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A b s t r a c t .  With a given Edgeworth expansion sequences of i . i .d.r .v. 's  are 
associated such that the Edgeworth expansion for the standardized sum of these 
r.v.'s agrees with the given Edgeworth expansion. This facilitates interpretation 
and manipulation of Edgeworth expansions. The theory is applied to the power 
of linear rank statistics and to the combination of such statistics based on 
snbsamples. Complicated expressions for the power become more transparent. 
As a consequence of the sum-structure it is seen why splitting the sample causes 
no loss of first order efficiency and only a small loss of second order efficiency. 
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1. Introduction 

For many  statistics it is impossible to present the exact dis t r ibut ion in a 
t rac table  form. Therefore  much effort has been made  to derive limit theorems 
in order to approximate  the exact  dis tr ibut ion by an easily computab le  asymp- 
tot ic  distr ibution.  In par t icular  the normal  dis tr ibut ion is often used for this kind 
of approximations,  due to the fact tha t  many  statistics are at first order  asymp- 
tot ical ly equivalent to a sum of i . i .d . r .v . ' s .  

Subsequently, second order limit theorems are derived to improve the ap- 
proximations.  Indeed, using Edgewor th  expansions far more accurate  approxi- 
mat ions may be obtained,  as has been showed by many  authors.  The  validity 
of formal Edgewor th  expansions has been proved under  suitable assumptions by 
Bha t t acha rya  and Ghosh (1978). As a disadvantage,  however, sometimes the ap- 
proximations become more difficult to  interpret .  For instance, it is hard  to see 
in the Edgewor th  expansion for the power of the two-sample linear rank test  (cf. 
Bickel and van Zwet (1978)) what  the  effect is of (small) changes in the alternative.  

Also manipula t ion  of the more complicated expressions is harder.  Sometimes 
we want to take a convolut ion of a finite number  of statistics, where for each 
statist ic an Edgeworth  expansion of its dis t r ibut ion function (d.f.) is available. 
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Such a situation occurs for example in testing theory when one wants to combine 
several test statistics (cf. Albers (1992)) or in reliability where one has a super- 
position of several component streams (cf. Kroese and Kallenberg (1989)). If we 
restrict attention to first order results such manipulations are easy, since sums of 
independent normal variables are again normal. However, for second order results 
one needs evaluation of convolutions of Edgeworth expansions, which is in general 
more difficult. 

Working out the convolution for a finite number of subsamples, frequently 
it turns out that the resulting Edgeworth expansion has a similar form as the 
Edgeworth expansion based on the whole sample. At first sight it seems a happy 
coincidence that a lot of terms have exactly the right form to cooperate in a nice 
way. Conditions for such a right form are given in Albers (1992). These conditions 
look rather peculiar, but are motivated by considering the example of sums of 

i.i.d.r.v.'s. Here we go a step further. With each given Edgeworth expansion of an 
individual statistic based on a subsample we associate sequences of i.i.d, r.v. 's in 
such a way that the Edgeworth expansion for the standardized sum of these r.v. 's 
agrees (up to the given order) with the given Edgeworth expansion. So for each 
subsample we have a sum of r.v.'s. Adding these sums we end up again with a 
sum and hence the required expansion for the convolution is immediately obtained, 
using the well-known structure of Edgeworth expansions for sums of r.v.'s. In this 
way sums of independent r.v.'s are not only motivating particular examples, but 
typically generate the general case. 

From this interpretation it becomes clear why the resulting Edgeworth ex- 
pansion has a similar form as the Edgeworth expansion of the undivided statistic 
based on the whole sample. 

Moreover, the Edgeworth expansion of the undivided statistic itself is more 
easily understood, since the situation is the same as if  our test statistic is a sum 
of i . i .d .r .v .  's. The latter description is much more familiar. This enables us for 
example to judge the effect on the power of small changes in the alternative. 

At the same time a second order standardization is introduced. The usual 
standardization of a statistic ensures that its mean and variance are 0 and 1, re- 
spectively, under the null hypothesis. The second order standardization makes also 
the coefficient of skewness and the kurtosis equal to zero under the null hypothesis. 

Particular attention is paid to the papers by Albers et al. (1976) and Bickel 
and van Zwet (1978). These papers, in the sequel denoted by ABZ and BZ, 
respectively, present asymptotic expansions for the power of distribution free tests 
in the one- and the two-sample case. In Section 2 the one-sample case is treated, in 
Section 3 a general approach is presented, which is applied to the more complicated 
two-sample case. 

