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is introduced and its limiting distribution derived under certain regularity con- 
ditions. 

Key words and phrases: Intermediate order statistic, sample range, weak con- 
vergence. 

1. Introduction and statement of results 

Let X t , X 2 , . . . ,  Xn  (n > 3) be a sequence of independent random variables 
wi th  common distr ibution function F,  which is assumed to be absolutely contin- 
uous (w.r.t. Lebesgue measure) with probability density function f .  For a given 
integer m (2 _< m _< n - 1) denote by 

w(1) <_ w(2) < . . .  < W(N), 

the order statistics of the sample ranges 

r (Xi (1 ) , . . . ,  Xi(~) )  = m a x ( X i o ) , . . . ,  Xi(,~)) - m i n ( X i o ) , . . . ,  Xi(,~)) 

taken over the N = ( n ) combinations 1 _~ i(1) < . . . <  i(ra) _~ n. Consider the 
m 

statistic given by 

(1.1) Tn = a(n){b(n)W(c(n)) - (7 + d(n))} 

for sequences {a(n)}, {b(n)}, {~(n)} and {d(n)} of reat numbers, all depending 
on m, which will be specified below. W(c(~)) is an intermediate order statistic 
(see, e.g. Reiss (1989), p. 12) since we will be dealing only with sequences {c(n)} 
satisfying c(n) --~ ~c and c ( n ) / N  -~ 0 as n -~ ~c. Throughout  the discussion 
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7 is the parameter of interest. If m = 2, V plays an important role in nonpara- 
metric inference. It appears in the Pitman asymptotic efficacy of nonparametric 
tests based on Wilcoxon scores. These include the Wilcoxon signed rank, Mann- 
Whitney-Wilcoxon rank sum, Kruskal-Wallis and Friedman tests in addition to 
asymptotically nonparametric tests in the linear model. It also appears in the 
asymptotic variance of R-estimators derived from these test statistics and in the 
standardizing constant for the test statistics in the linear model. The purpose 
of this paper is to derive the limiting distribution of Tn under certain regularity 
conditions imposed on F and the above sequences of constants. 

Throughout the discussion below the density f will be assumed to satisfy the 
following conditions 

(1.2) f has support (a, b) for some - o c  _< a < b _< co, 

(1.3) f is absolutely continuous w.r.t. Lebesgue measure, 

(1.4) f ( a+)  := l~m a f ( s )  exists and is finite, 

f ( b - )  := l~m b f ( s )  exists and is finite, 

(1.5) the first two derivatives of f exist and are bounded on (a, b), 

almost everywhere, 

(1.6) f E L2"~-l(a, b), where LP(a, b) denotes the space of all Lebesgue 

p-integrable functions. 

state our main results precisely, we first introduce some further notation. 
sequence of real numbers such that 0 < ~ ~ oc as n ~ ec, and 

To 

Let {/3~} be a 
define 

) (1.7) V := 1/ rn! f ( x ) ) m d x  , 

(1 . s )  :=  

(1.9) c(n) := max{n:  n integer, n < N / ( ( m  - 1)!/3n)}, 

(1.10) d(n) := (m - 1)!7(2"~-~)/('~-~){(f(a+)) "~ + ( f (b - ) ) '~} /23~ / (m- l ) .  

We write "--~d" to denote convergence in distribution. 
Our main results regarding the asymptotic distribution of Tn defined by (1.1) 

are stated in the following theorem and the necessary proofs are postponed until 
Section 2. 

THEOREM 1.1. Suppose nm-1//34 -" 0 and n m - 1 / 3 n  - -  oc as n - .  oz. I f  f 
is a non-uniform density satisfying (1.2)-(1.6), then 

(1.11) Tn --~d N(0, 1) 

as  ~t --+ oo ,  w h e r e  

(1.12) a(n) := ( n l / 2 / m 2 ( m  - 2)b/2) 
--1/2 } 
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If n "~-1//93 __+ 0 and n ~-1/ /3~ ~ a~ as n --+ a~ and f is the uniform density on 
(a ,b) ,  then (1 .11)  ~ontinues to hold ~ith 

(1.13)  a(n) : :  {3nS~/(m-1)/27(4"~-3)/(m-1)}l/2(b - a) '~- l /2 /m[ .  

