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A b s t r a c t .  Bartholomew's statistics for testing homogeneity of normal means 
with ordered alternatives have null distributions which are mixtures of chi- 
squared or beta distributions depending on whether the variances are known 
or not. The mixing coefficients depend on the sample sizes and the order re- 
striction. If a researcher knows which mean is smallest and which is largest, 
but does not know how the other means are ordered, then a loop ordering 
is appropriate. Exact expressions for the mixing coefficients for a loop or- 
dering and arbitrary sample sizes are given for five or fewer populations and 
approximations are developed for more than five populations. Also, the mixing 
coefficients for a loop ordering with equal sample sizes are computed. These 
mixing coefficients also arise in testing the ordering as the null hypothesis, in 
testing order restrictions in exponential families and in testing order restrictions 
nonparametrically. 

Key words and phrases: Level probabilities, likelihood ratio tests, order re- 
stricted inference, simple loop ordering. 

1. Introduction 

We consider an exper imenta l  s i tuat ion in which one wishes to compare  several 
t r e a t m e n t s  wi th  a control when it is believed a priori  t ha t  all of the  t r e a t m e n t s  are 
as effective as the  control  and t ha t  a par t icular  one of the  t r e a t m e n t s  is as effective 
as the  others.  For instance,  suppose  t ha t  one wished to s tudy  the  effects of diet, a 
drug and  exercise on pat ients  suffering f rom a hear t  condition,  but  were not  able 
to consider all combinat ions  of the  three  t r ea tments .  One could let t r e a t m e n t  1 be 
a control,  t r e a t m e n t  2 consist of diet alone, t r e a t m e n t  3 the  drug alone, t r e a t m e n t  
4 exercise alone and t r e a t m e n t  5 consists of all three.  If  #i is the mean  response 
for t r e a t m e n t  i, 1 < i < 5; if larger means  are desirable; and if it is believed tha t  
diet, the drug  and exercise have a posi t ive effect, then  one could test  the  s tat is t ical  
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significance of these effects by testing #1 = #2 . . . . .  #5 with the alternative 
constrained by #1 _< #j _< #5 for j = 2, 3, 4. Of course, if the effects of the diet, 
drug and exercise are additive, that is the interaction terms are all zero, then the 
testing situation is simpler. We consider the case in which interactions may be 
present and assume nothing is known about the signs of these interaction terms. 

In general, with k treatments, we consider tests of H0 : #1 = #2 . . . . .  #k 
versus H1 - H 0 ,  i.e. H1 holds but H0 does not, with H1 : #1 _< ~tj < Pk for 
j = 2, 3 , . . . ,  k - 1. The order restriction given by H1 is called a (simple) loop, 
cf. Robertson et al. ((1988), p. 84). Bartholomew (1959, 1961) developed the 
likelihood ratio tests (LRTs) of H0 versus H1 - H0 for normal observations with 
common variance, a 2. Robertson and Wegman (1978) developed the LRTs of H1 
versus/ /2  :~ HI. In fact, the LRTs for both testing situations were developed for 
arbitrary partial order restrictions. The null distributions of the LR statistics are 
mixtures of chi-squared or beta distributions depending on whether a 2 is known 
or not. In this paper, we study the mixing coefficients, which are also called level 
probabilities, for the loop ordering. 

In Section 2, the level probabilities are computed for the case of a balanced 
design, i.e. for equal sample sizes. In Section 3, we use the approach in Chase 
(1974) to obtain an approximation to the level probabilities for the case in which 
the control has a larger number of observations, but the other treatments have 
(nearly) equal sample sizes. Section 3 also contains an approximation for arbitrary 
weights which is based on the pattern of small and large weights. Analogous 
approximations have been developed for the simple order (#1 _< #2 _< "'" _< #k) by 
Robertson and Wright (1983), the simple tree order (#1 _< #j for j = 2, 3 , . . . ,  k) 
by Wright and Tran (1985) and for the unimodal order (#1 _< #2 _< "'" _< #h >_ 
#h+l _> ""  _> #k with 1 < h < k) by Lucas et al. (1989). 

Barlow et al. (1972) and Robertson et al. (1988) demonstrate that these order 
restricted tests can be substantially more powerful than their omnibus counter- 
parts. They also argue that unless additional information concerning the spacings 
among the means is available, the LRTs are preferred over contrast tests. Singh 
and Schell (1990) study the power functions of these LRTs for the loop ordering. 

2. The level probabilities 

Let )(  = (X1,X2,... ,Zk)  be the vector of sample means of independent 
random samples from k normal populations with a common variance a2. Let 
# -- (pl, p2 , . . . ,  Pk) be the maximum likelihood estimate of # = (#1, #2 , . . . ,  #k) 
subject to the restriction imposed by H1. # can be computed by relabeling so that 
X:2 < X3 _< "'" _< -~k-1 and then applying the pool-adjacent-violators algorithm 
(PAVA) to all k sample means, cf. Robertson et al. ((1988), p. 8) or by the algo- 
rithm given in Singh and Schell (1992), which is derived from the minimum lower 
set algorithm, cf. Robertson et al. ((1988), p. 24). The first algorithm is called the 
modified PAVA. 

