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A b s t r a c t .  The Morisita's model for estimating the habitat preference by the 
ant lions Genuroides japonicus is generalized by introducing, in addition to the 
environmental densities a and b, a repulsivity parameter 0. The probability 
function of the number Ln of individuals choosing fine sand to settle when a 
total of n ant lions are introduced is examined. A heuristic and the minimum 
chi-square methods for estimating the parameters a, b and 0 are discussed. 
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1. Introduction 

Morisita (1971), after a series of experimental studies on the habitat preference 
by the ant lions Genuroides japonicus, introduced the concept of "environmental 
density", which gives the value of a habitat expressing its unfavorableness for 
settling of an animal which has a strong mutual-repulsive influence to other in- 
dividuals in the environment. According to Morisita, the ant lions have a strong 
tendency to prefer fine to coarse sand for pit formation when the population den- 
sity is low; this tendency gradually falls with increasing density until an almost 
equal number of individuals settles in both sands. 

Morisita's experimental data were collected by placing a total of n ant lions 
(n = 1, 2 , . . . ,  7) at the center of a box containing fine sand in one half and coarse 
sand in the other half. When all n ant lions had settled (by digging a small pit 
somewhere in the box), the number of individuals in the fine sand and coarse sand 
were counted. Morisita modelled his experiments assuming that  

Pr(the first ant lion to choose coarse sand) 

= 1 - Pr(the first ant lion to choose fine sand) = a/(a + b), 

Pr(the (n + 1)-st ant lion to choose coarse sand given that  

k ant lions are in fine sand) = (a + k)/(a + b + n), 
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Pr(the (n + 1)-st ant lion to choose fine sand given that 

n - k ant lions are in coarse sand) = (b + n - k ) / ( a  + b + n), 

where the positive real parameters a and b expressing the "degree of unfavorable- 
ness" of fine and coarse sand respectively, are the aforementioned environmental  
densities. Consider the number L~ of ant lions choosing fine sand to settle and 
let pk(n; a, b) = Pr(L~ = k), k = 0, 1 , . . . ,  n. Morisita (1971) deduced a recur- 
rence relation for pk(n; a, b), k = 0, 1 , . . . ,  n which was subsequently used for the 
estimation of the unknown parameters a and b. Janardan (1988) gave an explicit 
solution for pk (n, a, b) in terms of the generalized Eulerian numbers E~,k (a, b) and 
estimated a and b utilizing the methods of moments and maximum likelihood. 
It should also be noted that, as Charalambides (1991) indicated, E~,k(a,b) are 
directly related to the (symmetric) generalized Eulerian numbers of Carlitz and 
Scoville (1974). 

In the present paper we consider (Section 2) a certain generalization of 
Morisita's model by introducing an additional parameter 0 whose purpose is to give 
the model more flexibility in the explanation of individuals' repulsive behaviour. 
For the study of the resulting probability function pk(n; a, b, 0) we employ proper 
generalizations of the Eulerian numbers of the binomial coefficients which are in- 
troduced and extensively studied in Section 3. In Section 4 we give formulas 
for the probability generating function and factorial moments of the distribution 
pk(n;a,b,O).  Finally, in Section 5, we indicate how our model can be used for 
improving the fitting of Morisita's experimental data. 

2. A generalized Morisita model 

In Morisita's model the (n + 1)-st ant lion selects fine (coarse) sand with 
probability proportional to a + nx  (b + ny)  where a, b are the environmental 
densities and x, y are the repulsivity factors, expressing the unfavorableness due 
to the population present in habitat. Morisita assumed that the unfavorableness 
due to the presence of an individual is one unit and therefore x = k i n  (y = 1 - k / n )  
is the proportion of individuals settled in fine (coarse) sand respectively. 