2. Proof of theorem 

In order to prove Theorem I.i we first have to prove some lemmas. Define, 

for each m = 2,3,..., a function r(xl,...,xm) by 

(2.1) r ( x l , . . . ,  Xm) := m a x ( x 1 , . . . ,  Xm) - m i n ( x l , . . . ,  x , J .  

Suppose {e~} is a sequence of real numbers  such that  0 < en ~ 0 as n ~ ce, and 
define 

(2.2) f n ( X l , . . . ,  Xrn) := I ( r ( x l , . . . ,  Xra) ~_ (n) 

where I(A) = 1 or 0 according as the event A holds or not. For each x E (a, b), let 

(2.3) l~(x) := Efn(x ,  X 2 , . . . ,  X,~), 

(2.4) g~(x) := l~(x) - #~, 

(2.5) ~t n : :  Z f n ( Z l , . . .  , z m ) .  

We now derive the following two lemmas 

LEMMA 2.1. Under (1.2)-(1.6), we have as n ~ 

(2.6) Eg](XI)  = m 2  %2,~-2 ( f (x) )2m-ldx  _ ( f (x))mdx 

~- O ( e  2 m - 1  ] 
k n ]~ 

(2.7) E g 4 n ( X l )  ---- O(e4nm-4), 

and if f is the uniform density on (a, b) then 

(2.8) Eg~(Xl)  = { 2 ( m -  1)2(2nm-1/3(b- a) 2m-1 } 

- ( ~  - 1 ) : £ W ( b -  a ) : - ,  

Eg4(X~) : 0(~4~-~). (2.9) 

PROOF. Application of result (2.2.1) of David (1981) together  with some 
elementary probabil i ty calculations yield 

(2.10) l~(x) = (m - 1) [F(y + ~ )  - F(y)]'~-2f(y)dy 

+ [F(x + e~) - F(x)]  "~-1, a < x < a + e~, 

(2.11) I n ( x )  = ( m  -- 1) [ F ( y  + e.n) - F ( y ) ] m - 2 f ( y ) d y  
X - - ~ n  

+ [ ~ ( x  + ~ )  - F ( x ) ]  m - l ,  a + ~ < x < b - ~ ,  

£ b - e ~  
(2.12) l~(x) = (m - 1) __]~-~ [F(y + e~) - F(y)]'~-2f(y)dy 

+ [1 - F(b - (~n)] m- l ,  b - e~ < x < b. 



236 J . W . H .  SWANEPOEL 

In the proofs of (2.13), (2.15) and (2.23) below, 0 < 01 < 1 and 0 < 02 < 1 will 
denote two generic constants. Then (2.10) can be rewritten as follows by applying 
Taylor series expansions together with (1.2)-(1.6), 

jfa x 
ln(x) = (m  - 1)e~ -2 [f(y) + f ' ( y ) e ~ / 2  + f " ( y  + 01en)e2/6] '~-2f (y)dy  

+ [f(x)en + f ' ( x  + 02£n)£2n/2] m-1 

= ( m  - 1)en ~ - 2  [ ( f ( y ) ) . ~ - 2  + ( m  - 2 ) ( f ( y ) ) ' ~ - a f ' ( y ) e ~ / 2 ] f ( y ) d y  

+ e~n-l(f(x)) m-1 + O(en m) 

/J ( m -  1)e m-2 "~-ld + = ( f ( y ) )  y ( m -  2 ) ( f ( x ) ) ' ~ - l e m - 1 / 2  

m--1  m-1 O(En m) - (m  - 2 ) ( f (a+) ) '~ - l e~n-1 /2  + £n ( f ( x ) )  + 

= ( m  - 1 ) e ~ - 2 ( f ( a + ) ) ' ~ - l ( x  - a) + (m  - 2 ) ( f ( x ) ) ' ~ - 1 e ~ - l / 2  

- (m  - 2 ) ( f ( a + ) ) ' ~ - l e ~ - l / 2  + cm- l ( f (x ) )  m-1 + O(cn~). 