If cr 2 is known, then the LRT of H0 versus Hi  - H0 (HI versus //2) rejects 
H0 (H1) for large values of )~21 0~22) and for (r 2 unknown, the test statistics are 
denoted by/~021 and/~22. These statistics are defined in Robertson et aI. ((1988), 
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pp. 61-64). Robertson and Wegman (1978) show that for 222 and E122, Ho is 
2 denoting a &i-square variable with j least favorable within H1 and that, with Xj 

degrees of freedom (X2o = 0), under H0 

(2.1) 
k 

P[)(21 )_ 8, X22 _) t] = ~ P L ( 1 , 1 ~ ; I ~ ) P [ x ~ I  )_ 8]P[x2_I ) t], 
l=1 

where n = (nx,n2, . . .  ,nk) and PL(l,k; n) is the probability, under Ho, that # 
contains exactly 1 distinct values. Similarly, with Ba,b denoting a beta variable 
(Bos  - 0), 

(2.2) P[fT021 ~_ 8, f722 ~_ ~:] 
k 

= y  5(z, k; >>_ >>_ t] 
/=1 

when H0 is true. It should be noted that p-values for ;~2 and/)0el (X22 and E~2) 
could be obtained from (2.1) and (2.2) by taking t = 0 (s = 0) if the PL(I, k; n) 
were known. 

The PL(I, k; n) also arise when testing hypotheses involving a loop ordering in 
exponential families and when using the analogue of Chacko's nonparametric test 
for a loop ordering, see Robertson et al. ((1988), p. 163 and p. 204). 

The estimate /2 is the vector in IL(k) = {x E R k : xl <_ xj <_ xk for j = 
2 , 3 , . . . ,  k - 1}, the simple loop cone, which is closest to J( in the sense that 
it minimizes ~ n ~ ( 2 ~  -/z~) 2 among all p E IL(k). For w a vector of positive 
weights, let P~(x I IL(k)) denote the projection of x into IL(k) with distance 
4 ( x , y )  = v / ~ W i ( X i - y i )  2. For Y = (Y1,Y>.. .  ,Yk) a vector of independent 
random variables with Yi N Af(0, 1/wi) and wi > 0 for i = 1, 2 , . . . ,  k, let 

(2.3) PL(I, k; w) = P[P~(Y ] IL(k)) has l distinct values]. 

Of course, the PL(1, k; w) are not changed if the Yi ~ Af(a, 1/wi) with a any real 
number or if all of the weights wi are multiplied by the same positive constant. 

2.1 Expressions for the level probabilities: arbitrary weights 
Expressions for the level probabilities, PL(I, k; w), with k = 3 and 4 are given 

in Robertson et al. ((1988), p. 78 and p. 84). 
The expressions given below for k = 5 are tedious, but are easily programmed. 

The level probabilities, PL(I, k; w), for the loop ordering depend on those for the 
simple order and simple tree ordering via equation (2.4.4) in Robertson et al. 
(1988). Because expressions have not been determined for the simple order with 
arbitrary weights and k _> 6, we only consider k = 5. 

Let Is(k) = {x E R k : xl _< x2 < . . .  _< xk}; IT(k) = {x C R k : Xl <_ 
xj for j = 2 ,3 , . . . , k} ;  P~o(x 1 Is(k)) and P~(x ] IT(k)) denote the projections 
of x, with distance d~(., .) onto Is(k)  and IT(k), respectively; and Ps(1, k; w) = 
P[P~(Y I Is(k))  has l distinct values] and Pr(1, k;w) = P[P,o(Y t I t (k ) )  has 1 
distinct values]. 
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If B1, B2,.. . ,  BI partition F = {1, 2 , . . . ,  k} and the projection is constant on 
each Bj and increases with j over the Bj, then the Bj are the ordered level sets for 
the projection. Now consider the case of five populations with arbitrary weights. 

There are six subcases in which five ordered level sets can occur; these are as 
follows: (a) {1}, {2}, {3}, {4}, {5}; (b) {1}, {2}, {4}, {3}, {5}; (c) {1}, {3}, {2}, {4}, 
{5}; (d) {1}, {3}, {4}, {2}, {5}; (e) {1}, {4}, {2}, {3}, {5}; and (f) {1}, {4}, {3}, {2} 
{5}. In subcase (a), the contribution to the level probability, Pr(5, 5; w), is given 
by 

(2.4) 

where 

1 1 1 
16 + ~ ( s i n -  P12 + sin -1 fl23 + sin -1 P34) 

l f-P3~ [ (l-- x2)l/2p12 ] 
+ ~ ./0 (1 -- X2) -1/2 sin -1 - ( f : j x b ~  p22~2 j dx 

(2.5) 
1/2 [ w~wi+2 ] 

p ~ # + ~  = p ~ + l #  = - (wi + Wi+l)(W~+~ + w ~ + 2 )  

for i = 1, 2, 3, cf. Robertson et al. ((1988), p. 75). The contribution to the level 
probability for subcase (b) can be obtained from the above subcase by inter- 
changing w3 and w4; and the contributions of the remaining four subcases can 
be obtained analogously. The level probability, PL(5, 5; w) is the sum of the six 
probabilities mentioned above. 

