds to Theorem 4.3 of Pillai (1990), which clarifies the relation between the distribution $1 - E_{\alpha}(-x^{\alpha})$ and a stable process.

THEOREM 1.2. Let f be a Bernstein function with (1.1). Then, the Lévy process with the distribution function U_{λ} for t = 1 is $Z(S_{\lambda}(\cdot))$. Here Z(t) is the non-negative and non-decreasing Lévy process such that $\mathbf{E} \exp\{-uZ(t)\} =$ $\exp\{-tf(u)\}$ for $u \geq 0$; $S_{\lambda}(t)$ is the gamma process with the probability density $\lambda^{t}s^{t-1}e^{-\lambda s}ds/\Gamma(t), s > 0$; Z and S_{λ} are independent.

Next, we show that U_{λ} , $\lambda > 0$, is geometrically infinitely divisible. A distribution function G with G(0) = 0 is said to be geometrically infinitely divisible if for

362

every $p, 0 , there exists a distribution function <math>H_p$ with $H_p(0) = 0$ such that

$$G(x) = \sum_{j=1}^{\infty} p(1-p)^{j-1} H_p^{j*}(x), \quad x > 0,$$

where H_p^{j*} is the *j*-times convolution of H_p . For more details, see Klebanov *et al.* (1984).

THEOREM 1.3. Let f be a Bernstein function with (1.1). Then, for every $\lambda > 0$ and 0 ,

(1.4)
$$U_{\lambda}(x) = \sum_{j=1}^{\infty} p(1-p)^{j-1} U_{\lambda/p}^{j*}(x), \quad x > 0.$$

Thus U_{λ} is geometrically infinitely divisible.

Theorems 1.1, 1.2 and 1.3 are a generalization of the corresponding results of Pillai (1990). As shown in Theorem 1.4 below, this generalization is important in statistics, because it gives a new characterization of geometrically infinitely divisible distributions with support in $[0, \infty)$.

THEOREM 1.4. A distribution function G with G(0) = 0 is geometrically infinitely divisible, if and only if G is expressed by

(1.5)
$$G(x) = -\sum_{n=1}^{\infty} (-1)^n W^{n*}([0,x]), \quad x > 0,$$

where W(dx) is the positive measure satisfying (1.2) for some Bernstein function f with property (1.1).

2. Proofs

PROOF OF THEOREM 1.1. Choose $z_0 > 0$ so that $f(z) > \lambda$ for $z > z_0$. This is possible, since f is non-decreasing and $f(z) \to \infty$ as $z \to \infty$. For $z > z_0$, we have

$$0 \le \sum_{n=1}^{\infty} \lambda^n \int_0^{\infty} e^{-zx} W^{n*}(dx) = \sum_{n=1}^{\infty} (\lambda/f(z))^n = \frac{\lambda}{f(z) - \lambda} < \infty.$$

Thus the dominated convergence theorem yields

(2.1)
$$\int_0^\infty e^{-zx} dU_\lambda(x) = -\sum_{n=1}^\infty (-\lambda)^n \int_0^\infty e^{-zx} W^{n*}(dx)$$
$$= -\sum_{n=1}^\infty (-\lambda/f(z))^n$$
$$= \frac{\lambda}{\lambda + f(z)} = \exp\left\{-\log\left(1 + \frac{f(z)}{\lambda}\right)\right\}.$$

YASUHIRO FUJITA

Let $g(z) = \log(1 + f(z)/\lambda)$. In order to complete the proof, it is sufficient to show that $g'(z) = f'(z)/[\lambda + f(z)]$ is completely monotone (see Theorem 1 of XIII 7 of Feller (1971)). Since f is a Bernstein function, Criteria 1 and 2 of XIII 4 of Feller (1971) shows that both f' and $1/[\lambda + f(z)]$ are completely monotone so g' is also completely monotone. This completes the proof. \Box

PROOF OF THEOREM 1.2. The existence of Z(t) follows from Theorem 9.18 of Berg and Forst (1975). Then the theorem is clear, since

$$\boldsymbol{E} \exp\{-uZ(S_{\lambda}(1))\} = \lambda \int_{0}^{\infty} \boldsymbol{E} \exp\{-uZ(s)\}e^{-\lambda s}ds$$
$$= \frac{\lambda}{\lambda + f(u)} = \int_{0}^{\infty} e^{-ux}dU_{\lambda}(x), \quad u \ge 0.$$

