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Abstract .  Approximations of the estimation variances of kernel estimators of 
the pair correlation function and the product density of a planar Poisson process 
are given. Furthermore, a heuristic approximation of the estimation variance of 
an estimator of the pair correlation function of a "general" planar point process 
is suggested. All formulae have been tested by simulation experiments. 
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1. Introduction 

Second order characteristics play an important role in point process statistics. 
Usually, Ripley's K-function and the L-function (see Ripley (1981) and Stoyan st 
al. (1987)) are used for goodness-of-fit tests and parameter estimation, while the 
product density 0(t) and the pair correlation function g(t) are used in exploratory 
data analysis. The form of these functions helps to understand the type of interac- 
tion in the point pattern and to find suitable point process models. In particular, 
minima and maxima (if existing) of the pair correlation function may give valuable 
information on the strength of order. 

Since estimated second order characteristics deviate from their theoretical 
counterparts because of statistical fluctuations, error bounds for these functions 
are very important. For example, they are needed to distinguish between statisti- 
cal fluctuations in an estimated pair correlation function and peaks which are due 
to real properties of the point process under study. Until now, variances of esti- 
mation for second order characteristics are known only in particular cases. Ripley 
(1988) has given such variances for a series of estimators of the K-function for the 
Poisson process. 

This paper gives estimation variances for product densities and pair correla- 
tion functions. First, in analogy with to Ripley's (1988) calculations, estimation 
variances in the Poisson process case are derived. The formulae obtained are quite 

211 



212 D. S T O Y A N  E T  AL. 

accurate as shown by simulations. Second, a heuristic approximation of the estima- 
tion variance for the pair correlation function of a "general" planar point process 
is suggested, using a Poisson approximation. Again, simulation experiments have 
shown that the formula gives acceptable values, which can be used in practice. 

2. Estimators of the product density and the pair correlation function 

Let N be a planar stationary and isotropic second order point process of 
intensity A. Its pair correlation function g(t) can be explained in two ways; see 
also Penttinen and Stoyan (1989). 

First, it is connected with Ripley's K-function K(t) by 

g ( t ) -  t > o 
dt 

Second, it is given by the following probability P(t). Consider two infinites- 
imally small disks of areas dF1 and dF2 with intercenter distance t. Let P(t) be 
the probability of finding a point in each of the disks. Then, up to quantities of 
higher order, it can be written in the form 

P(t) = AdFIAdF2g(t). 

The (second order) product density 0(t) is given by 

~(~) = ~ g ( t ) ,  t > 0. 

Usually, first 0(t) is estimated, and estimates of g(t) are obtained dividing it by 
estimates of A 2. Estimators of A 2 are 

(2.1) 

and 

(2.2) A~'~ _ n(n - 1) 
a 2 

Here a is the area of the window E of observation; n = N(E) is the number of 
points in E. The estimator (2.2) is unbiased in the case of a Poisson process. 

For estimating Q(t) edge corrected kernel estimators are frequently used, which 
Three estimators of 

1 ~ ~ k ( ~ - - I l x i - - x j l l )  
(2.3) ~F(t) = ~ i=ly=i+l v(Ex~ NExj)  ' 

1 k( -llx - x lL/b j, (2.4) OR(t) = ~ a  
i=l j = i + l  

1 E k ( t -  Ilxi - xjll). (2.5) ~o(t)-  ntTE(t) i=1 j=~+l 

have a property similar to unbiasedness, see Fiksel (1988). 
this type are 
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The summation goes over all points xi (xj) in the window E. 
Here k(s) is a kernel function, for example the Epanechnikov kernel, which is 

used throughout this paper, 

k(s) = 55 1 -  ~ , Is[ < 

0, otherwise. 