There are twelve subcases in which four ordered level sets can occur, and these 
are divided into six pairs of cases which are convenient to manipulate mathemati- 
cally to obtain PL(4, 5; W): (a) (i) {1, 2}, {3}, {4}, {5} and (ii) {1, 2}, {4}, {3}, {5}; 
(b) (i) {1,3},{2}, {4}, {5} and (ii) {1,3}, {4}, {2}, {5}; (c) (i) {1,4}, {2}, {3}, {5} 
and (ii) {1,4}, {3}, {2}, {5}; (d) (i) {1}, {2}, {3}, {4, 5} and (ii) {1}, {3}, {2}, 
{4, 5}; (e) (i) {1}, {2}, {4}, {3, 5} and (ii) {1}, {4}, {2}, {3, 5}; and (f) (i) {1}, {3} 
{4}, {2, 5} and (ii) {1}, {4}, {3}, {2, 5}. Consider the pair of cases in subcase (a). 
The required probability in this case is given by 

PS(1, 2; Wl, w2)[Ps(4, 4; Wl 4- w2, w3, w4, Wb) + Ps(4, 4; wt + w2, w4, w3, w5)] 

= 1 03) _4_ ( ~  02 01- -o4)1 
where 

I (Wl + ~1)2)W4 ] 1/2 
01 = s i n  -1 (Wl+W2+W3)(w3+w4) ' 

[ W3W5 ]1/2 
02 = sin-1 (w3 + w4)(w4 -}- Wb) 

and 03 = 01 and 04 = 02 with W 3 and w4 interchanged. Using sin(Tr/2 - 01 - 03) = 
cos 01 cos 03 - sin 01 sin 03, the above probability can be written as 

1 1 
~ ( s i n -  73(1,2),(1,2)4 + s in-1 T35,54) 



T H E  SIMPLE LOOP O R D E R I N G  283 

where 

(2.6) 

and 

] i/2 
WrWs 

1/2 

(2.7/ ~r~,~s = (w~ + w r ) ( ~  + ~s) 

The probabilities in the remaining five case pairs can be obtained analogously. 
Hence, 

1 
(2.8) PL(4, 5; w) = g-~ [sin -1 73(1,2),(1,2) 4 q- sin -1 735,54 + sin -1 T2(1,3),(1,3)4 

+ sin -1%5,54 + sin -1%(1,4),(1,4)3 -]- S in-~ 725,53 

+ S in-1%(5,4),(5,4)2 + sin-1 ral,12 + sin -1 r4(5,a),(5,a)2 

+ sin -1 r41,12 + sin -1 r4(5,2),(5,2)3 + sin -1 r41,13]. 

There are also twelve subcases in which three ordered level sets can occur, and these 
are as follows: (a) {1, 2, 3}, {4}, {5}; (b) {1, 2, 4}, {3}, {5}; (c) {1, 3, 4}, {2}, {5}; 
(d) {1}, {2}, {3, 4, 5}; (e) {1}, {3}, {2, 4, 5}; (f) {1}, {4}, {2, 3, 5}; (g) {1,3}, {2}, 
{4,5}; (h) {1,4}, {2}, {3,5}; (i) {1,2}, {3}, {4,5}; (j) {1,4},{3}, {2, 5}; (k) {1,2}, 
{4}, {3, 5}; and (1) {1, 3}, {4}, {2, 5}. In subcase (a) applying the results in Robert- 
son et al. ((1988), p. 75 and p. 83), the contribution to the level probability, 
PL(3, 5; w), is given by 

PT(1, 3; Wl, W2, wa)Ps (3, 3; wl + w2 + wa, w4, w5) 

1 p S )  : (~ -- Pr(3,3;w,,w2,wa)) (~ + ~--~sin -1 

27r sin-* 1 sin-Z ) 

where 

[  2w3 l,j2 [ ** ]1j2 w,. 

a n d  w I : (Wl -}- Wl -1- w3) ,  w 2 ~-- w4,  w 3 = w5. 

The contributions to the level probability from subcases (b) and (c) are ob- 
tained from that of subcase (a) by interchanging w3 and w4, w2 and w4, respec- 
tively. Likewise, the contributions from subcases (d), (e) and (f) are obtained from 
(a), (b) and (c) with the following substitutions: wl = w5, w2 = w4, w3 = wa, 
w4 = wz and w5 = Wz. The contribution to the probability PL(3,5;w) from 
subcase (g) is given by 

Ps(1, 2; wl, w3)P(1, 2; W4, w5)Ps(3, 3; W 1 -1- W3, W2, W4 -}- W5) 

1 ( 1  7-1 lS2) = + zrc sin-1 p 



284 B A H A D U R  S I N G H  A N D  F. T.  W R I G H T  

where plm2 is given by (2.9) with the substi tut ions w; = (W 1 q- W3) , W~ = W 2 and 
w~ = (w4 + ws). The contributions to the probabili ty from subcases (h) to (1) 
are obtained in analogous manner. Thus, the level probability PL (3, 5; w) is equal 
to the sum of the twelve aforesaid probabilities. Because 1/2 = PL(1, 5;w) + 
PL(3, 5; W) + Pc(5, 5; w) = PL(2, 5; w) + P(4,  5; w) (see Robertson et al. ((1988), 
p. 115)). 

1 _ PL(4,5;w) and P L ( 2 ,  5; = 7 

1 _ PL(3, 5; w) -- PL(5, 5; w). PL(1, 5; w) : 7 

2.2 The level probabilities: equal weights 
If the sample sizes are equal, i.e. nl  = n2 . . . . .  nk, then the weights are 

equal and the PL(1, k;w) can be computed rather easily. We will use the nota- 
t ion PL(1, k), Ps(l, k) and PT(I, k) when the weights are all equal. Robertson and 
Wright (1983) for the simply ordered case, Wright and Tran (1985) for simple tree 
orderings, and Lucas et al. (1989) for unimodal  orderings found tha t  using the 
equal weights level probabilities in (2.1) or (2.2) provides a reasonable approxi- 
marion to the true value of tail  probabilities (2.1) or (2.2) provided the weights 
are not too different, the reader should consult those papers for details. Because 
similar results are expected for the loop ordering, one also could use the values of 
PL (l, k) obtained in this subsection for weights tha t  are nearly equal. 