In our generalized model we introduce a new parameter 0, ( - a / n  < 0 < b/n)  
called hereafter repulsivity parameter, and assume that the repulsivity factors x 
and y are given by 

k k 
x = - + 0 ,  y = l - - - 0 .  

n n 

So, our generalized model is completely described by the following postulates 

(2.1) 

(2.2) 

(2.3) 

Pr(the first ant lion to choose coarse sand) 

= 1 - Pr(the first ant lion to choose find sand) = a / (a  + b), 

Pr(the (n + 1)-st ant lion to choose coarse sand given that k ant 

lions are in fine sand) = (a + k + nO)/(a  + b + n), 

Pr(the (n + 1)-st ant lion to choose fine sand given that n - k ant 

lions are in coarse sand) = (b + n - k - nO)/(a + b + n). 
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Let Ln denote the number of individuals choosing fine sand to settle, when a 
total  of n ant lions are introduced in the experiment.  Making use of assumptions 
(2.1), (2.2) and (2.3), we may easily deduce that  the probabil i ty function 

pk(n;a,b,O) = Pr(Ln = k), k = O, 1 , . . . , n  

satisfies the recurrence relation 

(2.4) p k ( n + l ; a , b , O ) =  k + a + O n  , 
a-+ b~  n pk~,,; a, b, O) 

b + n - k + l - O n  
+ a ÷ b + n  pk_l(n;a,b,O), 

k =  1 , 2 , . . . , n + l ,  n = O, 1 , . . .  

with initial conditions 

(2.5) 
n - 1  

po(n;a,b,O) = Pr[L1 = 0 ]  1-[ Pr [Lj+I  = O I L j  = 0 ]  
j = l  

This probabil i ty  function can be wri t ten in the form 

B~,k(a,b,s) k = O ,  1 , . . . , n ,  s = - l / O  ( ) (2.6) pk(n;a,b,O)= a + b + n - 1  sn 

n 

where, by (2.4) and (2.5), the double sequence of numbers  Bn,k(a, b, s), k = 
0, 1, . . . ,  n, n = 0, 1, 2 , . . .  satisfies the recurrence relation 

(2.7) (n + 1)Bn+l,k(a, b, s) = [s(k + a) - n]B~,k(a, b, s) 

+ [s(n - k + b +  1 ) + n ] B n , k - l ( a , b , s )  

k = 1 , 2 , . . . , n + 1 ,  n = 0 , 1 , 2 , . . .  

with initial conditions 

(2.8) Bo,o(a,b,s) = 1, Bo,k(a,b,s) = O, k = 1 , 2 , . . . .  

These numbers, which are asymptotically connected with the generalized Eu- 
lerian numbers (see Janardan (1988), Charalambides (1991)), are examined in the 
next section. 
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3. The number Bn,k(a,  b, s) 

Consider, first, the polynomial  

(3.1) B ~ ( t ; a , b , s )  = E B~ , k (a ' b ' s ) t k  
k=0 
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n = O, 1, 2, . . . .  

Then, by virtue of (2.7) and (2.8) the difference-differential equation 

d 
(n + 1 ) B n + l ( t ; a , b , s )  = st(1 - t ) g B n ( t ; a , b , s )  

+ [(sn + sb + n) t  + (sa - n)]Bn(t;  a, b, s), 

n = O, 1 , 2 , . . .  

with B0(t; a, b, s) = 1, is readily obtained. Introducing the auxiliary functions 

(3.2) C~(t; a, b, s) = ta-~/s(1  - t ) -(~+a+b)Bn(t;  a, b, s), n = O, 1, 2 , . . . ,  

the more manageable difference-differential equation 

1 l ' s  d (3.3) ( n +  l ) C n + l ( t ; a , b , s ) = s t  - / ~ C n ( t ; a , b , s ) ,  n = 0 , 1 , 2 , . . .  

with C0(t; a, b, s) = ta(1 - t )  -(a+b), is deduced. Multiplying it by u ~ and summing 
for n = 0, 1, 2 , . . .  it follows that  the generating function 

(3.4) c ( t ,u ;a ,b , s )  = Cn(t;a,b,s)u 
n= 0  

satisfies the partial  differential equation 

OC( t, u; a, b, s) _ st~_~/s OC(t,  u; a, b, s) = 0 
On Ot 

with C(t ,0 ;  a, b, s) = C0(t; a, b, s) = ta(1 - t )  -(~+b). The general solution of this 
equation may easily be obtained in the form 

C(t ,  u; a, b, s) = gJ(u + t 1/s) 

where • is a function to be determined. Pu t t ing  u = 0 and since C(t ,  0; a, b, s) = 
t~(1 - t) -(~+b) if follows that  

~( t l /~ )  = ta(1 -- t)-(a+b). 