Note that the O(e m) terms do not depend on x, since f ,  f t  and f "  are assumed 
to be bounded. Hence, we have that 

(2.13) In(x) = ( m  - 1 ) e ~ - 2 ( f ( a + ) ) m - l ( x  - a) + m e m - - l ( f ( x ) ) m - - i / 2  

- ( m -  2 ) e ~ - l ( f ( a + ) ) m - 1 / 2  + O(%m), a < x < a + en. 

Now, consider the case where a + e~ _~ x _< b - e~. As in the proof of (2.13) 
above, (2.11) can be rewritten as follows 

(2.14) L 
X 

ln(x) = ( m -  1)e m-2 ( f ( y ) ) m - l d y  
- - E  n 

+ (m - 2 ) e ~ - l { ( f ( x ) )  m-1 - ( f ( x  - Cn))m--1}/2 

+ e m - l ( f ( x ) ) m - 1  ÷ O@ m) 

ff  o(C). = (m - 1)e~ -2 ( f ( y ) ) m - l d y  + % ( f ( x ) )  + 
X ~ r ~  

Applying Taylor's theorem once again, we also find that 

L x ( f ( Y ) ) ~ - l d y  
- - c  n 

= ( f ( x ) ) m - l e  n -- (m  -- 1)e~(f(x -- 01en))m-2f f (X  -- 01([n)/2 

= (f(x)) '~- len + O(e~), 

and substituting this into (2.14), yields 

(2.15) In(x) = memn- l ( f ( x ) )  m-1 + O(em~ ), a ÷ ~ n  < x < b - - E n .  
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It is clear from the calculations above that  the O(c~) term in (2.15) does not 
depend on x, since f ,  ff and f "  are bounded almost everywhere. In exactly the 
same way as (2.13), one can also rewrite (2.12) as follows 

(2.16) In(x) = (m - 1 ) e ~ - ~ ( f ( b - ) ) ' ~ - t ( b  - x) + m e ~ - l ( f ( x ) ) ' ~ - l / 2  

- ( m -  2 ) e ~ - l ( f ( b - ) ) m - 1 / 2  + o@m), b -  en < x < b, 

where, once again, O(e~) does not depend on x. Also, note from the proofs above 
that,  if f is the uniform density on (a,b), (2.13), (2.15) and (2.16) hold with 
o(e ) = 0. 

We now claim that  if f is not the uniform density, then as n ~ 
a÷en 

(2.17) (In(x) )2 f (x)dx 
J a  

1~ 2 m - - 1  = (rn 2 + m + 1)% ( f (a+) )2m-1 /3  + O(e2m), 

jfa b-e~ fab (2.18) ( in (x ) )2 f (x )dx  2 2,~-2 ( f ( x ) ) 2 m - l d x  + O(E2m-l~ 
a - ' [ - • n  

b 
(2.19) 

b-e~ 
~ 2m--I = (m S + m + 1)% ( f (b - ) )2"~- l /3  + 0 (~ '~ ) ,  

and if f is the uniform density on (a, b), we have that  

/ a+e~ --~ 1 (~2m--  1 a t  3 (2.20) ( In(x) )2 f (x)dx  (rn 2 + m + ) ~ (f(  ))2m-1/ , 
d a  

f2 (2.21) (l~(x) )2 f ( x ) d x  

n , / a  

2 2 m - - 1  -- r~ C n { ( f ( a ÷ ) )  2m-1 + ( f (b-))2m-1},  

// (2.22) (l~(x))2 f ( x ) d x  = (m 2 + m + 1)%2"~-1 ( f ( b - ) )2m-1  /3. 
- - ~ n  

We will prove only (2.17), since the proofs of (2.19), (2.20) and (2.22) are similar, 
while (2.18) and (2.21) follow directly from (2.15). 