Using the approach in Robertson et al. ((1988), p. 76), 

PL(~, ~) -~- (~ -- 2)!/~! : []g(~ -- 1)] -1 . 

Next we compute PL(1, k) for 2 < 1 < k - 1. If B1, B2,..., B1 denote the ordered 
level sets for a loop ordering, then card. (By) = 1 for 1 < j < I. Let i = card. (B1 - 
{1}) and j = card.(Bz - {k}). Clearly, i + j  = k - l or j = k - l - i. If w[ = i + 1, 

' 1 for 2 < a < l -  1 and ¢ and ~5 denote the density and distr ibution = j + l ,  = 
function for the s tandard  normal distribution, then PL(I, 1;w') = PlY1 < Y~ < 
Yz for c~ = 2, 3 , . . . ,  l - 1] with ]/1, Y2, . - . ,  ~ independent normal random variables 
with zero means, Var(Y1) = 1/(i + 1), Var(Y~) = 1 for a = 2 , 3 , . . . , l  - 1 and 
Var(Yz) = 1/(j  + 1). Conditioning on Y1 and Y1 with Y1 < Yz, this can be writ ten 
a s  

(2.10) ¢(x) ¢(y) • - • eydx, 

which we denote by I(i  + 1, j + 1). The values of I(i  + 1, j + 1) were obtained by 
numerical integration. Applying Theorem 2.4.1 of Robertson et al. (1988), with 
j = k - l - i ,  

k - - l  

i =0  
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Table 1. Equal-weights level probabilities for a loop ordering, PL(1, k), and the associated cu- 

mulants,  61 and 62. 

l k = 5  k = 6  k = 7  k = 8  k = 9  k - - 1 0  k = l l  k = 1 2  k = 1 3  k = 1 4  k = 1 5  

1 0.1041 0.0508 0.0230 0.0097 0.0039 0.0015 0.0005 0.0002 0.0001 0.0001 0.0000 

2 0.2939 0.1809 0.0995 0.0498 0.0230 0.0099 0.0040 0.0015 0.0006 0.0002 0.0001 

3 0.3459 0.2995 0.2144 0.1329 0.0733 0.0368 0.0170 0.0073 0.0030 0.0011 0.0004 

4 0.2061 0.2858 0.2864 0.2300 0.1567 0.0937 0.0504 0.0248 0.0112 0.0048 0.0019 

5 0.0500 0.1497 0.2388 0.2673 0.2353 0.1733 0.1109 0.0633 0.0328 0.0156 0.0069 

6 0.0333 0.1141 0.2023 0.2472 0.2345 0.1844 0.1251 0.0752 0.0409 0.0203 

7 0.0238 0.0901 0.1736 0.2279 0.2303 0.1915 0.1366 0.0860 0.0487 

8 0.0179 0.0731 0.1507 0.2101 0.2240 0.1956 0.1459 0.0957 

9 0.0139 0.0606 0.1322 0.1940 0.2167 0.1975 0.1533 

10 0.0111 0.0511 0.1170 0.1795 0.2089 0.1978 

11 0.0091 0.0438 0.1044 0.1665 0.2010 

12 0.0076 0.0379 0.0938 0.1549 

13 0.0064 0.0332 0.0848 

14 0.0055 0.0293 

15 0.0048 

61 1.804 2.403 3.056 3.752 4.481 5.238 6.016 6.812 7.624 8.448 9.284 

6~ 4.686 6.212 7.838 9.531 11.272 13.047 14.848 16.671 18.510 20.364 22.229 

k and PL(1, k) = 1 - Y'~4:2 Pc(l, k). Table 1 contains the values of PL(I, k) for 
l < l < k a n d 5 < k < 1 5 .  

Because (2.1) is tedious to compute even for moderate/~, Bartholomew (1961) 
proposed a two moment gamma approximation. With GD, the survival function 
(i.e. one minus the distribution function) of the gamma distribution with param- 
eters b and 1, 

(2.12) P[~0~1 > ~] -;O~(s/p) and p[,~ > s] --pO~(~/p) 

where p 1 - PL(1, k) for ~2 = 01 or p = 1 -- PL(k, k) for X~2 and b and fl are given in 
terms of the first two cumulants, under H0, of ~021 or ~ 2 ,  cf. (3.2.3) of Robertson 
et al. (1988). Table 1 contains the values of 61 and 62, the first two cumulants of 
~ 1  for a simple loop ordering under H0 and the corresponding cumulants for X~2 
are6~=k-l-61 and6~=2(k-l)-461+52. 

Two-moment beta approximations are given for the distributions of/~2 i and 
E~2 under H0. Let /~c,d be the survival function of a beta distribution with 
parameters c and d. The approximation fo r /~2  involves b and p given above, see 
(3.2.7) of Robertson et al. (1988). With p as in (2.2) and u the degrees of freedom 
on the estimator of the common a 2, 

(2.13) P[E~I -> s] -pH~d(.~) 

w h e r e  a = 5 ~ / [ ( ~  + k - 1)p], b = (52 + 5 ~ ) / [ ( ~  + k + a ) ; ] ,  c = a ( ~  - b ) / ( b  - ~ )  a n d  
d = (1 - a)(a- b)/(b- aS). 
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3. Approximating the level probabilities 

Following Chase (1974) we first consider the situation in which the sample 
size for the control population, hi, is larger than the other sample sizes which are 
equal, or at least nearly equal. Then an apwoximation is derived for arbitrary 
weights for those situations in which the equal-weights approximation might not 
seem adequate. 