2. One-sample linear rank statistics 

In this section we consider the power of one-sample linear rank statistics to 
illustrate the ideas in a relative simple but non-trivial situation. 

Let Xi,..., Xn be i.i.d.r.v.'s with continuous symmetric d.f. F(x - 0). The 
one-sample linear rank statistic for testing the null hypothesis 0 = 0 is denoted 
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by T. (When there is no confusion we suppress the index n.) Denote by 4p the 
standard normal d.f. and by ¢ its density. Write Hk for the Hermite polynomial 
of degree k (k = 0, 1, . . . ) .  Under suitable regularity conditions there exist for each 
c > 0 positive nmnbers 51,52,...  such that limn--.~ 5n = 0 and for every n and 
0 < 0 < cn -1/2 

( 2 . 1 )  I F ( 0 )  - Zr l (0 ) l  ~ 5nn -1, 

where 7c(0) denotes the power of the one-sided level-a test based on T at the 
alternative 0 and 7r1(0) is given in (4.11) of ABZ. For convenience we repeat here 
the formulae (4.7), (4.8), (4.10) and (4.11) of ABZ in a condensed form. 

(4.7 ABZ) 

(4.8 ABZ) 

(4.10 ABZ) 
(4.11 ABZ) 

3 

G(x) = + ¢ (x )  
k=O 

KO,l(X) = S o ( x )  + ¢ ( x ) l r t - l ~ b 0 ( f ~ ) ,  

= nl/2Oh, 

7rl(0) = 1 - KO,l(Ua - ~) + ¢(ua - (7)n-lb3H3(ua). 

Explicit expressions for the constants b0, . . . ,  b3, h and 1)o(n) are given in ABZ. We 
only need the expression for ba. Writing J for the score function of T it is given 
by 

(2.2) b3= f o l j 4 ( t ) d t  {12 f o l j 2 ( t ) d t }  -2 .  

Inspecting (4.11), (4.8) and (4.7) of ABZ and using 

3 (us - ~)3 _ 3(u~ - ~) - u s + 3u~ = -3~?H2(uc~ - ~]) - 3~2Hl(ua - ~) - ~3 

7rl (0) may be written in the form 

(2.3) 7"1" 1 ( 0 )  = 1 - G ( u c ~  - ~), 

where 

(2.4) 
2 

G(x) = q)(x) + ¢(x) E ak(n)Hk(x) ,  
k=0 

ao(n) = nl/203bo + ~n-l~]Do(n) - ?Tan-1b3, 

al (n) = 02bl - 3~]2n- l b3, 
a2(n) = n-1/20b2 - 3~n-lb3, us = ~-1(1 - c~), ~] = nl/2Oh. 

The regularity conditions and the proof of (2.1) can be found on p. 126, 127 of 
ABZ. Here we take the result for granted, give a new interpretation of it and show 
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how we can use this new interpretation. We therefore associate with G a sequence 
of independent r.v.'s. 

Let Yln, • •., Y~n be i.i.d.r.v. 's with 

E Y i n  ~- n-1 /2{~]  - ao(n)}, var Y/~ = (1 + 02b~ - 3~2n-lb3) -2, 

t~3 ~- N3(Y/n) : -60b2 + 18On-1 /2b3 ,  N4 = n4(Y/n)  z 0. 

Further we choose Y/n such that EIYi~I 5 is uniformly bounded and the densities 
of Yi~ are functions of uniformly bounded variation. It is easily seen that such Y/~ 
exist. Note that here and in the following, the distribution of Y/~ depends on 0, 
and hence also the expectations and variances. 

By straightforward calculations (cf. Taniguchi (1986), pp. 5-6, Petrov (1975), 
Theorem 7 on p. 175) we get P ( n  - 1 / 2  Ein=x ]/'in ~ ttc~) • G(Uc~ -- ?]) ~- o ( n  - 1 )  as  

n --* oc. Hence, in view of (2.1) and (2.3), 

I. J / - - - - 1  

So the power of the one-sided level-a test based on the linear rank statistic T is up 
to o(n -1) asymptotically equivalent to the power of the one-sided level-c~ test based 
on the sample mean of the Y 's, where the Y ' s  are given above. Changing from 
null hypothesis to contiguous alternatives corresponds to a shift, mainly given by 
On -1/2 (as suggested in (2.1) and (2.3)), but slightly different from it. Further 
there is a change of order 02 in the variance and of order 0 in the skewness, while 
the kurtosis remains 0. Interpreting the behaviour of the one-sample linear rank 
statistic as if we were dealing with the sample mean of the Y's facilitates the 
interpretation of Theorem 4.1 in ABZ. 

