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Abstract. Bartholomew’s statistics for testing homogeneity of normal means
with ordered alternatives have null distributions which are mixtures of chi-
squared or beta distributions depending on whether the variances are known
or not. The mixing coefficients depend on the sample sizes and the order re-
striction. If a researcher knows which mean is smallest and which is largest,
but does not know how the other means are ordered, then a loop ordering
is appropriate. Exact expressions for the mixing coefficients for a loop or-
dering and arbitrary sample sizes are given for five or fewer populations and
approximations are developed for more than five populations. Also, the mixing
coefficients for a loop ordering with equal sample sizes are computed. These
mixing coeflicients also arise in testing the ordering as the null hypothesis, in
testing order restrictions in exponential families and in testing order restrictions
nonparametrically.

Key words and phrases: Level probabilities, likelihood ratio tests, order re-
stricted inference, simple loop ordering.

1. Introduction

We consider an experimental situation in which one wishes to compare several
treatments with a control when it is believed a priori that all of the treatments are
as effective as the control and that a particular one of the treatments is as effective
as the others. For instance, suppose that one wished to study the effects of diet, a
drug and exercise on patients suffering from a heart condition, but were not able
to consider all combinations of the three treatments. One could let treatment 1 be
a control, treatment 2 consist of diet alone, treatment 3 the drug alone, treatment
4 exercise alone and treatment 5 consists of all three. If p; is the mean response
for treatment i, 1 < i < 5; if larger means are desirable; and if it is believed that
diet, the drug and exercise have a positive effect, then one could test the statistical
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significance of these effects by testing p1 = po = -+ = s with the alternative
constrained by p; < p; < ps for j = 2,3,4. Of course, if the effects of the diet,
drug and exercise are additive, that is the interaction terms are all zero, then the
testing situation is simpler. We consider the case in which interactions may be
present and assume nothing is known about the signs of these interaction terms.

In general, with k treatments, we consider tests of Hy : i1 = o = -+ - = py
versus Hy — Hy, i.e. H; holds but Hy does not, with Hy : p; < pj < py for
J =2,3,...,k — 1. The order restriction given by H; is called a (simple) loop,
cf. Robertson et al. ((1988), p. 84). Bartholomew (1959, 1961) developed the
likelihood ratio tests (LRTs) of Hy versus Hy — Hg for normal observations with
common variance, 2. Robertson and Wegman (1978) developed the LRTs of H,
versus Hy :~ Hj. In fact, the LRTs for both testing situations were developed for
arbitrary partial order restrictions. The null distributions of the LR statistics are
mixtures of chi-squared or beta distributions depending on whether o2 is known
or not. In this paper, we study the mixing coefficients, which are also called level
probabilities, for the loop ordering.

In Section 2, the level probabilities are computed for the case of a balanced
design, i.e. for equal sample sizes. In Section 3, we use the approach in Chase
(1974) to obtain an approximation to the level probabilities for the case in which
the control has a larger number of observations, but the other treatments have
(nearly) equal sample sizes. Section 3 also contains an approximation for arbitrary
weights which is based on the pattern of small and large weights. Analogous
approximations have been developed for the simple order (1 < po < -+ < pg) by
Robertson and Wright (1983), the simple tree order (u1 < p; for j = 2,3,...,k)
by Wright and Tran (1985) and for the unimodal order (3 < pg < -+ < pp >
Wht1 = -+ > p with 1 < b < k) by Lucas et al. (1989).

Barlow et al. (1972) and Robertson et al. (1988) demonstrate that these order
restricted tests can be substantially more powerful than their omnibus counter-
parts. They also argue that unless additional information concerning the spacings
among the means is available, the LRTs are preferred over contrast tests. Singh
and Schell (1990) study the power functions of these LRTs for the loop ordering.

2. The level probabilities

Let X = (X1,Xs,...,Xx) be the vector of sample means of independent
random samples from k normal populations with a common variance o?. Let
it = (i1, B2, - - -, ) be the maximum likelihood estimate of p = (u1, 2, - .-, k)
subject to the restriction imposed by H;. i can be computed by relabeling so that
X, < X3 < --- € X1 and then applying the pool-adjacent-violators algorithm
(PAVA) to all k sample means, cf. Robertson et al. ((1988), p. 8) or by the algo-
rithm given in Singh and Schell (1992), which is derived from the minimum lower
set algorithm, cf. Robertson et al. ((1988), p. 24). The first algorithm is called the
modified PAVA.