Hence @(w) : w ~ ( 1  -- w~) -(a+b) and 

(3.5) C(t ,  u; a, b, s) = (u + t l / s ) sa[1  - (U -~ 7~1/s)s] - (a+b).  
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The generating function 

(3.6) B(t, u; a, b, s) = ~ B~(t; a, b, s)u ~ 
n : 0  

n = 0  k=0 

by virtue of (3.2) may be obtained in terms of the generating function (3.4) as 

B ( t ,  ~; a, b, 8) = t - a ( 1  - t ) a + b c ( t ,  t l /~ (1  - t)~; a, b, ~). 

Thus, by (3.5) 

(3.7) B(t,u;a,b,s)=[l+(1-t)u] 83 l _ t [ l~_ t )u ]8  . 

Expanding this generating function into powers of u, 

B(t,u;a,b,s)=(l_t)a,bE a+b+j-. 1 tJil+(l_t)u]S(j+a) 
j = 0  2 

=( l_ t )a+b~--~ .  a+b+j-1, tj s ( j + a )  ( l _ t ) ~ u ~  
j=o 3 n n=O 

/(:/} = E  (l_t)n+a+b E a+b+j -1  s(3 a) tj 
n=o j=o J un, 

it follows, by (3.6), that  

(3.8) 

and 

(3.9) 

Bn(t;a,b,s) 

j=o 2 n 

/3~,k (a, b, s) 
k =E(--1)k-j(a+b+n) ( a + b + j - 1 )  (s(j+a)) 

j=o k - j j n 

k : E ( - 1 ) j ( a + ~ + n )  ( a + b + k - j - 1 )  ( s (k - j+a) )  
j=o k - j n 

The following properties of the numbers Bn,k (a, b, s) are worth noting. 
(a) Taking the limit, as t ~ 1, of the generating function (3.7) it follows that 

t---~ 1 Tt 
n z 0  
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implying 

(3.10) 

(b) 
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Bn(1;a,b,s)=EB~,k(a,b,s)  = a + b + n - 1  sn" 
k=0 rt 

From (3.9) and since 

it follows that 

(3.11) 

where 

lim s n(s/  J÷a/  
s--~+cc n n! 

lim s-~B~,k(a,b,s) = An k(b,n)/n!, 
8 ----~ -1- 0 0  

) ( )  An,k (b ,a )=E(_ l ) j  a + b + n  a + b + k - j - 1  ( k _ j + a ) n  
j=0 J k - j  

is the generalized Eulerian number (Janardan (1988), Charalambides (1991)) 
which is related to the generalized symmetric Eulerian number A(r, s I a, b) of 
Carlitz and Scoville (1974) by 

A~,k(b,a) = A ( k , n -  k l b, a ) = d ( n -  k, k la, b ). 

(c) The generating function (3.7) may be rewritten in the form 

B(t ,u;a ,b ,s )=[1-( t -1)u]-sb  {1 - [1-( t -~l )  1 j - s - l }  - a - b  

which, on using the Gould-Hopper numbers (Gould and Hopper (1962), 
Charalambides and Koutras (1983)) 

(3.12) a(~, ~; ~, 9) = ~ k 
k=0 

with generating function 
oo 

E G(n,r;a,/~)u'Vn! = (1 + u)"[(1 +u) a - lit/r!, 
T ~ z T "  

can be expressed as 

B(t, u; a, b, s) 

,iozO 

-- ~ ( a + b ÷ r - l )  

r=0  n = r  

= ~ : 0 ~ - ~ " { ( - 1 ) n ~ ( a + b + r - l )  r ' G ( n ' r ; - s ' - s b ) ( t - e ) u - ~ } n '  ~=0 r un' 
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yielding 

(3.13) Bn(t;a,b,s)----(-1)nn! ~(a+b+r-r 1) r[G(n'r;-s '-sb)(t-1)n-~'" 
r = 0  

Finally note that  

k 
Bn,k(O, 1 , - s ) - - B ~ , k ( - s ) = E ( - 1 ) j ( n + l )  ( s ( k - J ) + n - i )  

5=0 J n 

is the number of sequences { i l , i 2 , . . . , i n }  with i~ E {1, 2 , . . . , s } ,  r = 1 , 2 , . . . , n  
(repetitions allowed) showing exactly k increases between adjacent elements 
(Carlitz et al. (1966)). 