3.1 Large sample size on the control 
Suppose that wl = W and w2 -~- W3 . . . . .  W k and define 

(3.1) QL(I, k) = lim PL(I, k; w) for 1 < l < k. 
W----~ oc 

As in the last section, PL(k, k; w) = (k - 2)!Ps(k, k : w), and applying (3.3.4) of 
Robertson et al. (1988), QL(k, k) = [2k-l(k - 1)] -1. Furthermore, from Theorem 
3.3.3 of Robertson et al. (1988), we see that l i m w _ ~  PT(1, k; w) = 2 - (k- l ) .  Re- 
peating the proof that led to (2.11) with i, j and I(a, b) defined as there, j = k - l - i ,  
and 

lim I ( W  + i , j  + l ) =  [ ~(y) ~2 Y - dy, 
W---+c~ .to 

which we denote by I ( ~ , j  + 1), for 2 < l < k - 1, 

k--l  

i ~ 0  

k and QL(1, k) = 1 - ~z=2 QL(1, k). The values of I(cc, j + 1) were obtained by 
numerical integration. Table 2 gives the values of QL(l, k) for 1 _< l _< k and 
5 < k < 1 5 .  

Chase (1974) for the simple order, and Robertson and Wright (1985) for the 
simple tree ordering, found that interpolating on 1/x/-W between W = 1 and 
W = ec provided a reasonable approximation to the tail probabilities of these 
test statistics with weight vector, w, of the form considered in this subsection. In 
particular, let 

k 

(3.3) ;~l(s;  w ) =  Z PL(l 'k;w)P[x~-i  >- s], 
1=1 

be as in (3.3) with eL(l, replaced by PL(I, k) and be as in 
(3.3) with PL (l, k; w) replaced by QL(1, k). Because results like those obtained for 
the simple order and the simple tree ordering are expected, we recommend the 
approximation 

(3.4) ~ l ( s ;  w) = (1 - 1/x/W)2~l(s; o c ) +  1/~/W)~gl (.s). 

The two-moment gamma approximation can be used to approximate 2201(s). If 
one replaces 51 and 82 by 0] and 02, the first two cumulants of the distribution 
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Table 2. Limiting level probabilities for a loop ordering with first weight approaching 0% 

QL(1,k) and cumulants,  (91 and O2. 

l k = 5  k = 6  k = 7  k = 8  k = 9  k = 1 0  k = 1 1  k = 1 2  k = 1 3  k = 1 4  k = 1 5  

1 0.2020 

2 0.3969 

3 0.2824 

4 0.1031 

5 0.0156 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

(91 

(92 

1.333 

3.593 

0.1456 0.1039 0.0735 0.0516 0.0359 0.0248 0.0171 0.0117 0.0079 0.0054 

0.3300 0.2659 0.2090 0.1610 0.1219 0.0909 0.0669 0.0487 0.0351 0,0250 

0.3057 0.3013 0.2785 0.2456 0.2087 0.1722 0.1387 0.1094 0.0848 0,0647 

0.1637 0.2108 0.2389 0.2483 0.2420 0.2246 0.2004 0.1732 0.1456 0,1196 

0.0486 0.0921 0.1367 0.1746 0.2010 0.2143 0.2154 0.2065 0.1904 0.1699 

0.0063 0.0233 0.0509 0.0853 0.1209 0.1524 0.1763 0.1906 0.1953 0.1913 

0.0026 0.0112 0.0278 0.0518 0.0805 0.1102 0.1373 0.1588 0.1731 

0.0011 0.0054 0.0150 0.0308 0.0520 0.0768 0.1025 0.1262 

0.0005 0.0027 0.0081 0.0180 0.0328 0.0520 0.0739 

0.0005 0.0013 0.0043 0.0104 0.0203 0.0343 

0.0001 0.0006 0.0023 0.0059 0.0124 

0.0000 0.0003 0.0012 0.0033 

0.0000 0.0002 0.0006 

0.0000 0.0001 

0.0000 

1.658 2.001 2.360 2.731 3.113 3.504 3.904 4.310 4.723 5.142 

4.527 5.515 6.544 7.607 8.697 9.807 10.934 12.075 13.227 14.388 

determined by ~021(8; O0), which are given in Table 2, and replaces PL(1, k) by 
QL(1 ,k ) ,  then a two-moment gamma approximation is obtained for )~021(s;~) 
also. In the same manner, approximations to 2~2(t; w), /)gl(s; w) and /)~2(t; w) 
are obtained. 

3.2 A pattern approximation 
In this subsection, an approximation to the Pr(1, k; w) for arbitrary w is de- 

rived. Each weight is classified as small or large; the limit of the level probabilities 
with the small weights fixed and equal to unity, and the large weights equal and 
growing without bound is obtained; and the approximate level probabilities are 
obtained by interpolating between the equal-weights level probabilities and the 
limiting level probabilities. The details are given at the end of this subsection. 

For the pattern approximation, we need to determine the limit as W -+ ~o of 
PL(I, k ;w)  for all possible patterns of l 's  and W's in the weight. Let w denote a 
vector of weights which are all l 's  or W's. Let A be the number of large weights. 
Of course, we may assume 1 _< A _< k - 1, for if not the weights are equal. We 
consider three cases. While the limiting level probabilities depend on w, this will 
not be made explicit in the notation. 