If 02 is known, then the LRT of Hy versus Hy — Hy (Hy versus Hj) rejects
Hy (Hy) for large values of 3, (X3,) and for o2 unknown, the test statistics are
denoted by E2, and E?,. These statistics are defined in Robertson et al. ((1988),
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pp. 61-64). Robertson and Wegman (1978) show that for ¥%, and E?,, Ho is
least favorable within Hy and that, with X? denoting a chi-square variable with j
degrees of freedom (x2 = 0), under Hy

k
21) P = s X5 >tl=>_ Prll,kn)Pixi, > sIPhG; > 4,
=1

where n = (ny,ng,...,n,) and Pr(l,k;n) is the probability, under Hy, that g
contains exactly ! distinct values. Similarly, with B, ; denoting a beta variable
(BO,b = 0),

(22)  P[E§; > 5, Efy > 1]

k
= ZPLU» k;n) P[Ba—1y/2,(0+k—1)/2 > 8]P[Bk—1)/2.0/2 > 1]
=1

when Hj is true. It should be noted that p-values for ¥3; and E2; (x?, and E%,)
could be obtained from (2.1) and (2.2) by taking ¢t = 0 (s = 0) if the Pr(I, k;n)
were known.

The Pr(1, k;n) also arise when testing hypotheses involving a loop ordering in
exponential families and when using the analogue of Chacko’s nonparametric test
for a loop ordering, see Robertson et al. ((1988), p. 163 and p. 204).

The estimate i is the vector in Ir(k) = {z € R¥ : z; < z; <z for j =
2,3,...,k — 1}, the simple loop cone, which is closest to X in the sense that
it minimizes S n;(X; — u;)? among all p € I (k). For w a vector of positive
weights, let P,(x | I (k)) denote the projection of z into Ir(k) with distance

S wi(z; —yi)? For Y = (Y1,Ya,...,Y%) a vector of independent
random variables with Y; ~ N(0,1/w;) and w; > 0 for i =1,2,...,k, let

(2.3) Pr(l,k;w) = P[P,(Y | I (k)) has [ distinct values].

Of course, the Pr(l, k;w) are not changed if the Y; ~ N (a,1/w;) with a any real
number or if all of the weights w; are multiplied by the same positive constant.

2.1 Ezpressions for the level probabilities: arbitrary weights

Expressions for the level probabilities, Py, (I, k;w), with k = 3 and 4 are given
in Robertson et al. ((1988), p. 78 and p. 84).

The expressions given below for k = 5 are tedious, but are easily programmed.
The level probabilities, Py (I, k;w), for the loop ordering depend on those for the
simple order and simple tree ordering via equation (2.4.4) in Robertson et al.
(1988). Because expressions have not been determined for the simple order with
arbitrary weights and k& > 6, we only consider k = 5.

Let Ig(k) = {z € R* : 2y < 29 < -+ < a}; Ip(k) = {z € R¥ : 2, <
zjfor j = 2,3,...,k}; Py(x | Is(k)) and Py(z | Ir(k)) denote the projections
of z, with distance d,(-,-) onto Ig(k) and Ir(k), respectively; and Ps(l, k;w) =
P[P, (Y | Is(k)) has [ distinct values] and Pr(l,k;w) = P[P, (Y | I7(k)) has I
distinct values].
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If By, By, ..., B partition I' = {1,2,...,k} and the projection is constant on
each Bj; and increases with j over the B;, then the B; are the ordered level sets for
the projection. Now consider the case of five populations with arbitrary weights.

There are six subcases in which five ordered level sets can occur; these are as
follows: (a) {1}, {2}, {3}, {4}, {5}; (b) {1},{2}, {4}, {3}, {5} (¢) {1}, {3}, {2}, {4},
{5%; (d) {1}, 3}, {4}, {2}, {5%; (&) {1}, {4}, {2}, {3}, {5}; and (£) {1, {4}, {3}, {2}
{5}. In subcase (a), the contribution to the level probability, Pr(5,5;w), is given
by

1 1. _ . - .
(2.4) E+8—w(8m L o1a +sin™? pog + sin 1,034)
1 —p34 (1 _ 372)1/2'012
L 1 — 222401 | d
e A e e =
where
1/2
Wi Wi4-2
2.5 o =4 — —
25) Prarl = it [(wi+wi+1)(’wi+1+wi+2)}

for i = 1,2,3, cf. Robertson et al. ({1988), p. 75). The contribution to the level
probability for subcase (b) can be obtained from the above subcase by inter-
changing ws and wy; and the contributions of the remaining four subcases can
be obtained analogously. The level probability, Pr,(5,5;w) is the sum of the six
probabilities mentioned above.