Next consider on the one hand r independent one-sample linear rank statistics 
TI , . . .  ,T~ based on r subsamples with sample sizes n l , . . . ,  nr, where n jn  -1 >_ e 
for some e > 0 and all j = 1 , . . . ,  r, and on the other hand consider the unsplitted 
situation. In order to investigate the penalty to be paid for dividing the total 
sample into subgroups we want to compare the performance of a combined statistic 
with the statistic, which would have been used when the total sample was available. 
Let S1 , . . . ,  Sr be the standardized version of T1, • •., T~ as given in Theorem 4.1 

of ABZ. Since Sj is asymptotically normal with mean ~)y = nJ/20h and variance 1, 

a first order optimal combination of the Sj is given by S* n-1/2 ~ = 1  1/2~ = n j  ~ j .  
It is immediately seen that at first order S* and S are equivalent. To study the 
second order behaviour, the idea is that Sj is asymptotically equivalent up to 

order o(n -1) to n~ 1/2 ~i~1  Y~(J), where Yi (j) = Y/nj. Hence S* is asymptotically 

equivalent up to order o(n -1) to n -1/2 E j  z...~i ~ i , which as a sum of independent 
r.v.'s is easily comparable to S. However, this is not quite true due to the fact that 
the power behaviour of the S's is equivalent to the power behaviour of the sample 
means of the Y's, but the statistics themselves are not equivalent. This is clearly 
seen from (4.7) in ABZ. The coefficient b3 o f / t 3  (cf. (2.2)) is not 0 (even under 
the null hypothesis) as it should be if the S's correspond to the sample means of 
the Y's. 
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We present two solutions to solve this problem. The first one is to modify S 
a little bit to make it still closer to normality. The transformation which makes 
disappear the difference in the fourth cumulant is given by 

= S + b 3 ( S  3 - 3S)n -1. 

This transformation may be called a second order standardization: not only the 
first two moments, but also the third and fourth moment are standardized. Now 
the d.f. of Sj = Sj + b3(S 3 - 3Sj)n  -1 is both under the null hypothesis and 

contiguous alternatives asymptotically equivalent up to order o(n -1) to the d.f. of 

-1/2 ,--,~5 z(J), where Z~ j) = Zinj and Z~= is defined similarly as Y/n but with bs n j ~.~i----1 i 

replaced by 0. For example by (2.9) in Albers (1992), it follows that the d.f. of S* = 
_1/25 n-1/2 ~'-i=1 n/ o] is asymptotically equivalent up to order o(n -1) to the d.f. of 

n -1/2 ~-~,] }-~ Z} ]). To compare S* and S we note that the only difference between 

Z} ]) and Zi~ is in its first moment under alternatives. (Note that n]l/2@j = 
n-1/2~.) Using n-lOl)0(n) = o(n -1/2) (cf. p. 155 in ABZ) the only change we have 

to make when replacing n -1/2 ~-~-i Zi by n -1/2 ~ j  ~-~.~ Z} j) is therefore to replace 

ao(n) by n -1/2 ~-~.j n~/2ao(nj) = ao(n) + (1/2)n-l¢l{~-'~.j bo(nj) - b0(n)}, resulting 
in 11{  } 
(2.6) P(S* _< x) = P(:~ < x) + ¢(z - ~)-~n r! bo(nj) - bo(n) + o(n -1) 

uniformly in x as n ~ oc, both under the null hypothesis and contiguous alter- 
natives. This shows that there is only a very small difference between S* and 
and hence not much need to reconstruct T, even if the original observations are 
available, and not merely the Tj, j = 1 , . . . ,  r, cf. also Remark 2.2. 

Note that for sufficiently large n the test based on :~ is exactly the same as the 
test based on S. (Therefore there is no problem in describing the power behaviour 
of S in terms of sample means.) 