4. Generating functions and factorial moments of the distribution 

The probability generating function of the distribution (2.6), on using the 
polynomial (3.1), may be obtained as 

(4.1) G~(t;a,b,O) = Epk(n;a,b,O)tk = (-1)nBn(t;a'b'-l/O)On 

and consequently the factorial moment generating function as 

n t~ ( -1)nBn(1  + t; a, b, - 1 /0 )0  n 
(4.2) Fn(t;a'b'O)= EP(~)(n;a'b'O) r! ( a + b ~ n Z ~  ' 

where 

#(r)(n;a,b,O) = E[L~(L~- l ) . . . ( L n -  r + l)], r = l , 2 , . . . ,  

#(0) (n; a, b, 0) = 1. 

A direct comparison of (4.2) to (3.13) yields 

(4.3) p(r) (n; a, b, 0) = G(n, n - r; 1/0, b/0)0 ~ 
( a + b + n - 1 )  ' 

Making use of the recurrence relation satisfied by the numbers G(n,r, ct,/3) 
(Charalambides and Koutras (1983)), 

G(n, r; a,/3) = (ar +/3 - n + 1)G(n - 1, r; ct,/3) + c~G(n - 1, r - 1; c~,/3), 

r = l , 2 , . . . , n ,  n =  1 , 2 , . . . ,  
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or the recurrence (2.4), we can find a recursion formula for the factorial moments  
(4.3), 

~(~) (~ a,  b, 0)  = ~ [~  - ~ + b - ( ~  - a-22~ ~2n--  ~- 1 )0 ]# (~_1) (n -  1;a,b,O) 

a + b + n - r - 1  
+ a + b + n - 1  #(r) (n-1;a ,b ,O) .  

For the first two factorial moments  we obtain 

~(~; a,  b, 0)  : E [ L ~ ]  = 
a + b + n - 1  ' 

#2 (n; a, b, 0) 

(4.4) = E[L~] - E[L~] 

Tt n 
2 [ 3 ( 1 - 0 )  2 ( 4 )  + ( 1 - 0 ) ( 1  + 3 b - 2 0 ) ( 3 )  + b ( b - O ) ( 2 ) 1  

( a + b + ~ - l ) ( a + b + ~ - 2 )  

Another  point of interest is the following: employing the recurrence (3.3) one 
could show (for example by induction on n) tha t  the polynomial  B~(t; a, b, s) has 
n distinct real non-positive roots for all n = 1, 2 , . . . .  As a consequence we deduce 
that  

(a) B~,k(a, b, s) is a strictly logarithmic concave function of k, i.e. 

[B~,k(a,b,s)l 2 > B~,k+l(a,b,s)B~,~_l(a,b,s). 

(b) The distr ibution (2.6) is unimodal  either with a peak or with a plateau of 
two points (see Comtet  (1974)). 

(c) The random variable L~ can be expressed as a sum of n independent  
zero-one random variables. 

5. Parameter estimation in the generalized Morisita model 

Morisita (1971) proposed a heuristic method  for est imating the environmental  
densities a and b. His method  utilizes the ratio of the mean number  of individuals 
in fine sand to the total  number  of individuals introduced i.e. E[L~]/n. In order 
to get a second relation between the unknown parameters ,  Morisita es t imated the 
ratio b/a through an additional series of experiments.  Janardan  (1988) gave the 
moment  and maximum likelihood est imates based only on the initial experimental  
data. 

In the present paper, we are going to est imate the environmental  densities a, b 
and the repulsivity parameter  0 by two different methods.  Both  of them are based 
on the initial Morisita 's da ta  only. 