The parameter e is called the band width. 
Furthermore, Ez = E + z = {x : x = y + z, y E E}, u(X) is the area of X, and 

b~j is the proportion in E of the perimeter length of the circle of radius Ilxi - x j  II 
centred at xi. Finally', rE(t) is the isotropized set covariance function of E, i.e. 
the mean of u(E  N E z ) ,  where Z is uniformly distributed on the circle of radius t 
centred at the origin o. For convex E, a general approximation formula for rE(t )  
for small t is 

u 
(2.6) ~/E(t) ~ a -- --t, 

7"[" 

where u is the perimeter of E. 
For circular E (radius R) it is 

t 
rE (t) = 2R 2 arccos 2-R - - 

which can be approximated by 

t 
V/4R 2 - t 2, 0 < t < 2R, 

2 

~3 

r E ( t )  ~ 2 - 2 m  - 6--R 

For rectangular E (side lengths c~ and/3, ~ _</3) and t <_ c~ it is 

t 2 
~E(t) = ~9 2 ( ~ + 9 ) t + - - .  

7r 7r 

Practical experience and simulation experiments for e suggest the value 

c f f - -  

with e between 0.1 and 0.25; Fiksel (1988) has suggested e = 0 . l ye .  
The term u(Ex~ N Exj)  in (2.3), which replaces the area a in a naive estimator, 

ensures the edge correction. This estimator is approximately unbiased also in 
the anisotropic case, see Fiksel (1988). The second estimator is a counterpart to 
Ripley's edge corrected estimator of the K-function. Here the t e r m  bij ensures the 
edge correction. This estimator is approximately unbiased only in the case of an 
isotropie point process. (For large values of t a modification has been suggested by 
Ohser which is analogous to that  of the estimator of the K-function; see Stoyan et 
al. ((1987), p. 125)). The third estimator is an isotropized variant of the first one; 
it has been suggested by Ohser (1991). This is perhaps the most elegant: here the 
correction term ~'E (t) has to be calculated only once for fixed t. Its simple form is 
suitable both for programming and mathematical calculations. 

Some further estimators have been studied by Doguwa (1990). 
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3. Simulation experiments and their general results 

The estimators in Section 2 are so complicated that their distributional prop- 
erties can be investigated by simulation only. In this paper simulation is used for 
testing the quality of the approximations which will be suggested in the Sections 4 
and 5. We have used earlier results of Doguwa (1990) and Fiksel (1988) and some 
simulations of our own. In all three cases three types of point process models have 
been investigated: the Poisson process, cluster processes and hard core processes. 

Both Fiksel and ourselves have simulated Matern cluster processes, see Stoyan 
et al. ((1987), p. 143). These processes have parent points forming a Poisson 
process of intensity Ap and daughter points uniformly distributed in discs of fixed 
radius R centred at the parent points; the number of points per cluster has a 
Poisson distribution of parameter #. The parameters for the simulations have 
been: 

Ap = 0.16, R = 1.5, and # = 5 (Fiksel) 

and 

Ap = 0.2, R = 0.5, and # = 10. 

Doguwa has considered a so-called Thomas process, see Stoyan et al. (1987). The 
intensity of the parent process has been 20, the mean number of daughter points 
per cluster 5 and the variance parameter cr = 0.035. 

Both Fiksel and ourselves have simulated Matern's second hard core process, 
see Ripley (1977) and Stoyan et al. ((1987), p. 146). It results from a dependent 
thinning of a Poisson process of intensity ~b. Interpoint distances smaller than 2R 
are impossible. The process parameters have been 

and 

Ab = 1.25, and R = 0.25 (Fiksel) 

/~b ~- 0.2, and /~ = 0.15. 

In contrast, Doguwa has used Matern's first hard core process, see Ripley (19"/7). 
His parameters have been, in Ripley's notation, 

= 145 and 2R = 0.035. 

In all three cases the windows have been rectangles with sizes as follows: 

1 x 1 (Doguwa), 15 x 10 (Fiksel) and 10 x 10 (this paper) 

The band width has been chosen in Doguwa and Fiksel as 0.1V~//~, while we have 
used both this value and its half and double. 

Doguwa has simulated 100 samples, Fiksel 25, and we 50. 
All authors have considered pair correlation function estimators, while we have 

also considered product density estimators. 
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General tendencies 
Doguwa's and our simulations have clearly shown that  there are no essential 

differences between the three estimators gF(t), go(t) and gR(t); only gF(t) has 
estimation variances a little larger than those of the other two. Thus for math- 
ematical calculations we will consider the very simple estimator go(t) and the 
corresponding pair correlation estimator. 