In the last equality we used Theorem 1.1. This completes the proof. \square

PROOF OF THEOREM 1.3. An easy calculation and Theorem 1.1 show that

$$\int_0^\infty e^{-zx} dx \left[\sum_{j=1}^\infty p(1-p)^{j-1} U_{\lambda/p}^{j*}(x) \right] = \sum_{j=1}^\infty p(1-p)^{j-1} \left[\int_0^\infty e^{-zx} dU_{\lambda/p}(x) \right]^j$$
$$= \sum_{j=1}^\infty p(1-p)^{j-1} \left[\frac{\lambda}{\lambda + pf(z)} \right]^j$$
$$= \frac{\lambda}{\lambda + f(z)}, \quad z \ge 0.$$

Thus (1.4) follows from the uniqueness of the Laplace-Stieltjes transforms. This completes the proof. \Box

PROOF OF THEOREM 1.4. First, we show "if part". Suppose that G is expressed by (1.5). Here W(dx) is the positive measure satisfying (1.2) for some Bernstein function f with property (1.1). Letting x tend to ∞ in (1.2), we have by (1.1) $W(\{0\}) = 0$. Thus G(0) = 0. Then "if part" follows from Theorem 1.3. Second we show "only if part". Suppose that G is geometrically infinitely divisible distribution with G(0) = 0. By Theorem 2 of Klebanov *et al.* (1984), there exists a Lévy process X(t) such that

(2.2)
$$\mathbf{E}e^{-zX(t)} = \exp\left\{-t\left(\left[\int_0^\infty e^{-zx}dG(x)\right]^{-1} - 1\right)\right\}, \quad \text{Re}z = 0.$$

For $\operatorname{Re} z = 0$, let

(2.3)
$$f(z) = \left[\int_0^\infty e^{-zx} dG(x)\right]^{-1} - 1.$$

364

We shall show that f is extended to the domain $\text{Re}z \ge 0$ and it is a Bernstein function on $(0, \infty)$. We have by (2.2) and (2.3)

(2.4)
$$\int_0^\infty e^{-zx} dG(x) = \frac{1}{1+f(z)} = \exp\{-\log(1+f(z))\}$$
$$= \exp\{\int_0^\infty (e^{-sf(z)} - 1)s^{-1}e^{-s}ds\}$$
$$= \exp\{\int_R (e^{-zx} - 1)\rho(dx)\}, \quad \text{Re}z = 0$$

where $\rho(dx) = \int_0^\infty \mathbf{P}(X(s) \in dx) s^{-1} e^{-s} ds$. Thus G is infinitely divisible. Since the support of G is in $[0, \infty)$, ρ must satisfy $\rho((-\infty, 0)) = 0$. Then the support of $X(t), t \ge 0$, is also in $[0, \infty)$, and (2.2) is extended to the domain $\operatorname{Re} z \ge 0$. This means that the function $e^{-tf(z)} = \mathbf{E}e^{-zX(t)}, z > 0$, is completely monotone for each t > 0. By Proposition 9.2 of Berg and Forst (1975), f is a Bernstein function. By (2.3) and G(0) = 0, f satisfies (1.1). Then we find a positive measure W(dx)on $[0, \infty)$ satisfying (1.2). By Theorem 1.1, $H(x) = -\sum_{n=1}^\infty (-1)^n W^{n*}([0, x])$ satisfies

$$\int_0^\infty e^{-zx} dH(x) = \frac{1}{1+f(z)}, \quad z > 0.$$

By (2.4), the uniqueness of the Laplace-Stieltjes transforms shows that G = H. This completes the proof. \Box

Acknowledgments

The author wishes to thank the referees who have carefully read the manuscript and whose constructive criticisms have been most helpful.

References

- Berg, C. and Forst, G. (1975). Potential Theory on Locally Compact Abelian Groups, Springer, Berlin.
- Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., Wiley, New York.
- Klebanov, L. B., Maniya, G. M. and Melamed, I. A. (1984). A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables, *Theory Probab. Appl.*, **29**, 791–794.

Pillai, R. N. (1990). On Mittag-Leffler functions and related distributions, Ann. Inst. Statist. Math., 42, 157–161.