There are twelve subcases in which four ordered level sets can occur, and these
are divided into six pairs of cases which are convenient to manipulate mathemati-
cally to obtain Pr(4,5;w): (a) (i) {1,2},{3},{4},{5} and (ii) {1,2}, {4}, {3}, {5};
(b) (i) {1,3},{2}, {4}, {5} and (i) {1,3},{4}, {2}, {6}; (c) (i) {1,4},{2}, {3}, {5}
and (i) {1,4},{3},{2},{5}; (d) (i) {1},{2},{3},{4,5} and (i) {1},{3},{2},
{4,5}; (e) (1) {1},{2},{4},{3,5} and (i) {1}, {4},{2},{3,5}; and (f) (i) {1}, {3}
{4},{2,5} and (ii) {1}, {4},{3},{2,5}. Consider the pair of cases in subcase (a).
The required probability in this case is given by

Ps(1,2; w1, w)[Ps(4,4; w1 + wa, ws, wa, ws) + Ps(4,4; w1 + wa, ws, w3, ws))
1 T T
SEVTERR eI
8 [(2 0 93>+(2 2 4

(w1 + wa)wy } 12
wy + Wg + wg)(w3 + w4)
1/2
WaWs }

(w3 -+ ’LU4)(’LU4 + w5)

where

6y = sin™* [(

§y = sin™! [

and 63 = 6, and 64 = 3 with w3 and wy interchanged. Using sin(w/2 6, —83) =
cos 01 cos 83 — sin 6, sin 03, the above probability can be written as

1, . o1
g(sm T3(1,2),(1,2)4 + 8in7" 735 54)
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where
Wew V2

2. r(u,v U = e
(2.6 o = |G T
and

oo 1/2
2.7 uus — -
(2.7) Tru, [(wu+wr)(wu+ws)]

The probabilities in the remaining five case pairs can be obtained analogously.
Hence,

1., _ . .
(2.8) Pr(4,5w) = g[sm 17"3(1’2),(172)4 + sin 1735754 + sin 17'2(173)’(173)4

+ Sinﬂl 725,54 + Sin—l T2(1’4),(1,4)3 + sin‘l 725,53

+sin™* T3(5,4),(5,4)2 1 sin ™! 731,12 +sin ™" T4(5,3),(5,3)2

+ sin~! T41,12 T sin™! Ta(5,2),(5,2)3 + sin™! 7'41713].
There are also twelve subcases in which three ordered level sets can occur, and these
are as follows: (a) {1,2,3},{4},{5}; (b) {1,2,4},{3},{5}; (c) {1,3,4},{2},{5};
(d) {1},{2},{3,4,5}; () {1}, {3},{2,4,5}; (F) {1},{4},{2,3,5}; (g) {1,3},{2},
{4,5}; (h) {1,4}, {2}, {3,5}; () {1,2},{3},{4,5}; (§) {1, 4},{3},{2,5}; (k) {1,2},
{4},{3,5}; and (1) {1,3}, {4},{2,5}. In subcase (a) applying the results in Robert-

son et al. ((1988), p. 75 and p. 83), the contribution to the level probability,
Pr(3,5;w), is given by

PT(la 3) w1, W2, 7U3)PS(3, 37 w1 + Wo + wa, Wy, ’LU5)
1 1 1
= (5 — Pr(3,3;w, wz,w3)> (Z + o sin”*' sz)
1 1 . _ 1 1 .
= <Z - %sm 1,0{2) (4_1 + 57—rsm lpf2>
where

(29) ol = { L2 T/Z ph = - [ i ]1/2
’ 12 (w1 + wa)(wy + w3) ’ 12 (w + wh)(wh + w})

and wi = (w1 + wy + ws), wi = wy, Wi = ws.

The contributions to the level probability from subcases (b) and (c) are ob-
tained from that of subcase (a) by interchanging ws and wy, wy and wy, Tespec-
tively. Likewise, the contributions from subcases (d), (e) and (f) are obtained from
(a), (b) and (c) with the following substitutions: wy = ws, we = w4, w3 = ws,
wy = wy and ws = w;. The contribution to the probability Pr(3,5;w) from
subcase (g) is given by

Ps(1,2;wi,w3)P(1,2; wy, ws)Ps(3, 3; w1 + ws, we, ws + ws)

_1/1 I .15
_Z<Z+%Sm Pw)
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where pf, is given by (2.9) with the substitutions wi = (w; + w3), w = wy and
wi = (wa + ws). The contributions to the probability from subcases (h) to (1)
are obtained in analogous manner. Thus, the level probability Py (3, 5;w) is equal
to the sum of the twelve aforesaid probabilities. Because 1/2 = Pp(1,5w) +
Pr.(3,5;w) + Pr(5,5w) = Pr(2,5w) + P(4,5w) (see Robertson et al. ((1988),
p. 115)).

1
Pr(2,5,w) = 3 Pr(4,5,w) and

1

2.2 The level probabilities: equal weights

If the sample sizes are equal, i.e. ny = ng = -+ = ng, then the weights are
equal and the Pp(l,k;w) can be computed rather easily. We will use the nota-
tion Pr(l, k), Ps(l,k) and Pr(l, k) when the weights are all equal. Robertson and
Wright (1983) for the simply ordered case, Wright and Tran (1985) for simple tree
orderings, and Lucas et al. (1989) for unimodal orderings found that using the
equal weights level probabilities in (2.1) or (2.2) provides a reasonable approxi-
mation to the true value of tail probabilities (2.1) or (2.2) provided the weights
are not too different, the reader should consult those papers for details. Because
similar results are expected for the loop ordering, one also could use the values of
Pr(l, k) obtained in this subsection for weights that are nearly equal.