All estimators turned out to have very small empirical biases with the excep- 
tion of the case of very small values of t. They can be reduced by the reflection 
technique, see Doguwa (1990). 

The estimation variances in the case of a Poisson process have a behaviour 
such as shown in Fig. 1. For small ~ they are decreasing with increasing t and then 
they remain constant for moderate t and increase again for large t. It is plausible 
that  for small values of t large variances have to be expected: The estimators 
contain the term "l/t" and the double sum is formed by the few point pairs in the 
sample of a very short inter-point distance. 

0,10 

c~ I~) 

o,o5 
+ o o +o o o o 

o 

o o o 
o o + 

~ .  ~ 

t 

Fig.  1. E m p i r i c a l  s t a n d a r d  d e v i a t i o n s  of  t h e  pa i r  co r re l a t ion  f u n c t i o n  e s t i m a t o r  b a s e d  
on  ~O(t) for ou r  s i m u l a t i o n s  c o m p a r e d  w i th  a ( t )  as  g iven  by  (5.1). T h e  e s t i m a t i o n  

s i t u a t i o n  is t h e  s a m e  b o t h  for c a l cu l a t i ons  a n d  s i m u l a t i o n s ,  /k --- 2, 10 × 10 w i n d o w  a n d  

~ = 0.158. - -  = or(t), o ---- F o i s s o n  p rocess ,  + = M a t e r n  h a r d  core p rocess .  T h e  va lue s  

for t h e  c lu s t e r  p roces s  v a r y  b e t w e e n  0.85 for sma l l  t a n d  0.27 for t g r e a t e r  t h a n  2. 

For the hard core processes, the behaviour of the estimation variances is more 
complicated. Relatively large values appear for t-values near to that  t-value for 
which the discontinuity and maximum of the pair correlation function g(t) appear. 
(Its theoretical form is shown for an example in Stoyan et al. ((1987), p. 121), and 
Fiksel has given values in his Table 3.) For those values of t, where the value of 
g(t) is unity, the estimation variances tend to be constant. Their level is smaller 
than in the case of a Poisson process. 

The estimation variances in the case of a cluster process are larger than for the 
Poisson process. They are very large for small t (where g(t) is greater than unity) 
and decrease with increasing t. Even for those t-values, where g(t) is unity, the 
estimation variances are still larger than in the Poisson process case. For details 
see the figures and tables in Doguwa (1990) and Fiksel (1988). 
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4. Asymptotic variance for Ohser's estimator in the case of a Poisson process 

Ohser's estimator has the same structure as the quantity T on p. 30 of Ripley 
(1988), 

= Z 
sample points xCy 

Thus, the same method as there can be applied for calculating the variance. It 
consists in expressing the first two moments of T by means of factorial moment 
measures. They have a well-known simple form for the Poisson process. The result 
is 

(4.1) 

with 

c(t) 2 [4A3S1 + 2A2S2] vat ~o(t) - 4 

SI = /E { / E k ( t -  [[x- Y[[)dY} 2dx, 

S2 = /E / E k ( t -  Hx- Y[I)2dydx, 

and 
1 

Similarly as in Ripley (1988), $2 can be rewritten in polar coordinates as 

f 
t+e 

J t - -a  

Using the formula for the kernel function k(r) and the approximation (2.6) for the 
set covariance function rE (r) yields the following (very precise) approximation for 

$2: 

(4.2) $ 2 = ~  a:rt- u + t 2 . 

A rough upper bound for $1 can be obtained as in Ripley ((1988), p. 31). It is 

/E ft+~ k ( t  - [Ix - y l l ) d y  <_ 27r k ( t  - r ) r d r  = 2~ t .  
dt--~ 

Thus 

(4.3) $1 ~ 4:r2t2a. 