Since f and ff are bounded, Taylor's theorem and integration by parts yield 

a+¢~(x - a )2 f (x )dx  = f ( a  + en)e3/a - (1/3) (x - a )3 f ' ( x )dx  
• Y a  J a  

= f (a+)e~ /3  + O(e4), 

and for any integer k _> 1 

~ +e,~ (x - a ) ( f ( x ) ) kdx  

f 
a+e~ 

--- ( f (a  + e,~))ke2~/2 - (k/2) (x - a ) 2 ( f ( x ) ) k - l f ' ( x ) d x  
d a  

= (f(a+))%2~/2 + O(ean). 
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Also, it is easy to see that 

/aa ~+£'~(f(x) )kdx  : ( f ( a +  ) )k c~ + O(e2).  

Hence, from (2.13) and the above expressions, we obtain after some algebra 

a a-t-en (in(X) )2 f ( x )dx  

: ( f ( a + ) e n ) 2 m - l { ( r n  - 1)2/3 + m 2 / 4  + (m  - 2)2/4 + m ( m  - 1)/2 

- ( m -  1 ) ( m -  2 ) / 2 -  ( m -  2)m/2} + O(e 2m) 
2 m - - 1  2 m - - 1  = (m 2 + m + 1)% ( f ( a + ) )  /3  + O(e~'~), 

which completes the proof of (2.17). 
Finally, we claim that as n --* oc 

(2.23) #n = ( n m - 1 / ~ (  ft% - 1)! - em~(rn - 1 ) { ( f ( a + ) )  m + ( f ( b - ) ) m } / 2  + O(e~ +1) 

which can be proved as follows. Applying result (2.3.3) of David (1981), some 
Taylor expansions, (1.7) and the boundedness of f '  and f " ,  we find that 

/ b - £ r ~  

]~n = m [F(y + e~) - F ( y ) ] m - l  f ( y ) d y  + [1 - F(b  - e~)] m 
. ] a  

/ b - e ~  

= T/%(~n m - 1  [f(y) + f ' ( y ) e ~ / 2  + f " ( y  + 01e~)e2n/6]m-l f (y)dy  
, - ' a  

+ [f(b-)e~ - f ' (b  - 02e~)~/2] "~ 

/b 
--en 

= me~-x  [(/(y)),~-I + (m  - 1 ) ( f ( y ) ) m - 2 f ' ( y ) e ~ / 2 ] f ( y ) d y  
J a  

+ d ~ ( f ( b - ) )  "~ + O(e~ +1) 

= me~ -1 ( f ( y ) ) ~ d y  - ( f ( b - ) ) m e ~  

+ ernn(m - 1 ) { ( f ( b - ) )  m - ( f ( a + ) ) ' ~ } / 2  + e ~ ( f ( b - ) )  "~ + O(c~ +1) 
m - - 1  = % / 7 ( m -  1)[ - e ~ ( m -  1){(f(a+))  "~ + ( f ( b - ) ) m } / 2  + O(e~+x). 

Note that the O(e~+l)- term in (2.23) is zero if f is uniform on (a, b). The proofs 
of (2.6) and (2.8) now follow from (2.4) and (2.17)-(2.23). The proofs of (2.7) and 
(2.9) follow in exactly the same way and will be omitted. This completes the proof 
of the lemma. [] 

Next, let us consider two sets { i (1) , . . . ,  i(m)} and {j (1) , . . .  , j (m)}  of m dis- 
tinct integers from {1, . . . ,  n} and let c be the number of integers common to the 
two sets. Let 

¢¢ :: m{L(X/(1),...,Xi(m))/n(Xj(1),...,/j(ra))} 
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where L ( x i , . . .  , x ,~ ) :=  f n ( x i , . . .  ,x ,O - # ~ .  Note that  ¢1 = E g ~ ( X J .  We now 
obtain the following lemma 

LEMMA 2.2. Under (1.2)-(1.6), we have as n ~ oo 

~c  .--./ 2 m - c - l x  
= ~ e  n ) 

f o r 2 < e < m .  