Using the approach in Robertson et al. ((1988), p. 76),

Pr(k, k) = (k — 2)1/k! = [k(k — 1)] !

Next we compute Pp(l,k) for 2 <1<k —1. If By, By,...,B; denote the ordered
level sets for a loop ordering, then card. (B;) =1for1 < j <. Let ¢ = card.(B; —
{1}) and j = card.(B, — {k}). Clearly, i+j=k—lorj=k—1—i Ifw, =i41,
w; = j+1, w, = 1for 2 < a < [—~1and ¢ and ® denote the density and distribution
function for the standard normal distribution, then Pp(l,l;w’) = P[Y1 <Y, <
Y, for o = 2,3,...,01—1] with ¥7,Y5,...,Y] independent normal random variables
with zero means, Var(Yl) =1/ + 1) Var( w) = 1lfora =23,...,01—1and
Var(Y;) = 1/(j + 1). Conditioning on Y7 and Y; with ¥; < Y7, this can be written
as

o [ () o ()| o

which we denote by I(i + 1,5 + 1). The values of I(i + 1,7 + 1) were obtained by
numerical integration. Applying Theorem 2.4.1 of Robertson et al. (1988), with
j=k—-1-1,

k—1

(2.11) Pr(l, k) :Z( )(k j_z> Pr(1,i+1)Pr(1,j + D)IGE+1,5+1)

=0
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Table 1. Equal-weights level probabilities for a loop ordering, Pr(I,k), and the associated cu-
mulants, §; and 82.

—

k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15

1 0.1041 0.0508 0.0230 0.0097 0.0039 0.0015 0.0005 0.0002 0.0001 0.0001 0.0000
2 0.2939 0.1809 0.0995 0.0498 0.0230 0.0099 0.0040 0.0015 0.0006 0.0002 0.0001
3 0.3459 0.2995 0.2144 0.1329 0.0733 0.0368 0.0170 0.0073 0.0030 0.0011 0.0004
4 0.2061 0.2858 0.2864 0.2300 0.1567 0.0937 0.0504 0.0248 0.0112 0.0048 0.0019
5 0.0500 0.1497 0.2388 0.2673 0.2353 0.1733 0.1109 0.0633 0.0328 0.0156 0.0069
6 0.0333 0.1141 0.2023 0.2472 0.2345 0.1844 0.1251 0.0752 0.0409 0.0203
7 0.0238 0.0901 0.1736 0.2279 0.2303 0.1915 0.1366 0.0860 0.0487
8 0.0179 0.0731 0.1507 0.2101 0.2240 0.1956 0.1459 0.0957
9 0.0139 0.0606 0.1322 0.1940 0.2167 0.1975 0.1533
10 0.0111 0.0511 0.1170 0.1795 0.2089 0.1978
11 0.0091 0.0438 0.1044 0.1665 0.2010
12 0.0076 0.0379 0.0938 0.1549
13 0.0064 0.0332 0.0848
14 0.0055 0.0293
15 0.0048

61 1.804 2403 3.056 3.752 4.481 5.238 6.016 6.812 7.624 8.448 9.284
6y 4686 6.212 7.838 9.531 11.272 13.047 14.848 16.671 18.510 20.364 22.229

and Pp(1,k) = 1 — Y0, Pe(l,k). Table 1 contains the values of Pp(l,k) for
1<i<kand 5 <k<15.

Because (2.1) is tedious to compute even for moderate k, Bartholomew (1961)
proposed a two moment gamma approximation. With Gy, the survival function
(i.e. one minus the distribution function) of the gamma distribution with param-
eters b and 1,

(212)  PlG 2 sl =pGils/p) and Pl > s = pGi(s/p)

where p = 1 — Pr(1,k) for ¥3, or p=1— Pr(k, k) for ¥?, and b and p are given in
terms of the first two cumulants, under Hy, of ¥, or X1, cf. (3.2.3) of Robertson
et al. (1988). Table 1 contains the values of §; and s, the first two cumulants of
X%, for a simple loop ordering under Hy and the corresponding cumulants for x3,
are 0 =k —1—6, and 65 = 2(k — 1) — 461 + 62.

Two-moment beta approximations are given for the distributions of EZ; and
E2, under Hy. Let I:Icyd be the survival function of a beta distribution with
parameters ¢ and d. The approximation for EZ, involves b and p given above, see
(3.2.7) of Robertson et al. (1988). With p as in (2.2) and v the degrees of freedom
on the estimator of the common o2,

(2.13) PIE§, > s] = pHa(s)

where a = 61/[(v+k—1)p], b= (62 +67)/[(v +k+ 1)p|, ¢ = a(a—b)/(b—a?) and
d=(1-a)(a—1b)/(b—a?).
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3. Approximating the level probabilities

Following Chase (1974) we first consider the situation in which the sample
size for the control population, ny, is larger than the other sample sizes which are
equal, or at least nearly equal. Then an approximation is derived for arbitrary
weights for those situations in which the equal-weights approximation might not
seem adequate.