A lower bound is obtained by restricting the integration for the outer integral of 
S1 on EQb(o,t+c): 

(4.4) $1 _> 4:r212~(E O b(o, t + c)). 
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Here Q denotes Minkowski subtraction and b(x, v) is the disc of radius v centred 

at x. 
In the case of a rectangular window of side lengths a and/3 it is 

u(E G b(o, t + ~)) = (a - 2(t + e))(/3 - 2(t + e)), 

for such values of t for which both factors are positive. 
As it seems, these bounds are useful for practical applications. Our simulations 

have led to empirical estimation standard deviations which are well included by 
the approximations obtained by (4.1), (4.2), (4.3), and (4.4), as shown in Table 1. 
Only the values for t = i are given. This has two reasons: first, with increasing 
t the approximations lose their quality, in particular the lower bound. Second, 
the general experience reported in Section 3 suggests similar deviations also for 
larger values of t, and thus for practical use it is sufficient to calculate the bounds 
once for a small value of t. The approximation may be refined by using better 
approximations for $1, which can be obtained in a similar way as the following 
approximations of estimation variances for pair correlation function estimators. 

Table 1. Empir ical  es t imat ion  s t anda rd  deviat ions of ~o(1)  from our s imulat ions and  corre- 
sponding bounds  in the  case of a Poisson process. 

lower bound  empirical  value upper  bound  

0.079 0.608 0.672 0.729 

0.158 0.551 0.612 0.690 

0.316 0.506 0.584 0.670 

For approximating the variance of the pair correlation function estimator based 
on go(t) again Ripley's method can be used. It is 

a 2 

 o(t) = Z go(t), t > 0. 

The form of this estimator is the same as that of I~o(t) on p. 35 of Ripley (1988), 
and it is therefore possible to use similar arguments for the calculation of its 
variance. Thus 

c(t) 2 2 n - 1  ( 4 n : 8  4 n - 6 s 2 + 2 S 2 ) ,  
varngo(t) = ~ - a  ~ S 1 a ~  

where vary, as in Ripley (1988), denotes the variance in the case of a binomial 
process. 

Here S1 and $2 are defined as above, while 

S = /E /E k(t -- [[x -- yH)dxdy. 
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In polar coordinates this integral can be rewrit ten as 

ft+e 
S = 27rJt_~ k(t - r)TE(r)rdr. 

Similarly as $2, S can be approximated by 

(4.5) S = 27rta- 2u ( ~  + t2) . 

Also as above, upper  and lower bounds  for $1 can be used for deriving bounds  
for var~o( t ) .  Here we give an approximation which is in the sense of Ripley. 
Obviously, 

$1 = 47r2t2u(E 0 b(o, t + e)) + f {...}2dx. 
JE \E@b(o,tWe) 

For a rectangle the first te rm is 

47r2t2[a - u(t + e) + 4(t + e)2]. 

The following integral is approximated by 

1 f t+~ b(r)dr[u(t + e) - 4(t + e)2], 
t + e j O  

where b(r) is the length of the arc in E of the  circle of radius t + c centred in E 
at a point of distance t + e - r from the boundary.  This yields 

var~ go (t) = c(t)24 a2 nn a- 1 (X  + nYa +--~n Z) (4.6) 

with 

and 

12 [alr t -u  (t2 + ~ ) l  -81r2t2 + - ~ C  + ? B D ,  X=~ 
Y = -16BD, 
Z = -4C, 

B = 7r2t 2 -- (t + ~)2(7r -- 1) 2 , 

C = 4u 2 -+- t 2 - 87rtau + t 2 , 

D -- u(t + c) - 4(t + e) 2. 

Taking expectat ions over n, which can be justified as in Ripley ((1988), p. 37), 
finally gives the approximation 

(4.7) vargo(r ) - c(t)2 ( X + A Y +  ~ Z )  
4A2 
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Table 2. Comparison of empirical and estimated standard deviations of the pair correlation 
function estimators in the case of a Poisson process for Fiksel's ~. 