The first method  proceeds along the lines set by Morisita. If a total  of n 
individuals are allowed to choose their habitat ,  then, according to our generalized 
model, the mean number of individuals in fine sand is (see (4.4)) 

E[L~] (1 - O) n - 1 --5--+5 
- -  ~ p n .  n a + b + n - 1  
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Therefore 

a = b A -  ( n - 1 ) ( 1 - A ) ( l _ 0 ) _ ( n _ l ) 0 ,  A 1 
2 pn 

and making use of Morisita 's  (1971) Table 2, we deduce that  

(5.1) a = 0.6313b - 2.66690 - 0.3331. 

From the observed da ta  of Table 1 (see also Table 2 of Morisi ta (1971) or Janardan  
(1988)) we may write 

(5.2) E [ L 1 ]  - - -  
b 29 

a + b  32 

Finally, equating the probabil i ty tha t  one out  of 2 individuals selects fine sand to 
13/32 (see Table 1 of Morisita (1971) or Janardan  (1988)) we obtain  

b - 0 b 13 
(5.3) 

a+b+1 a+b 32 

Equat ions (5.1), (5.2), (5.3) lead to a linear system in three unknowns which gives 

(5.4) a = 0.111, b = 1.076, 0 = 0.0956. 

Next,  we consider the minimum chi-square est imates of a, b, 0. If xn denotes 
the observed number  of ant lions (out of n) sett led in fine sand, the &i-square  
statistic for the da ta  of Table 1 is given by 

Table 1. Observed and  expected values for Moris i ta 's  exper imenta l  data .  

Tt 

Number  of ant  lions in fine sand 
Number  Number  

of of ant  lions Observed Es t ima ted  
exper iments  in t roduced 

xn (1) (2) (3) (4) (5) 

1 32 32 29 28.3 24.5 24.4 29.0 29.1 

2 32 64 45 42.6 40.5 40.6 44.7 43.6 

3 32 96 58 58.1 56.5 56.7 59.7 58.6 

4 30 120 67 69.2 67.9 68.1 69.7 69.2 

5 29 145 81 81.3 80.2 80.4 80.6 80.7 

6 22 132 71 72.6 71.8 72.0 71.2 71.7 

7 10 70 39 38.0 37.6 37.7 36.9 37.3 

X 2 s ta t is t ic  .2923 1.4696 1.4358 .2745 .2025 

(1) Morisita,  (2) J a n a r d a n  (moment  est imates) ,  (3) J a n a r d a n  (max imum likelihood esti- 

mates) ,  (4) Heuristic es t imates  (5.4), (5) Min imum chi-square es t imates  (5.5). 
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7 ( x n -  E[Ln]) 2 a,b,°)=z 
n= l  

Since -a /n  < 0 < b/n, an exhaustive search for a = 0 to 1.5 with step 0.01, b = 0 
to 1.5 with step 0.01 and 0 = -a/7  to b/7 with step 0.001 was performed and the 
following minimizing values of a, b, 0 were obta ined 

(5.5) a = 0.08, b = 0.81, 0 = 0.045 

yielding 
)/2(0.08, 0.81, 0.045) = 0.2025. 

Table 1 gives the observed and fitted values for Morisita 's  exper imental  data,  
for the five different available estimates of a, b, 0, i.e. Morisita 's  (a = 0.086, 
b = 0.664, 0 = 0), Janardan ' s  moment  est imates (a = 0.2355, b = 0.7647, 0 = 0), 
Janardan ' s  maximum likelihood estimates (a = 0.2449, b = 0.7928, 0 = 0), our 
heuristic est imates (a = 0.111, b = 1.076, 0 = 0.0956) and minimum chi-square 
est imates (a = 0.08, b = 0.81, 0 = 0.045). The  chi-square value is also provided 
for each case. The  degrees of freedom for Morisita 's  and Janardan ' s  models are 4, 
while for our model are 3 (since an addit ional  est imate has been plugged in the chi- 
square statistic).  Note tha t  the int roduct ion of the addit ional  parameter  0 in our 
model, leads to a substantial  reduct ion of the ehi-square error, especially compared  
to Janardan ' s  estimates.  As regards our heuristic estimates,  their  chi-square error 
is very close to the minimum chi-square error. 
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