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A b s t r a c t .  Previous results on Edgeworth expansions for sums over a random 
field are extended to the case where the strong mixing coefficient depends not 
only on the distance between two sets of random variables, but also on the size 
of the two sets. The results are applied to the Poisson and the Strauss point 
processes, giving rise also to local limit results. 
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1. Introduction 

Asymptot ic  expansions for the dis tr ibut ion of a sum of dependent  random 
variables is a fairly recent subject ,  especially so for sums over a r andom field. If 
the random variables Xi are indexed by i • Z "  we measure the dependency  by 

( I . i )  ~ ( n ,  k, l) = sup IP(A n B) - P(A)P(B)[ ,  

where A e cr(Xi, i E [1), B • G(Xi, i • Z2), [1,I2 C Z ~' with IIl l ~- k and 
1/21 = 1, and the Euclidean distance d E ( h ,  h )  is greater  t han  n. In the linear case 
z/ = 1 G6tze and Hipp (1983) obta ined general results for the case c~(n, k, l) = 
c e x p ( - d n ) .  For Markov chains it is possible to obtain expansions also in cases 
with a(n,  k, I) = cn -d. Actually, the value of d determines how many  terms can be 
included in the expansion, see Jensen (1989) and the references given there. When  

> 1 the results are more sparse. Jensen (1986) generalized the results in G6tze 
and Hipp (1983) in a direct way for the case ~(n,  k, 1) = ce -&~. An outline of the 
generalization in Jensen (1986) is given in Jensen (1988). When  dealing with the 
characterist ic  function for large values of its argument  the point of view in Jensen 
(1986), as well as here, is to make necessary conditions of pract ical  importance.  
In the m-dependent  case, i.e. a (n ,  k, l) = 0 for n > m, a considerable amount  of 
work has been done by Heinrich (1987, 1990) and G6tze and Hipp (1989) with a 
view towards necessary and sufficient conditions. 
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In this note we point out an easy generalization of the results in Jensen (1986, 
1988) to the case 

(1.2) a(n,  k, l) = ck6~152 e -d~ 

for some constants 51, (~2 and d > 0. The generalization to (1.2) is of relevance 
for the study of Gibbs processes, see Section 4 below. There will be no proofs for 
the main results here, because the results follow fairly easily by going through the 
detailed calculations in Jensen (1986, 1988). It seems natural to enquire into the 
possibility to relax (1.2) to 

(1.3) a(n,  k, l) = ck6ll62n - °  

for a sufficiently high value of 0. A careful analysis of the proof in Jensen (1986, 
1988) shows, that it is possible from (1.3) to get the necessary bounds on the cu- 
mulants and the remainder term of an expansion of the characteristic function for 
the standardized sum (2.2) below in the region Iltll < c l ( logn)  1/2, where t is the 
argument of the characteristic function. However, the region I ltll < cl (log n)1/2 is 
not sufficiently large, that the method of estimation for large values of the argu- 
ment t will produce a sufficiently small bound. Using instead (1.2) the estimation 
in the inner region can be used for Iltll < can t for a suitable small c > 0, and then 
the estimation for large values, i.e. INI > Cl n~, also works. 

As a particular example we apply the results to the Poisson process. If S 
is the number of pairs of points with a distance less than some fixed number r, 
Heinrich (1986) proved asymptotic normality of S and raised the problem of the 
possibility of obtaining local limit results and asymptotic expansion. Such results 
are established in Section 3. Finally, in Section 4 we study the possibility of using 
the general results for the Strauss process. 

2. Results 

Let :Dj for j C Z v be a-fields with mixing coefficients given by (1.1), where now 
A c cr(D~, i E /1 )  and B E (r(Di, i C/2) .  The mixing coefficients will throughout 
be assumed to satisfy (1.2). Let A be a finite set of indices which we think of as a 
neighbourhood of 0 E Z ' ,  and which is symmetric in the sense that j E A implies 
that - j  C A. For each j E Z" we have a random vector Xj E R ~ measurable 
with respect to a(Di : i E j + A). In particular if the (r-fields Dj, j E Z ~, are 
independent the X j ' s  are "m-dependent" .  We assume that for some s > 2 

(2.1) E X i  = 0 and ElIXil[ s+l ~ /~s+l. 