The second solution to the problem is based on the fact that  if Uj has a d.f. 
of the form 

then n -1/2"-" 1/2T 2_,j nj uj has the same d.f. with nj replaced by n. For ~4 ~ --2 this 
follows by relating Gj with the d.f. of standardized sample means. But if it holds 
for any ~;4 > -2 ,  then it holds for any ~4- Using this argument it is now easily 
seen that as in (2.6) we only have to bother about the coefficient of H0, when 
comparing the d.f. of S* and S, leading to 

(2.7) P(S* _~ x) = P(S  ~ x) + ~n-l?~dn¢(~2) q- o(rt -1) 

3 
= 0(~) + ¢(~c) E b k ( n ) H k ( J c )  + ~n- l~dn¢(2)  + o(n-1), 

k=0 
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uniformly in x as n ~ oc, where 

1 1-- bo(n) = n1/203bo -t- ~n-  r]bo(n), bl(n) = 02bl, b2(n) = On-1/2b2, 
r 

b3(n)  = f t - l b 3 ,  d n = E b o ( n j )  - b o ( n ) ,  2g = x - ~. 

j = l  

This provides a more direct proof of Theorem 3.2 in Albers (1992). 

--1/2 1/2 S* r Remark 2.1. If we replace n nj in by 7j with ~-~j=l ~ = 1 and 
- 1 / 2  1/2 o ( n _ l / 2 )  n 7j = n rtj + as co, then by the same argument as above (2.7) 

continues to hold. 

Remark 2.2. As is seen in the preceding approach the one-sample linear rank 
statistics behave like sums of independent r.v.'s with only a small difference in 
expectation and no difference in the other relevant moments for the several sub- 
samples. Therefore the d.f. of the combined statistic is almost the same as the d.fi 
of the statistic based on the whole sample. A translation of this result into terms 
of powers and deficiencies can be found in Albers (1992). 

By the interpretation of Edgeworth expansions the tedious direct computation 
of convolutions of these expansions is avoided. Moreover, it is seen that it is not a 
happy coincidence that a lot of terms have exactly the right form to cooperate in 
a nice way, but that  the sum-structure of the Edgeworth expansion makes it very 
easy to write down and evaluate convolutions. 

3. General case 

Let, uniformly in x as n ~ oc, G satisfy the following Edgeworth expansion 

5 

(3.1) G(x) = ~ ( x ) +  ¢ ( x ) E  ak(n)Hk(x)+ o(n-1), 
k=0 

where 

(3.2) 
ak(n) = 0(n-1/2), k = O, 1, 2, 

a4 (n) = -a l  (n)a2 (n) + o(n-1), 

ak(n) = O(n-1), k = 3,4,5, 

as(n) = - la~(n)  + o(n-1), 
.4 

(3.3) -24n {a3(n) + ~a~(n) +ao(n)a2(n)} > -2. 

Referring to Waniguchi ((1986), pp. 5-6), Petrov ((1975), Theorem 7 on p. 175) 
we may associate with G i.i.d.r.v. 's YI~, • • •, Y~n such that  

(3.4) sup G ( x ) - P ( n - 1 / 2 ~ Y i , ~ < x ~  ~ o ( n  - 1  ) 

x \ - - ] i = 1  
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2 
as  n ~ oc, where EY/n = /_t~, varY/n : O'n, ~ 3 ( Y / n )  : ~3n and t~4(Y/n) =- t'C4n 
should satisfy 

(3.5) 

ao(n) = -o-ninl/2#~ + O'nlTtl/2]-tn(O'n I -- 1) + O(Tt--1), 

a l ( n ) = ( o - ~ l - 1 ) - l n o - - 2  2 3 -1 2 n # n - ~ ( o - ~  - 1 )  2 + ° ( n - I ) ,  

_ !  --1/2 a2(n) = 6 n " ~3~ + ln-1/2a3n(o-~12 - 1) 

+ n l / 2 # n o - n l ( o - n l  - -  1) + o(n-1), 

1 1 -1 1 -1 -1 
a3( ) = _ 1 ) 2  _ _ U .  + 

1 n _ l n  2 an(Tt) ~- l ? ' t - 1 / 2 / ~ 3 n ( o - n l  - -  1) + o(n-1) ,  as(n)  ---- -~-~ 3n + ° (n- l )  
6 

as n -~ ec and can be chosen as 

(3.6) 

1 2 ~n-=--n-1/2ao(i't), (Tn-= 1--al(Tt)---a2(n)---~al(ft), 

~3n = 6nl/2 {-a2(n)  + 3a4(n) - ao(n)al (n) }, 

t%n = -24n  {aa(n) + la~(n) + ao(n)a2(n) } , 

and where ElY/hi 5 is uniformly bounded  and the densities of Yi~ are functions of 
uniformly bounded  variation. Similarly as in Section 2 the power of linear rank 
tests in the two-sample problem can be discussed. 