Simulations empirical approximation 
made by t value obtained by (4.7) 

Doguwa 0.1 0.125 0.205 
0.3 0.11 0.167 

Fiksel 1.8 0.07 0.106 

4.5 0.08 0.136 
authors 1 0.057 0.075 

3 0.052 0.097 

I t  yields acceptable  values, as compar isons  wi th  s imula ted  variances have shown. 
Table  2 gives the figures. 

5. A heuristic approximation of the estimation variance of the pair correlation func- 
tion estimator 

In the  following we show how a simple Poisson approx ima t ion  can yield accept-  
able approx imat ions  for the  es t imat ion  variances of the pair  correlat ion funct ion 
es t imators  also for non-Poisson point  processes. 

For known A the  es t imator  of the pair  correlat ion funct ion can be wr i t t en  as 

c(t) 
g b ( t )  - k ( t - I I x -  ylI), r 0. 

sample points 
xCy 

If  always only one m e m b e r  of the s u m m a n d  pairs  k( t - I Ix-  7/11) and  k( t -  [lY- all) 
is included, then  the form 

c(t) 
g ; ( t ) -  Z x ,i 

i=1 

is obta ined,  where Nt is the  num ber  of the point  pairs within dis tance t. We will 
app rox ima te  its variance and  use the  result  also in the  case of unknown )~. 

Clearly, the s u m m a n d s  of this sum are only weakly variable,  since only point  
pairs  of an inter-point  dis tance close to t cont r ibute  to the  sum. The  main  vari- 
abil i ty comes f rom the number  Nt of those point  pairs.  This  number  is small  
compared  with the  number  of all pairs  of points  of the process in the window. 
Thus,  observing a point  pair  of a dis tance close to t is a "rare event" ,  and a Pois- 
son approx ima t ion  is plausible. Consequently,  d is t r ibut ional  proper t ies  of the sum 
above will be de te rmined  assuming tha t  

Nt has a Poisson dis t r ibut ion of mean  #t 

and 
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the Xt,i are i.i.d. 

The X~,t are clearly of the form Xt,i = k(t - Di) with t - s _< Di _< t + s. It seems 
to be natural  to assume tha t  the Di are "completely random",  i.e. uniformly 
distr ibuted on the interval [t - s, t + e]. This yields the first two moments  of Xt# 
a s  

and 
f 1 k(s)ds 1 EX # = : 

// f (  1 k2(s)d s -  9 1 -  ds EX~i = ~ ~ 32s 3 ~ ~ = -~-. 

The mean #t of Nt can approximately be obtained by using the "unbiasedness" 
property of g~ (t), using 

N~ 

g(t) = - ~ - ~  Z.. ~t,i = A2 # t ~ t # .  
i=1 

This yields 

# t -  
2¢a(t)  2 

c(t) 

Using this #t, the variance a2 (t) of 9~9 (t) can be approximated by 

c(t) 2 
c(t)2 [#t va rXt  i + var Nt(EXt#) 2] = - - ~ # t E X t ,  i.  2(t) - 

The final result is 

(5.1) 

with 

cr2( t )_  0.6c(t)g(t) 
~A2 

1 
c ( t ) -  

The qualitative behaviour of this o-(t) in dependence on window size, band 
width s and g(t) is in good agreement with expectations of statisticians and em- 
pirical results. The function or(t) is decreasing for small t, has a minimum for 
moderate  t and is then increasing in t. For t = 0 it has a pole, which well cor- 
responds to the behaviour of all estimators (2.3) to (2.5) at t = 0. Taken as a 
function of s, it is decreasing, and it increases with increasing g(t). In the case of 
a Poisson process it gives good approximations, in particular for small and mod- 
crate t, also for s-values different from those suggested by Fiksel (1988). Figure 
1 shows a(t) in comparison with empirical values resulting from our simulations. 
The deviations obtained in this example are typical for the approximation. 

Also for hard core processes (5.1) gives good approximations, which are bet ter  
than  in the case of a Poisson process, see also Fig. 1. In contrast,  (5.1) is not 
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acceptable for cluster processes with a higher degree of clustering, as discussed 
in all simulations: the empirical standard deviations are much greater than those 
predicted by (5.1). 
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