Case I. (wl = wk = W )  

THEOREM 3.1. Let wl  = wk = W ,  wi = 1 or W for i = 2, 3 , . . . ,  k - 1, and 

2 < A < k - 1. IfP(L1)(l,k) = l i m w ~ P L ( 1 ,  k ;w) ,  then 

(3.5) pL(1)(/, k) = PL(1, A), 
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where Pc(l, k) denotes the equal-weights level probabilities for a simple loop order- 
ing with k populations and it is understood that PL(I, A) = 0 for I > A. 

PROOF. Dividing all the weights by W, the argument  given in Robertson et 
al. (1988) for the Lemma on p. 149 shows tha t  l i m w _ ~  PL(I, k; w) = Pz(l, A). [] 

Case II. (Wl = W and wk = 1; and by symmet ry  the case wt = 1 and 
wk = W )  

THEOREM 3.2. Letwl  = W, wk = 1, wi = 1 o r W  for i  = 2 , 3 , . . .  , k - l ,  and 

1 <_ A < k - 1. I fP(2)( l ,k)  = l i m w - , ~ P L ( l , k ; w )  then P(L2)(l,k) is the (1 + 1)-st 
term of the convolution {PT(j, A)} * {QL(j, k - A + 1)}. 

PROOF. In Subsection 3.1, the case A -- 1 was proved. Next, we consider 
A > 1. By relabeling, we may assume tha t  wl = w2 . . . . .  WA = W and 
WA+l = WA+2 . . . . .  Wk = 1. Let Zo, Z 1 , . . . , Z k  be i.i.d, s tandard  normal 
random variables defined on some probability space, and set Y/ = Z i / v / ~  for 
i = 0 , 1 , . . . , k  with wo = W. Set V = (Y~,Y2, . . . ,YA),  V' = (Yo, YA+I , . . . ,Yk) ,  
v = (wl ,w2, . . . ,WA)  and v' = (w0, w A + l , . . . , w k ) .  We will argue tha t  for each w 
in a set with probability one, there exists a Wo(c~) such tha t  for all W > Wo(a~), 

M[P~(Y  I IL(k))] = M[Pv(V I IT(A))] + M[Pv,(vl  l IL(k - A + 1))] - 1 

where M[x] denotes the number of distinct elements in the vector x. Because V 
and V / are independent this will prove the theorem. 

Let F0 = {0, 1 , . . . , A }  and for ¢ ¢ C c {0, 1 , . . . , k }  let Av(C) = Y~i~c wiYi/  
Y~i~c w~. The event f~0 = {a~: Av(C) ¢ 0 for all ¢ ¢ C c F - Fo and Av(C1) ¢ 
Av(C2) for every C1 and C2 different, nonempty subsets of F0} has probabili ty 
one. Thus, we suppose cJ E f~0. As W --+ ec, Yj (c~) --+ 0 for j = 0, 1 , . . . ,  A, and 
so there exist a W1 (a~) such tha t  for all W > W1 (a~) and each ¢ ¢ C C F - F0, 
Av(C) < min{Y/(w) : i E P0} or Av(C) > max{Y/(w) : i E F0}. Also, choose 
W2(aJ) such tha t  for W > W2(cu), C1 and C2 nonempty subsets of Fo and ¢ ¢ 
D c F - F 0 ,  Av(C1 UD) < A v ( C 2 U D )  i fAv(C1)  < Av(C2). We will choose 
w0( ) _> 

For an arbi t rary quasi-order, we can use either the minimum lower sets al- 
gori thm or the maximum upper sets algorithm to compute a projection onto 
I<< (k) = {x E R k : x~ < xj if i << j}.  These algorithms are discussed in Robertson 
et al. ((1988), pp. 24-26). It is clear tha t  at each step one is finding a level set 
in the projection for the restricted problem in which one only considers the ele- 
ments of F for which the projection has not been determined with << restricted 
to this set. Thus, at each stage one may select either the largest lower set, L, 
in the restricted problem, which minimizes Av(L) or the largest upper set, U, in 
the restricted problem, which maximizes Av(U). In projecting onto IL(h), we will 
first find an upper set U1 and if U1 ¢ F, then we will find a lower set L1. 

Let IH(k) = {x E R ~ : xj <_ x~ for j = 1 , 2 , . . . , k -  1}. In computing the pro- 
jection of (YA+I, YA+2,. . . ,  Yk) onto 1i-t ( k - A )  with weights (WA+l, WA+2,... ,  wk), 
let U1 be the largest upper set in {A + 1, A + 2 , . . . ,  k} which maximizes Av(U) 
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among such upper sets. We consider the case Av(U1) > max{Y~(aa): i ~ C0} first. 
In this case, U1 is also the first upper set in determining the projections P~, (V ~ I 
IL(k -- A + 1)) and Pw(Y I IL(k)). With  C -  = {i :  A + 1 < i < k, Y~(cJ) < 0} and 
C + = {i : A + 1 < i < k; Y~(co) > 0}, U1 contains k but no element in C -  - {k}. 
Clearly {1} ~ U1. Thus in computing P~(Y  ] IL(k)), let L1 be the lower set 
determined after U1. L1 includes all of C -  - {k}. In fact, if L~ is the first lower 
set found in computing P~(VI IT(A) )  , then L1 = L~ 0 ( C -  - {k}). Furthermore,  
the lower set determined after U~, when computing P,, (V'  I IL(k -- A + 1)) is 
( C -  - {k}) O {0}. Thus, card.(C + - U1) = M[P~,(V' I IL(k -- A + 1))] - 2. Also, 
M[Pw(Y I IL(k))l = M[Pv(V I IT(A))] + card.(C + - U~)+ 1. The result is proved 
in this case. 