Remark 3.1. We do not assume tha t  ao(n) = a l (n )  = 0, corresponding to 
#n = 0, o-n = 1, since in practice the given Edgeworth  expansions do not fulfill 
this condition, due to the fact tha t  usually only a first order s tandardiza t ion  has 
been carried out. 

Here we t rea t  the combinat ion problem in the general case. Let  S be the 
statist ic in the unspl i t ted situation. Assume tha t  

(3.7) sup IP(S <_ x) - G(x - r/) I = o(n -1) 
x 

as n --~ oc, where G is of the form (3.1) and r / =  r/(n) for some function 7. Suppose 
tha t  the coefficients ak(n) in (3.1) satisfy (3.2). Let  S 1 , . . . , S r  be r statist ics 
based on r subsamples with sample sizes n l , . . . ,  nr satisfying Y~j=I nj = n and 

njn -1 >_ e for some e > 0 and all j = 1 , . . . , r .  Assume tha t  for each j = 1 , . . . , r  

(3.8) sup I P ( S j  <_ x )  - G j ( x  - r]j) I = O(Tt - 1 )  
x 

as n ~ oc, where Gj  equals G with n replaced by nj and r b = r/(nj). Note  tha t  
the functions ak are supposed to be the same for all j -- 1 , . . . ,  r. 
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It follows by the same argument  as in the so called "second solution" in Section 
2 that  

sup n -1/2 n /2Sj  < x  -- G*(x -- r]*) = o ( n  -1) 
x \ j= l  

r as n --+ oc, where rfl = ~ y = l  1 / 2 . - 1 / 2 , .  G* '~j '° 'u and is of the form (3.1) with co- 

efficients a~(n), say, given by (3.5) if we replace #n by Y~'~=I njn-l#nj,  0-n by 
( E 3 = l  f~3n- 10-2nj ]'11/2 , N;3n by 

E ; = I  ?zJr~-- l l~3nj0-3j 
r 

~4n by 
E r --i 0.4 ~_~ j=l  ftjft /t;4nj nj 
(E =I  Jn-10. n ) 2 = nfl 4n' + o(1). 

j=l  

Here #nj, 0.n~, ~3~ and ~4nj are given by (3.6) with ak(nj) coming from Gj. 
(Note that  we can do the calculations as if Gj and G correspond to Edgeworth  
expansions of sums of i . i .d . r .v . ' s ,  al though such r.v.'s do not necessarily exist, 
since we do not require (3.3) or, equivalently, ~4n > - 2 . )  

In order to compare the combined statistic n -1/2 Y~fj=l _1/20 nj o j  with the un- 
split ted statistic S, we compare a~, 7/* with ak, q. 

Now we put  the following conditions on the coefficients ak (here and in the 
sequel ~3~, ~3n~, #n etc. are defined by (3.6)) 

ao(nj)=n)/2n-1/2ao(n)+o(n-1/2), al(nj)=al(n)+o(n-1/2) ,  
(3.9) 

a3nj = ~3n + o(n-U2), a4nj = g4~ + 0(1) 

as n --+ oc. Under these eonditons we have 

~njn - l ~ n j  =- ~n -~ o(n-1) ,  0.nj = 0.n -4- O(n-1/2), 
j= l  )1j2 

njn-10-2n~ = on + o(n-1/2), 
\5=1 

E r -- ---- i/,; 0.3 j= l  'l~j'l~ 3nj nj 
(E;=I  nJn--10.2nj) 3/2 = l'~3n -~- 0(7%-112)' 

implying (cf. (3.5)) 

a;(77~) = ao(n ) -- 0.nln 1/2 { j = l  ~ 

- i / 2  

r 

E n j n - l E 4 n j  ~-- E4n -t-o(i), 
j= l  

nj  n -  lpn~ - #n } 

(3.10) 

+ 

o,nl, al (n)  =al(?Z)-]- n j n  0-nj --0-n 1 +  
j=l 

a~(n) = ak(n)  + o(n -1) k = 2 , . . . ,  5. 
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If moreover 

(3.11) 

then 

(3.12) 

7](nj)  = n ~ / 2 n - 1 / 2 T l ( n )  -Jr- O ( n - 1 ) ,  

~* = ~ ( ~ ) + o ( ~ - * ) .  

In view of (3.10) and (3.12) we have proved the following theorem. 