3.1 Large sample size on the control
Suppose that wy = W and wy = w3 = - -+ = w;, and define

(3.1) Qr(l,ky= lim Pr(l,k;w) for 1<1<k.
W—oco

As in the last section, Pr(k,k;w) = (k — 2)!Ps(k, k : w), and applying (3.3.4) of
Robertson et al. (1988), Qr(k, k) = [2°71(k — 1)]"!. Furthermore, from Theorem
3.3.3 of Robertson et al. (1988), we see that limpy_ oo Pr(1, k;w) = 271 Re-
peating the proof that led to (2.11) with ¢, j and I(a, b) defined as there, j = k—I—i,

and
lim I(W+i,j+1)= P - =
dim I(W +1,j +1) /0 ¢(y)[ (\/.H_l> 2] dy,
which we denote by I(co,j+ 1), for 2 <1<k~ 1,

(3.2) Qrl, k) = % (k N 2) (k —2- 2) 27 Pr(1,5 + 1)I(00,j + 1).

=0 b J

and Qr(L,k) =1 - Efﬂ Qr(l,k). The values of I{co,j + 1) were obtained by
numerical integration. Table 2 gives the values of Q.(l,k) for 1 < I < k and
5< k<15

Chase (1974) for the simple order, and Robertson and Wright (1985) for the
simple tree ordering, found that interpolating on 1/v/W between W = 1 and
W = oo provided a reasonable approximation to the tail probabilities of these
test statistics with weight vector, w, of the form considered in this subsection. In
particular, let

(3.3) X01 s;w) L{l, k;w)P Xl—l > s,

HMa-

X%,(s) be as in (3.3) with Pr(l, k;w) replaced by Pr(l,k) and ¥32;(s; o0c) be as in
(3.3) with Pr(l, k; w) replaced by @ (I, k). Because results like those obtained for
the simple order and the simple tree ordering are expected, we recommend the
approximation

(3.4) Xay(s;w) = (1 = 1/VW) k2, (s500) + 1/ VW3, (5).

The two-moment gamma approximation can be used to approximate ¥2,(s). If
one replaces §; and 3 by 0; and 85, the first two cumulants of the distribution
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Table 2. Limiting level probabilities for a loop ordering with first weight approaching oo,
Qr(l, k) and cumulants, ©1 and O3.

I k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15

1 0.2020 0.1456 0.1039 0.0735 0.0516 0.0359 0.0248 0.0171 0.0117 0.0079 0.0054
2 0.3969 0.3300 0.2659 0.2090 0.1610 0.1219 0.0909 0.0669 0.0487 0.0351 0.0250
3 0.2824 0.3057 0.3013 0.2785 0.2456 0.2087 0.1722 0.1387 0.1094 0.0848 0.0647
4 0.1031 0.1637 0.2108 0.2389 0.2483 0.2420 0.2246 0.2004 0.1732 0.1456 0.1196
5 0.0156 0.0486 0.0921 0.1367 0.1746 0.2010 0.2143 0.2154 0.2065 0.1904 0.1699
6 0.0063 0.0233 0.0509 0.0853 0.1209 0.1524 0.1763 0.1906 0.1953 0.1913
7 0.0026 0.0112 0.0278 0.0518 0.0805 0.1102 0.1373 0.1588 0.1731
8 0.0011 0.0054 0.0150 0.0308 0.0520 0.0768 0.1025 0.1262
9 0.0005 0.0027 0.0081 0.0180 0.0328 0.0520 0.0739
10 0.0005 0.0013 0.0043 0.0104 0.0203 0.0343
11 0.0001 0.0006 0.0023 0.0059 0.0124
12 0.0600 0.0003 0.0012 0.0033
13 0.0000 0.0002 0.0006
14 0.0000 0.0001
15 0.0000
©; 1.333 1.658 2.001 2360 2731 3.113 3.504 3.904 4310 4.723 5.142
O, 3.593 4527 5.515 6.544 7.607 8.697 9.807 10.934 12.075 13.227 14.388

determined by ¥3;(s; o), which are given in Table 2, and replaces Pr(1,k) by
Qr(1,k), then a two-moment gamma approximation is obtained for ¥2,(s;o0)
also. In the same manner, approximations to Xiq(t;w), E2,(s;w) and E%(t;w)
are obtained.

3.2 A pattern approzimation

In this subsection, an approximation to the Pr(l, k;w) for arbitrary w is de-
rived. Each weight is classified as small or large; the limit of the level probabilities
with the small weights fixed and equal to unity, and the large weights equal and
growing without bound is obtained; and the approximate level probabilities are
obtained by interpolating between the equal-weights level probabilities and the
limiting level probabilities. The details are given at the end of this subsection.