PROOF. Let 

Y1 := rain(X1, . . . ,  X¢), 

Z1 := min(X~+l , . . . ,  X , 0 ,  

Y2 := max(X1 , . . . ,  Xc), 

Z2 := max(Xc+ l , . . . ,  Xm). 

It follows by symmetry of f~ and by independence of { X i , . . . ,  X~) that  

fabfy b (2.24) ~c = {P(max(y2, Z2) - min(yl,  Z1) < e~)}2p(yl, y2)dy2dyl - p~ 
1 

where P(Yi,Y2) denotes the joint probability density function of Y1 and Y2. Let 
An := {max(y2, Z2) - min(yl,  Z1) _< e~} then 

(2.25) P(A~) = P(An,  Yl <_ Zi ,  Y2 > Z2) + P(An,  Yl > Zi ,  Y2 < Z2) 

+ P(An,  Yi < Zi,  y2 <_ Z2) + P(A~, yi > Z1, y2 > Z2). 

Note that  by the mean-value theorem we obtain 

(2.26) 
b b 

fa fyi{P(An'Yl ~- ZI'Y2 >- Z2)}2p(Yl'y2)dy2dyl 

=/'~ f~+°~{P(yl <_ z~,~ >_ Z~)}b(V~,y~)dv~dy~ 
JC~ JYl 

b 

= ~ fa {P(Yl <_ Zl, Yl + 0 ~  >_ Z2)}2p(yl, ~1 + O~n)dy2dVl 

for some 0 < 0 < 1. Since f is bounded we also conclude that  

(2.27) P(Yl <_ Z1, Yl -t- Oen >_ Z2) = { f ( y l  -~- O~n) -- F(yl)}  rn-c 

= O ( C - O  

and using the well-known expression for P(Yl,Y2) (e.g., see David (1981), p. 10) 
we find that  

(2.28) P(Yl, Yl q- O(n) = c - - 2  f ( y l )O(% ). 

Substituting (2.27) and (2.28) into (2.26) it follows that  the right-hand side of 
(2.26) is t2,~-c-1~ 0 ( %  j. Similar arguments can be used to show that  all the terms 
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(quadratic and cross-product) obtained when we substitute (2.25) into the inte- 
grand in (2.24) are O(e~'~-c-1). This together with (2.23) prove the lemma. [] 

PROOF OF THEOREM 1.1. For the proof of the theorem we need some further 
notation. Set 

(2.29) % := "y + d(n) 

and for any finite constant t put 

(2.30) cn := t/(a(n)b(n)) + %/b(n). 

Furthermore, let 

{ (ran 211)  } 2 2 E g 2 ( X l )  2m--1 2 (2.31) a n := n ~ n Eg~(X1)/((m - 1)!) 2 

as n --+ oc. Finally, define for each n > m 

(2.32) U~ := ~ f~(Xi(1),..., Xi(m)) 
c 

whoror~ do~o~o~ ~mm~tion ovor ~o ( ~ )  comb~ioo~ of ~ d~ioc~ e~omeot~ 
{i (1) , . . . , i (m)}  from {1 , . . . , n} .  

Hence, using (1.1), (2.2), (2.30) and (2.32) we arrive at 

(2.33) H~(t) := P(T~ <_ t) 

-- ~ ( ( ~  ( ; ) . 4 / ~  -~ (~(~)- (m ~ ) ' n ) / ~ . )  

We will now first show that as n --+ ec 

(2.34) ( U ~ - ( n ) p n ) / a n - ~ a N ( 0 , 1 ) .  