THEOREM 3.1. Suppose that (3.7) and (3.8) hold, where the coefficients ak(n) 
satisfy (3.2) and (3.9) and rl(n) satisfies (3.11). Then 

(3.13) 

-- P ( S  ~ x)  - ¢ ( x - - ~ ) { V o ( n )  - v l ( n ) ( x - - ? 7 ) }  : o ( n  - 1 )  

/ff 

(3.14) 

vo(n ) = o - n l n l / 2  1t n -- ~ njn- l l - tnj  n t- o ( n - 1 ) ,  

j = l  

Vl(n) = ~ 1  _ n~n- l~nj  + o(n-1)  
j = l  

a872----+oo. 

As an application of this theorem we consider (5.14) of BZ, where an Edge- 
worth expansion is presented for the d.f. of the linear rank statistic in the two- 
sample problem. The structure of the coefficients ak(n) is as follows (cf. (5.8) and 
(5.9) in BZ) 

(3.15) 

ao(n)=n1/202a (1) +n-1/20a~ 2) +nl/203a(o3)+-~n- rlbo(n), 

aa(n) : 0a~1) + 02a~2) + n04a~a) + n-la~ 4), 

a2(n) = n -1/2a~ 1) -1- n-1/20a~ 2) q- nl/203a (3), 

a3(n) = n- la~  1) q- 02a (2), a4(n) = n-1/203(41), as(n) -~ rt-la~ 1) 

and 

(3.16) 'q(n) = nm/2Oh. 
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Since 0 = O(~t -1/2) and n-17]t)o(n) = o(n -1/2) it is easily seen that  ak(n) = 
O(n -1/2) (k = 0, 1,2) and ak(n) = O(n -1) (k = 3,4,5) .  Inspection of (5.8) in BZ 
yields 

1 (3.1r) (1) (2) and a ~ l ) = - - ( a ~ l ) )  2 
- - a l  a2 2 

and therefore (3.2) is satisfied. 
The first two conditions of (3.9) are immediately seen from (3.15), since only 

the first order terms nl/202a~ 1) and Oa{ 1) are involved. Inspection of (5.8) in BZ 
yields 

a(3)2 (1) (1) (3.18) = - a  o a 1 

and hence up to order o(n-U2) ~an is a function of 0 alone, and not of n, implying 
~a~5 = n3n + o(n-1/2). Finally it follows from (5.8) of BZ that  

1 ta(1)? 2 (1) (1) 
(3.19) a~ 2 ) -  ~ 1 , - a 0  a2 

and hence N4n : -24a~ 1) + o(1) and therefore t~4n j ~--- N4n -~- O(1). Condit ion (3.11) 
follows from (3.16) and thus Theorem 3.1 may be applied. Using (cf. (5.8) in BZ) 

1 {a(1)~ 2 a~4) _ 1 
(3 .20 )  Tt-1/2Oa(02) = --Tt--X~]' a~ 3) = - -2 \  0 ] ' 2 

straightforward calculation yields 

(3.21) 
;0(nj)  - b0(n) v0(n) = 

1 1)n_1. vl = (r - 

+ 2(r - 1 ) ] ,  

Theorem 4.2 of Albers (1992) is now established by application of Theorem 3.1. 

Remark 3.2. There are several relations between the constants a~ j) appearing 
in (3.15). These relations are given in (3.17), (3.18), (3.19) and (3.20). Note  that  
the relations are of a different nature. In a sense (3.17) is very basic. If this 
relation should not hold, the sum-strt icture was not present. The other relations 
clean up the answer. In view of (3.18) and (3.19) we only have to take into account 
the coefficients of H0 a n d / / 1 ,  or, equivalently, the expectat ion p and variance cr 2. 
Relation (3.20) ensures that  v0 is a multiple of r / and that  Vl does not depend on 
0. 

The different roles of the relations (3.17)-(3.20) with their different interpre- 
rations are not very clear in the approach of Albers (1992). 

Remark 3.3. The m e t h o d  presented here is a constructive method.  As soon 
as the mild condition (3.2) is fulfilled, we get an explicit answer. This enables 
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us to consider also cases where the combined s ta t is t ic  is fur ther  away from the 
unspl i t ted  statist ic.  

--1/2 1/2 (3.13) by Vj ~ j = l  7j = 1 and  Remark 3.4. If  we replace n nj  in wi th  ~ 2 

-1/2 1/2 + o(n_1/2) as n ~ ~ ,  then  T h e o r e m  3.1 continues to hold. ~j  ~- n n j  
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