Next, we consider the case Av(U1) < min{Y~(co) : i E F0}. Clearly k E C -  
and U1 D C +. Let B~,B2 , . . . ,B t  be the ordered level sets in the projection 
P, (V  I IT(A)), and recall tha t  AV(Bx) < Av(B2) < . . .  < Av(Bz) and i f / >  1 then  
B > . . . , B I  are singletons. In determining the first upper set for P~(Y  t [L(k)), 
one considers F and U O C with U an upper set in {A + 1, A + 2 , . . . ,  k} and C c 
{2, 3 , . . . ,  A}. Therefore, the first upper set in P ~ ( Y I I L ( k ) )  is {k} t2 B1 tO C + and 
the lower set determined next in computing P~o(Y I IL(k)) is B1U(C- - {k } ) .  Thus, 
M[P~o(Y I IL(k))] = M[P, (V  ] IT(A))] and the proof is completed by showing tha t  
M[P,,(V'  I IL(k -- A + 1))] = 1. The upper sets in F'  = {0, A + 1, A + 2 , . . . , k }  
are r '  and the upper sets in {A + 1, A + 2 , . . . ,  k}. Because Av(r ' )  ~ 0, we choose 
W0(co) > max(W~(co), W2(co)) so tha t  Av(r ' )  > Av(U1) for all W _> W0(co). Hence, 
the first upper set obtained in determining the projection P,, (V'  I IL(k -- A + 1)) 
is F'. [] 

Case III. (wl = wk = 1) The si tuation with only one large weight which is 
on an interior element is basic to Case III. Of course, it does not mat te r  which 
interior weight is large. Let w2 = W and wi = 1 for i E F - {2} and set 

(3.6) Q~L(l,k)= lira Pn(1, k;w). 
W----+ oo 

Using the techniques employed in the last section, 

0 OO 

/37/ ,k / /0 11j2 2 QL( , k) = ¢(x) ¢(y)[4,(y) - ,~(x)]k-3dydx = (k - 1)(k - 2)'  
04) 

For k >_ 2 and w defined as above (wl = wa . . . . .  wk = 1 and w2 = W), 
let QT(l, k) = lirnw_~o~ PT(l, k; w) with PT(1, k; w) denoting the level probabilities 
for a simple tree ordering. The QT(I, k) are given in Table A.13 of Robertson et 
al. (1988). To determine Q~L(I, k) with 2 < 1 < k - 1, we consider separately the 
cases with 2 pooled with 1, 2 pooled with k (which has the same probabili ty as 
the past case), and 2 is a level set by itself. Using the techniques of Subsection 
3.1, this yields 

k - l - 1  

i=0  

i + 2 ) P v ( 1 ,  k - 1 - i )  
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k - l  

+ E ( k - 3 )  l 
i : 0  

× ¢(x)  ¢(y)  
C<D 

× [ ~ ( v / k _ ? - - i + l ) - ~ ( ~ l ] Z - 3 d y  dx. 

Of course Q L ( , k )  = 1-~z=2Q'L( l~k) .  For 5_< k < 15, the values of QL(l~k) 
are given in Table 3. Case III with A > 1 is t rea ted  in the next  result. 

Tab le  3. L i m i t i n g  level p robab i l i t i e s  for a loop o rde r i ng  w i t h  s econd  weigh t  a p p r o a c h i n g  co, 
I l QL( , k) a n d  c u m u l a n t s ,  a :  a n d  a2 .  

l k = 5  k = 6  k = 7  k = 8  k = 9  k = 1 0  k = l l  k = 1 2  k = 1 3  k = 1 4  k = 1 5  

1 0.0583 

2 0.2354 

3 0.3688 

4 0.2646 

5 0.0729 

6 

7 

8 

9 

10 

1t 

12 

13 

14 

15 

o~2 

2.058 

5.138 

0.0255 0.0105 0.0041 0.0015 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 

0.1302 0.0652 0.0300 0.0129 0.0052 0.0020 0.0007 0.0002 0.0001 0.0000 

0.2824 0.1820 0.1031 0.0526 0.0246 0.0107 0.0044 0.0017 0.0006 0.0002 

0.3229 0.2904 0.2126 0.1337 0.0745 0.0376 0.0175 0.0076 0.0031 0.0012 

0.1922 0.2752 0.2808 0.2281 0.1566 0.0942 0.0508 0.0250 0.0114 0.0048 

0.0469 0.1444 0.2339 0.2642 0.2339 0.1729 0.1110 0.0635 0.0330 0.0157 

0.0323 0.1120 0.2000 0.2455 0.2336 0.1841 0.1251 0.0753 0.0409 

0.0234 0.0892 0.1725 0.2270 0.2297 0.1912 0.1366 0.0860 

0.0177 0.0727 0.1502 0.2096 0.2237 0.1954 0.1459 

0.0138 0.0604 0.1320 0.1937 0.2166 0.1974 

0.0111 0.0511 0.1169 0.1794 0.2088 

0.0091 0.0437 0.1044 0. t664 

0.0076 0.0379 0.0938 

0.0064 0.0332 

0.0055 

2.667 3.317 4.003 4.719 5.461 6.225 7.008 7.807 8.621 9.447 

6.634 8.214 9.860 11.557 13.294 15.065 16.861 18.680 20.515 22.363 

THEOREM 3.3. Let w: = wk = 1, wi = 1 or W for i = 2, 3 , . . . ,  k - 1 and 
1 < A < k - 2. ±/P~(~)(l, k) = l i m w _ ~  P~(l ,  k;w) ,  the~ P~(~)(l, k) = 0 fo~ Z < A 
and 

(3.9) P ( L 3 ) ( I , k ) = Q ' L ( 1 - A ÷ I , k - - A + I )  for A < I < K .  