We let Vn C Z ~ be an increasing sequence of indices with the number of elements 
being equal to n. Our interest will be with the sum 

1 
(2.2) S n -  

ic  V~ 
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For this sum we denote the cumulants by 

1 O r 
t~Jl'"J~ = i r Ot j l  " " • Otj~ in E exp(it • S,~) [ t=0. 

Then the formal Edgeworth expansion (Bhat tacharya  and Rao (1976)) for the 
distr ibution of S~ has a density of the form 

s-2 } 
(2.3) E ~ _ 2 ( x ; { ~ } ) = O r ~ ( x )  l + E n - r / 2 P ~ ( x ; { ~ } )  , 

where P~ is a polynomial in x and the sequence of s tandardized cumulants ~, 
~jl . . . j~ = n ( r -2 ) /2~ j~ . . . j~ ,  E~ = {~;O} is the variance, and Cr.(x) is the normal 
density with mean zero and variance E. We note here, tha t  the terms in the sum 
(2.3) have decreasing orders of magnitude,  since we have from Jensen (1986) tha t  

(2.4) ~--(r--2)/2~l+r/(s+l) 

for 2 < r < s, where c1 is a constant.  
The assumptions made above are sufficient for establishing (2.4), and also to 

get a suitable bound on the derivatives of the remainder term in the expansion 
of the characteristic function in the region []tl] < c 2 n  ~1 for some constants c2 
and el. To handle the characteristic function for large values of the argument  we 
need some further assumptions. The first assumption says tha t  we almost have a 
Markov property: for any k we have 

(2.5) EIE(Y I ~ j  : j # k) - E ( Z  I ~y : 0 < IJ - kl ~< m)l ~< ce - d ~  

for any a(:Dj : j E k + A + A) measurable random variable Y with IY[ < 1. The 
second condition is a conditional Cram~r condition. There exist b > 0, c > 0 and 
p < 1 such tha t  for at least c n  values of k 

(2.6) < p  for II~ll>b. 

The condition (2.6) is suitable when the random variables Xj  have a continuous 
component.  In the lattice case, say X j  is concentrated on the minimal lattice 
#j + Z~, we need instead 

(2.7) (2.6) holds for Ibt[I > b and It~l < 7c, i = 1 , . . .  ,p,  

for some b < 7r/2. 

In the theorem below ~5~ in the normal distr ibution with mean zero and variance 
E, and (OA)  ~ denotes the &boundary  of a set A. 
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THEOREM 2.1. (Continuous case) Assume (1.2), (2.1), (2.5), (2.6) and that 
the eigenvalues of E~ are bounded away from zero. Then for any e > 0 and c > 0 
we have 

P(Sn e A) - JA Es-2(x; {~;})dx = 

t~  

O(n-(S-1)/2+ ~) 

uniformly over Borel sets A satisfying q~z, ((OA) ~) <_ c& 

THEOREM 2.2. (Lattice case) Let X j  = f2j - #j,  where pj = E f ( j  and 
f2j is a lattice variable with values in Z" ,  and assume (1.2), (2.1), (2.5), (2.7) 
and that the eigenvalues of En are bounded away from zero. For z C Z ~ let 
Yz,n = n-1/2(z  - }--]~v~ #J)" Then for any e > 0 we have 

sup ( 1 +  Ilyz,n[I s) P ( E f ( j  = z )  -n -~ /2E~-2(yz ,~;{~})  
zEZ~ \ V~ 

= 0 ( n - , / 2 - ( ~ - 1 ) / 2 + c ) .  

Remark on pro@ The only change from Jensen (1986, 1988) is the relaxation 
of the mixing condition to the one given in (1.2). Theorem 1.1 is obtained therefore 
by simply going through the calculations in Jensen (1986, 1988). For the lattice 
case the proof is also as in Jensen (1986, 1988), except that the truncation function 
used there has to be redefined slightly, such that the truncated variable is again 
a lattice variable. The restriction on b in (2.7) appears in order to be able to use 
the proof of Theorem 1.1 in Petrov (1975). The estimate (2.4) on the cumulants 
can be established under the mixing assumption (1.3) with 0 > (s - 1)(s + 1)y. 