Define the projection of the U-statistic Un by 

5~ := ~ E ( U n  I Xi) - ( n -  1 ) E ( U ~ ) .  

i=1 

Note that (see, e.g. Serfling (1980), p. 188) Un can also be written as 

(n  ) - 1  Eg~(Xi )  
( 2 . 3 5 )  u ~  - . ~  ~ = - 1 ~=1 

2 and the variance of 5~ is given by Var(Un) = ~ ,  as defined in (2.a).  Also, the 
variance of U~ is given by (Settling (1980), p. 183) 
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Hence, from (2.6), (2.8), Lemma 2.2, (2.31), (2.36) and the conditions imposed 
on the sequence {fin} we find that  Var(U~) /Var(Un)  --+ 1 as n --+ ec and since 
E(Un - D-n) 2 = Var(Un) - Var(Un), see Serfling ((1980) p. 300), we also have tha t  

(2.37) E(Un -- G ) 2 / V a r ( • )  --+ 0 

as n -+ c~. The proof  of (2.34) will now follow from (2.37) and Chebishev's  
inequality provided that  as n --+ oo 

(2.38) (b'n - ( n )  #~)  / a~ --+d N(0,  1). 

From (2.35) it is clear that  s tandard central limit theory can be applied to prove 
(2.38). It suffices to verify the Lindeberg condition (see, e.g. Billingsley (1968), 
p. 44), i.e. 

n 

E(gn(X )) -+ o 
k = l  

as rz --+ 0% where t'n = (nEg2~(Xl)) 1/2, and this follows directly from Lemma 2.1. 
We will now show that  as n ~ oc 

~n -- C(Tt O- n ~ t. 
m 

To prove this, first consider the case when f is a non-uniform density. Let G,~ := 
- r n ! ( m  - 1 ) { ( f ( a + ) )  m + ( f (b - ) ) '~} /2 .  Using (1.5), (1.9), (2.23), (2.30) and some 
finite Taylor series expansions, it follows fairly easily tha t  

(2.40) ( n )  p n - c ( n ) =  ( n ) [ (1 /7 ) ( t /a (n )b (n ) ) (%/b(n ) ) ,~_2 / (m  _ 2)! 
7 n  

+ - -  1 ) !  

+ O({(a(n))2(b(n)) '~-x} -1) 

+ (Gm/rn! ) (%/b(n) )  "~ + O({a(n)(b(n))r~} -1) 

q- O(1/(b(rt)) rn+l) -- 1/((rn -- 1)!fin)]. 

Consequently, we derive from (1.8), (1.10), (1.12), (2.6), (2.29), (2.30), (2.31) and 
(2.40) tha t  as n --~ oc 

(2.41) ((;) 
t + Ca(n ) (b (n ) )~ - l [ (1 /7 ) (Tn /b (n ) )m-1 / (m  - 1)! 

+ (G,~/rn!)(%/b(n))  "~ - 1 / ( (m  - 1)!fin)] 

=: t + D ~  

for some finite constant C. Finally, applying Taylor's theorem once again, together 
with (1.8), (i.i0), (I.12), (2.29) and the assumptions imposed on the sequence 
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{fin}, we deduce that as n ~ oc 

(2.42) Dn = C a ( n ) ( b ( n ) ) ' ~ - l [ ( 1 / 7 ) ( d ( n ) / b ( n ) ) ( 7 / b ( n ) ) m - 2 / ( m  - 2)! 

+ ( 1 / ' 7 ) ( ' ~ / b ( n ) ) m - 1 / ( m  - 1)! 

+ ( G m / m ! ) ( 7 / b ( n ) )  m - l / ( ( m  - 1)l/3~) 

+ O( (d (n ) )2 / (b (n ) )  "~-1) + O(d(n ) / (b (n ) )m)]  

--+0. 

The proof of (2.39) now follows from (2.41) and (2.42). The proof of (2.39) for 
the uniform density f proceeds exactly as above and will be omitted. The proof 
of the theorem therefore follows from (2.33), (2.34) and (2.39). [] 
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