For the pattern approximation, we need to determine the limit as W — oo of
Pr(l, k;w) for all possible patterns of 1’s and W’s in the weight. Let w denote a
vector of weights which are all 1’s or W’s. Let A be the number of large weights.
Of course, we may assume 1 < A < k — 1, for if not the weights are equal. We
consider three cases. While the limiting level probabilities depend on w, this will
not be made explicit in the notation.

Case I. (wy =wp =W)

THEOREM 3.1. Letwy =wp =W, w;=1orW fori=2,3,...,k—1, and
2< A<k—1. If PV k) = limy—oo PL(l, k;w), then

(3.5) P k) = PL(i, A),
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where Pr(l, k) denotes the equal-weights level probabilities for a simple loop order-
ing with k populations and it is understood that Pr(I,A) =0 forl > A.

Proor. Dividing all the weights by W, the argument given in Robertson et
ol. (1988) for the Lemma on p. 149 shows that limy o Pr{l, k;w) = Pr(l, A). O

Case II. (w1 = W and wg = 1; and by symmetry the case w; = 1 and
w, = W)

THEOREM 3.2. Letwy =W, wg=1Lw;=1orW fori=2,3,...,k—1, and
1<A<k—1 IF PP E) = limw oo Pr(l k;w) then PSP(1, k) is the (I + 1)-st
term of the convolution {Pr(j, A)} * {Qr(j,k — A+ 1)}.

PROOF. In Subsection 3.1, the case A = 1 was proved. Next, we consider
A > 1. By relabeling, we may assume that wy = wg = --- = wy = W and
WA+] = Waye = -+ = wp = 1. Let Zy,Z1,...,7Z; be iid. standard normal
random variables defined on some probability space, and set Y; = Z;/,/w; for
i=0,1,...,k with wg = W. Set V = (Y1,Ya,...,Y4), V' = (Y5, Ya41,..., Y1),
v = (wy,ws,...,wa) and v/ = (wg,wat1,...,ws). We will argue that for each w
in a set with probability one, there exists a Wy(w) such that for all W > Wy(w),

MPy(Y | I (k)] = MIP,(V | Ir(A))] + M[Py (V' | I(k — A+ 1))] - 1

where M|z] denotes the number of distinct elements in the vector z. Because V
and V' are independent this will prove the theorem.

Let I'op = {0,1,..., A} and for ¢ # C C {0,1,...,k} let Av(C) =3, c w;Y;/
> ico wi- The event Qg = {w: Av(C) # 0 for all ¢ # C C T —TI'g and Av(Cy) #
Av(Cs) for every Cy and Cs different, nonempty subsets of I'g} has probability
one. Thus, we suppose w € Q. As W — o0, Yj(w) — 0 for j =0,1,..., A, and
so there exist a Wi (w) such that for all W > Wy (w) and each ¢ # C C T' — Ty,
Av(C) < min{Yj(w) : ¢ € T} or Av(C) > max{Y;(w) : i € T'o}. Also, choose
Wa(w) such that for W > Wy(w), C1 and Cy nonempty subsets of I'g and ¢ #
D cT —Ty Av(C1 U D) < Av(Cy U D) if Av(Cy) < Av(Cs). We will choose
Wg(w) = I’Ila.X(Wl (LU), W2 (u)))

For an arbitrary quasi-order, we can use either the minimum lower sets al-
gorithm or the maximum upper sets algorithm to compute a projection onto
I« (k) ={z € R*: z; <z, if i < j}. These algorithms are discussed in Robertson
et al. ((1988), pp. 24-26). It is clear that at each step one is finding a level set
in the projection for the restricted problem in which one only considers the ele-
ments of I' for which the projection has not been determined with < restricted
to this set. Thus, at each stage one may select either the largest lower set, L,
in the restricted problem, which minimizes Av(L) or the largest upper set, U, in
the restricted problem, which maximizes Av(U). In projecting onto I (k), we will
first find an upper set Uy and if Uy # I, then we will find a lower set L;.

Let Ig(k) = {z € R* : z; < xz) for j = 1,2,...,k—1}. In computing the pro-
jection of (Ya11,Yaxo,...,Ys) onto Iy (k— A) with weights (wat1, wata, ..., W),
let Uy be the largest upper set in {A + 1,4+ 2,...,k} which maximizes Av(U)
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among such upper sets. We consider the case Av(U7) > max{Y;(w) : i € I'o} first.
In this case, U; is also the first upper set in determining the projections P/ (V' |
I(k—A+1))and P,(Y | I(k)). WithC™ ={i: A+1<i<k,Y;(w) <0} and
Ct={i: A+1<i<kY(w) >0}, Uy contains k but no element in C~ — {k}.
Clearly {1} ¢ Uy. Thus in computing P, (Y | Ir(k)), let Ly be the lower set
determined after Uy. Ly includes all of C~ — {k}. In fact, if L] is the first lower
set found in computing P,(V | I7(A)), then Ly = LU (C~ — {k}). Furthermore,
the lower set determined after Uy, when computing P, (V' | I(k — A+ 1)) is
(C™ = {k}) u{0}. Thus, card.(CT —Uy) = M[P, (V' | IL(k— A+1))] — 2. Also,
M[P,(Y | IL(k))] = M[P,(V | I7(A))] + card.(C* — Uy) 4+ 1. The result is proved
in this case.