Remark on non-zero variance. The condition that the eigenvalues of En are 
bounded away from zero can in some cases be proved by using the formula V ( X )  = 
V ( E ( X  I Y ) ) + E ( V ( X  I Y))  for random variables X and Y. In some Gibbs models, 
by using a coding set for Y, the random variable X becomes conditionally a sum 
of independent terms. A lower bound for the variance can then be established. 

3. Application to the Poisson process 

Let Z = ( Z I , . . .  , ZN) be the points of a Poisson process with intensity 7 in 
the bounded region Wn C_ R v, and define the two statistics 

(3.1) N = number of points, S = l(llZ  - zjll < r), 

where r is a fixed number. When conditioning on N ---- m the points Z 1 , . . . ,  Zm 
will be uniformly distributed on Wn, and S can be used as a test statistic for this 
uniformity assumption. This is the point of view in Heinrich (1986), where the 
asymptotic normality of S is established. Here we establish a local limit theo- 
rem for S under the uniformity assumption by using conditioning in the Poisson 
process. 
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Let ~ > r be a fixed number and define for each j = ( j l , . . . , j v )  E Z "  the 
region Uj C R ~ as Uy = {x C R ~ I ~J~ <- x~ <_ n(j~ + 1)}. We let 795 be the e-field 
generated by the Poisson process in Uj, and define 

Nj = number of points in W~ N Uj, 

( 3 . 2 )  s t  = l(llZ   - z{=ll  < + ](llZ   - Z{ ll < 
Zi I ,Zi2 ~Wr~NUj Nil ~Wr~NUj 

Zi 1 CZi~ Z~ 2 EWn NU~ 

Let Vn be the set of indices j with W ~ N U j  ¢ 0 and let tV~I = n. We will 
assume tha t  the regions W~ are regular in the sense tha t  n /vo lume(Wn)  --, A with 
0 < A < oo and W~ N Uj = Uj for at least cn values of j for some constant  c > 0. 
It is clear tha t  

N =  E N j and S =  E S j 
jcVn jEV~ 

so tha t  we may t ry  to apply Theorem 2.2 with Xj = (Nj  - E N j ,  Sj  - ES j ) .  
Since the a-fields ~Dj are independent we of course have (1.2). The set A is 

{j C Z v I]J~l -< 1} and (2.5) is also trivially satisfied. The main problem is 
therefore to check (2.7). Define 

so = E l ( l l z i l -  zi2l[ < r) and S~ = E s j .  
Z% ,Zi 2 EWnNUk j ck+A 

Zi I e l i  2 

Then 

(3.3) • 1 E l E ( e x p ( i t l N k  + ~t2Sk) I 7)j : j ¢ k)l 

= E l E ( e x p ( i t l N k  + it2S~) I 7)j : j ¢ k, IJi - kil <_ 2)1 

<_ I E e x p ( i t l N k  + i t 2S° ) lP (N j  = O,j ¢ k, Iji - kil <__ 2) 

+ 1 - P ( N j  = 0, j ¢ k, IJ~ - k~l < 2) < p 

for some p < 1 and for those k with W~ N Uk = Uk. Thus (2.7) is established. 

Since all the moments  of (Nj ,  Sj)  exist, we have from Theorem 2.2 an Edge- 
worth expansion to any order s for (N, S). Now choose the Poisson intensity V 
such tha t  E,yN = n, and divide the Edgeworth expansion for P ( N  = n, S = k) 
with the Edgeworth expansion for P ( N  = n). We then have an expansion for 
P ( S  = k I N = n) or, equivalently, an expansion for P ( S  = k) when the points 
are uniformly distr ibuted in W~. This solves a problem raised in Heinrich (1986). 
The first two terms of the expansion are 

~/n l 3 1 P ( S  = k) = n -1/2 ¢(Yn) + 6--~Yn - 3y~)¢(yn) + O(n -1+~) 



358 J . L .  JENSEN 

where yn = (k - #~)/~ with 

n - 1  } 
t t ~ = n L ~ K 1 2  , 

2 f 2 n - l K  - 1 ) ( n -  n(n-1)K212} ' 

n - 1  ( n - 1 ) ( n - 2 )  1)(n-2)(n-3)K14 
"Tn = n 4 ~ - - / ( 1 2  + 24 A2 K13 + 8 (n - A 3 

+ 24(n - 1)(hA 3- 2)(n - 3)/(24 + 8 (n -- 1)(nd 2 - 2) /423 

(n - 1)(n - 2 ) ( - 7 2 n  + 144) 
+ K 1 2 K 1 3  + A a A 2 

-F 23n3 - lln2A3 + 24nK312 I~ . 