We give a hueristic justification for Theorem 3.3. A formal proof  like the 
one given for Theorem 3.2 would provide no new insights. Let  Z: ,  Z 2 , . . . ,  Zk be 
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independent standard normal random variables and set Y{ = Z i / ~  for i c F. 
Set G = {2, 3 , . . . , A  + 1} and let C -  = {i : Z{ < 0 with i E F - (G U {1,k})} 
and C + = {i : Z{ > 0 with i E F - (G U {1, k})}. Consider co in the underlying 
probability space with Av(C) 7 & 0 for each ¢ ¢ C C F -  G and Zi ¢ Zj for 
1 _< I ¢ j _< k. Let 7r be a permutation of the integers 2, 3, . . . ,  A + 1 for which 
Z~(2) < Z~(3) < ""  < Z~(A+I). Suppose that W is large enough so that for 

¢ C c r - G, Av(C) < Z~(2)/x/-W or Av(C) > Z~(A+I)/V/W. 
Let B1, B 2 , . . . ,  Bz be the ordered level sets of the projection of (Y1, Y2, YA+2, 

Ya+3,- .- ,  Yk) onto Ig(k -- A+ 1) with weight vector (wl, w2, wA+2, wA+3, . . . ,  wk). 
In the three cases below, we argue that the number of level sets in the projection 
of Y onto IL(k) with weight vector w is l + A - 1 for sufficiently large W. 

Case 1. (Bj = {2} for some 1 < j < k) For 1 < i < j -  1, Av(Bi) < 
Z~(2)/~/W and for j < i <_ k, Av(B~) > Z~(A+t)/v/W. Applying the modified 
PAVA, one obtains the ordered level sets B1,B2,... ,By- l ,  {7c(2)}, {7c(3)},..., 
{Tc(A + 1)}, B j + I , . . . ,  Bl. 

Case 2. (l = 1) Consider how the single level set B1 was obtained via the 
modified PAVA. Ordering Y2, YA+2, Ya+3, • • •, Yk-1 in increasing order, one obtains 
the Yi with i E C -  in increasing order, Y2, and then the Y{ with i C C + in 
increasing order. We first claim that Av({1} U C - )  > Z~(A+~)/v/W for if not 

Av({1} U C - )  < Z~(2)/x/~W. We suppose the latter and seek a contradiction. 
Starting the pooling process at the left, i.e. with Y1, and only considering the 
indices 1, C - ,  2, this process will stop before coming to Y2, For sufficiently large 
W, Av({k, 2} U C +) will be essentially zero. Thus for sufficiently large W, if one 
starts pooling at the right, i.e. with Yk, and considers the indices 1, C - ,  2, C +, 
k, the process will stop as or before Y2 is reached. This contradicts the fact that  
1 = 1. Hence Av({1} U C - )  > Z~(A+I)/X/W and it can be shown similarly that 

Av({k} U C +) < Z~(2)/x/W. If one computes the projection of Y onto IL(k) with 
weight vector w, then for sufficiently large W, the level sets are {1,7c(2)} U C - ,  
{7c(3)},..., {~r(A)}, C + U {Tr(A + 1), k}. 

Case 3. (l > 1 and 2 E B1; 2 E Bl is similar) Order Y2, YA+2,.. . ,  Yk-1 as in 
Case 2. Start pooling from the right, i.e. with Yk, to determine Bl. The pooling 
process must stop before reaching Y2 because 2 E B1, l > 1 and once two elements 
are pooled they remain together throughout the process. Thus Av(Bi) > 0. Next, 
pool from the left to obtain B1. The pooling process must include Y2 because 2 E 
B1 and it must stop with Y2, because for W sufficiently large Av(B1) is essentially 
zero. Therefore, the level sets in the projection of Y onto IL(k) with weight 
vector w, for sufficiently large W, is (B1 - {2}) U {7r(2)}, 0 r (3 )} , . . . ,  {~r(A + 1)}, 
B2, • . . ,  Bz. The argument is complete. 

Following Robertson and Wright (1983), we show how one may approximate 
tail probabilities of 2gl under H0, i.e. 

k 

s; = Z P (l, k;  )P[ LI -> 4. 
/=i 
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First ,  classify each weight,  wi, as large if 

wi > t~ = 0.65 rain(w1, w2 , . .  •, wk) + 0.35 m a x ( w l ,  w 2 , . . . ,  wk)  

(o therwise  it is small) and  define A to  be the  1 /3  power  of  the  ra t io  of  the  average  

of  the  small  weights  to  the  average  of  the  large weights.  Nex t  de t e rmine  to  which  
of  the  th ree  cases above  the  weight  vec tor  belongs.  C o m p u t e  2~1(s) as in (3.11) 

wi th  P L ( l , k ; w )  rep laced  by  P(1)(1, k ) i n  Case I, by  P ( 2 ) ( l , k ) i n  Case  I I  or  by  

pL(3)(/, k) in Case  III .  Then ,  )~021(8; w) is a p p r o x i m a t e d  by  

(3.11) ,~021(8) @ (1 -- /~>X21(8; OO). 

Of  course,  ;~021 (s) and  ; ~ l ( s ;  oc) could  be a p p r o x i m a t e d  by two m o m e n t  approxi -  
ma t ion ,  (2.12), wi th  the  cumulan t s  given in Tables  1-3.  
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