Next, we consider the case Av(Uy) < min{Y;(w) : i € T'¢}. Clearly k € C~
and Uy D C*. Let By, Bs,...,B; be the ordered level sets in the projection
P,(V | Ip(A)), and recall that Av(B;) < Av(Bs) < -+ < Av(B;) and if [ > 1 then
By, ..., B; are singletons. In determining the first upper set for P, (Y | I.(k)),
one considers I and U U C with U an upper set in {A+1,A+2,...,k} and C C
{2,3,..., A}. Therefore, the first upper set in P, (Y | I (k)) is {k} UB,UC™ and
the lower set determined next in computing P, (Y | Ir(k)) is ByU(C~ —{k}). Thus,
M[P,(Y | I(k))] = M[P,(V | Ir(A))] and the proof is completed by showing that
M[Py (V' | I(k— A+1))] = 1. The upper sets in IV = {0,A+1,A+2,...,k}
are I and the upper sets in {A+1, A+ 2,...,k}. Because Av(I") — 0, we choose
Wo(w) > max(Wy(w), Wa(w)) so that Av(I") > Av(Uy) for all W > Wy(w). Hence,
the first upper set obtained in determining the projection P (V' | Ir(k — A+ 1))
isTV. O

Case 1II.  (w; = wy = 1) The situation with only one large weight which is

on an interior element is basic to Case III. Of course, it does not matter which
interior weight is large. Let wo = W and w; =1 for i € ' — {2} and set

(3.6) Qu.k) = Jim Pr(l,kw).

Using the techniques employed in the last section,

0 0o —
/ _ . k—3 _ L- 1/2k §
BT QbR = [ o) [ owlew) ~ s = g
For k > 2 and w defined as above (w1 = w3 = --- = w, = 1 and wy = W),

let Qr(l, k) = limw o Pr(l, k;w) with Pr(l, k;w) denoting the level probabilities
for a simple tree ordering. The Qr(l, k) are given in Table A.13 of Robertson et
al. (1988). To determine Q7 (I, k) with 2 <[ < k — 1, we consider separately the
cases with 2 pooled with 1, 2 pooled with k£ (which has the same probability as
the past case), and 2 is a level set by itself. Using the techniques of Subsection
3.1, this yields

(3.8) Q.(1,k) :2%31 (k“3> (kk_‘g_il) Qr(1,i+2)Pp(1,k—1—1)

1 —1—i-
i=0
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S [o (=) -]
+’§ <"‘;3> (’Zi?:j) Pr(1,i+1)Pp(Lk —1—i+1)

x[io¢<x>/0”¢<y>

Jo () 22| e

Of course Q) (1,k) =1 — Zf:z Q7 (L k). For 5 < k < 15, the values of Q' (I, k)
are given in Table 3. Case Il with A > 1 is treated in the next result.

Table 3. Limiting level probabilities for a loop ordering with second weight approaching oo,
Q7 (I, k) and cumulants, «; and az.

I k=5 =6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15
1 0.0583 0.0255 0.0105 0.0041 0.0015 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000
2 0.2354 0.1302 0.0652 0.0300 0.0129 0.0052 0.0020 0.0007 0.0002 0.0001 0.0000
3 0.3688 0.2824 0.1820 0.1031 0.0526 0.0246 0.0107 0.0044 0.0017 0.0006 0.0002
4 0.2646 0.3229 0.2904 0.2126 0.1337 0.0745 0.0376 0.0175 0.0076 0.0031 0.0012
5 0.0729 0.1922 0.2752 0.2808 0.2281 0.1566 0.0942 0.0508 0.0250 0.0114 0.0048
6 0.0469 0.1444 0.2339 0.2642 0.2339 0.1729 0.1110 0.0635 0.0330 0.0157
7 0.0323 0.1120 0.2000 0.2455 0.2336 0.1841 0.1251 0.0753 0.0409
3 0.0234 0.0892 0.1725 0.2270 0.2297 0.1912 0.1366 0.0860
9 0.0177 0.0727 0.1502 0.2096 0.2237 0.1954 0.1459
10 0.0138 0.0604 0.1320 0.1937 0.2166 0.1974
11 0.0111 0.0511 0.1169 0.1794 0.2088
12 0.0091 0.0437 0.1044 0.1664
13 0.0076 0.0379 0.0938
14 0.0064 0.0332
15 0.0055

oy 2.068 2.667 3.317 4.003 4.719 5461 6.225 7.008 7.807 8.621  9.447
az 5138 6.634 8.214 9.860 11.557 13.294 15.065 16.861 18.680 20.515 22.363

THEOREM 3.3. Letw; =wi =1, w; =1 or W fori=23,...,k—1 and
1<A<k—2 If PP k) = limy oo PL(l, k;w), then PO (1k) =0 for 1 < A
and

(3.9) POLE)=Q l—A+1,k—A+1) for A<I<K.