( n -  1 ) ( -24n  + 36) K~ 2 

Here A = volume(Wn) and 

Klm=/w~ {/W ~ I-Ii(llXl-Xjl' <r)dxj} dxl 
-1 j = 2  A ' 

K23 = /w~ { /w21(UXl - X2H < r) 

• 1(11xl - x3ll < r ) l ( l l x 2  - xall < r)dx2dx3} dXl 
A '  

] 

• l ( l l x l  - x311 < r ) l ( l l z 2  - x411 < r)dz2dz3dx4~-- 
J 

dXl 
A "  

4. Application to the Strauss process 

The Strauss point process P¢,~ (Strauss (1975)) in the region Wn has the 
density 

(4.1) dP¢,# 1 dPwn (Z) -- Zn(~ '/3) ~N e-13(1/2)S' 
where N is the number  of points in the configuration z, z = { z l , . . . ,  ZN}, S = 
}--~iCy l(I]z~ - zJll < r) as in (3.1), and the density is w.r•t• the Poisson measure 
~w~ with unit intensity• 

For convenience in the calculations below let us take n = (2nl + 1)" and 
Wn = -  [--nl~, nlt~] u. We define Uj as in Section 3 and similarly Z)y is the a-field 
generated by the process in Uj• Also define Nj and Sj as in (3.2)• 
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In Jensen (1993) the mixing coefficients a(r,  k, l) for the a-fields {:Dj : j e Z"  } 
generated by (4.1), and more generally generated by a translation invariant Gibbs 
measure, are estimated by 

(4.2) a(r ,k ,  1) < ck E Dk. 
d~(O,k)>j 

Here 

n=0 k l  , . . . , k ~ _  l E Z u 

d ~ l  " ' "  d~rL--1 d k - - k l  . . . . .  ~ - 1 ,  

and Ck is a certain number measuring how much the conditional distribution in 
U0 given {:Dj : j ¢ 0} depends on the point configuration in Uk, k E Z ~. The 
details of this setup is given in Jensen (1993). What we need here is the following 
lemma. 

LEMMA 4.1. Assume that p = ~ k  C'k < 1 and that ~ k  e~llkllck < ec for 
some a > O. Then there exists cl, d > 0 such that 

(4.3) E [)k ~_ cle -a~. 
a~(0,k)>r 

PROOF. Let Pk = Ck/P and let Y1,Y2, . . .  be an i.i.d, sequence with P(Y1 = 
k) = p k .  T h e n C ~  = p n P ( Y I + . . . + Y n  = k). U s i n g P ( l Y l + . . . + Y n l  > Y) <- 
P(Igll + - ' .  + Ig~l _> y) and the estimate P ( IYI I+ . - -+  IYnl _> y) _< ¢(s) ~ exp(-sy) ,  
where ¢(s) = ~ exp(sllkll)pk, we get 

bk  

Ilkll_>r 
= ~ p~P(IY1 + . . .  + Ynl ~ r) ~ p~(~)'~e -s~ 

n=0  n=0  

1 
- -  e - - s r  

1 - pC(s) 

when s is taken so small that pC(s) < 1. [] 

It now follows from (4.2), (4.3) and the estimates in Jensen (1993) for Ck that 
the strong mixing condition (1.2) holds for a set of parameter values on the form 
{((,/3) I/3 > 0, ~ < ~0(/3)}, for some function @(/3) tending to infinity for/3 --* 0. 
Also (2.5) holds because of the Markov property. Again then we want to establish 
(2.7). We can proceed as in (3.3), but now the probability 

(4.4) P~,Z (Nj = 0, j ¢ k, IJi - ki ] _< 2) 

depends on k. However, because of the factor e - z s  _< 1 in (4.1) the probability 
(4.4) will be greater than the corresponding probability in the Poisson process 
with rate 4. Thus, we have a bound as in (3.3) and an Edgeworth expansion for 
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(N, S) or S I N = n can be established. This is, however, a theoretical  result since 
the coefficients in the expansion cannot be explicitly given. 
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