We give a hueristic justification for Theorem 3.3. A formal proof like the
one given for Theorem 3.2 would provide no new insights. Let Z1, Zs,...,Z; be
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independent standard normal random variables and set Y; = Z; //w; for i € T.
Set G ={2,3,...,A+1}andlet C~ = {i: Z; < Owithi € T — (GU{1,k})}
and Ct = {i: Z; > 0withi € I' = (GU {1,k})}. Consider w in the underlying
probability space with Av(C) # 0 for each ¢ # C C T' — G and Z; # Z; for
1 <I+#j <k Letn bea permutation of the integers 2,3,..., A+ 1 for which
Zr)y < Zn@zy < o < Zr(A+1)- Suppose that W is large enough so that for
¢4 C CT =G, Av(C) < Zp(ay/NW or Av(C) > Zp(ar)/VW.

Let By, Bs, ..., B; be the ordered level sets of the projection of (Y1,Y2,Ya412,
Yais,...,Ys) onto Ir(k—A+1) with weight vector (wy, w2, wat2, WA+s,-- -, Wg)-
In the three cases below, we argue that the number of level sets in the projection
of Y onto I (k) with weight vector w is I + A — 1 for sufficiently large W.

Case 1. (B; = {2} for some 1 < j < k) For 1 < i < j—1, Av(B;) <
Zn(2)/VW and for j < i <k, Av(B;) > Zr(at1) /VW. Applying the modified
PAVA, one obtains the ordered level sets By, Ba,...,Bj_1, {7(2)},{7(3)},.-.,
{m(A+ 1)}, Bji1,...,B.

Case 2. (I = 1) Consider how the single level set B; was obtained via the
modified PAVA. Ordering Y5, Ya12,Ya+s, ..., Yrx_1 in increasing order, one obtains
the Y; with i € C~ in increasing order, Y3, and then the Y; with 7 € CT in
increasing order. We first claim that Av({1} UC7) > Zp(a1y/VW for if not

Av({1} U C7) < Zﬂ(g)/\/W. We suppose the latter and seek a contradiction.
Starting the pooling process at the left, i.e. with Y7, and only considering the
indices 1, C~, 2, this process will stop before coming to Y,. For sufficiently large
W, Av({k,2} U C™T) will be essentially zero. Thus for sufficiently large W, if one
starts pooling at the right, i.e. with Y}, and considers the indices 1, C, 2, CT,
k, the process will stop as or before Y is reached. This contradicts the fact that
l = 1. Hence Av({1}UC™) > Zya11)/VW and it can be shown similarly that

Av({k}UC™) < Zr(2)/VW. If one computes the projection of ¥ onto I, (k) with
weight vector w, then for sufficiently large W, the level sets are {1,7(2)} UC™,
{7(3)},-. {n(A)}, CTU{m(A+ 1)k}

Case 3. (I >1and2 € By; 2 € By is similar) Order Yz, Ya,2,...,Y¢-1 asin
Case 2. Start pooling from the right, i.e. with Yj, to determine B;. The pooling
process must stop before reaching Y because 2 € By, I > 1 and once two elements
are pooled they remain together throughout the process. Thus Av(B;) > 0. Next,
pool from the left to obtain B;. The pooling process must include Y> because 2 €
B, and it must stop with Y5, because for W sufficiently large Av(B;) is essentially
zero. Therefore, the level sets in the projection of Y onto Ir(k) with weight
vector w, for sufficiently large W, is (By — {2}) U{=(2)}, {w(3)},... . {m(A+ 1)},
B, ..., B;. The argument is complete.

Following Robertson and Wright (1983), we show how one may approximate
tail probabilities of §3; under Hy, i.e.

k

(3.10) 5631(3%10) = ZPL(l,k;w)P[Xf_l > s].
=1
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First, classify each weight, w;, as large if
w; > w = 0.65 min(wl, Wy ... ,wk) +0.35 max(wl, Wa, ... ,wk)

(otherwise it is small) and define A to be the 1/3 power of the ratio of the average
of the small weights to the average of the large weights. Next determine to which
of the three cases above the weight vector belongs. Compute ¥3;(s) as in (3.11)

with Pr(l, k;w) replaced by P,—Sl)(l,k:) in Case I, by Pf)(l, k) in Case II or by
P]-E3)(l, k) in Case III. Then, %2, (s;w) is approximated by

(3.11) AXG1(5) + (1= A)xg1 (53 00).

Of course, ¥3;(s) and y2;(s;oc) could be approximated by two moment approxi-
mation, (2.12), with the cumulants given in Tables 1-3.
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