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A b s t r a c t .  Range of the  poster ior  p robabi l i ty  of an interval over the  e-con- 
t amina t ion  class F = {~r = ( 1 - e ) ~ r 0 + c q  : q E Q} is derived. Here, 7r0 is 
the  elicited prior  which is assumed unimodal ,  c is the  amount  of uncer ta in ty  in 
7c0, and Q is the  set of all p robabi l i ty  densit ies q for which 7c = (1 - ~)7c0 + eq 
is un imodal  wi th  the  same mode as tha t  of ~r0. We show tha t  the  sup (resp. 
inf) of the  poster ior  p robabi l i ty  of an interval  is a t t a ined  by a prior  which is 
equal to (1 - c)7c0 except  in one interval  (resp. two disjoint  intervals) where it 
is constant .  

Key words and phrases: Poster ior  probabi l i ty ,  un imoda l i ty  preserving con- 
tamina t ions ,  Bayesian robustness.  

1. Introduction 

1.1 Background 
Robustness or sensitivity of Bayesian methods with respect to small changes in 

an elicited prior distribution has been an active research area in the past few years. 
A brief review, and references where motivation and details on recent developments 
can be seen are given in Subsection 1.3. 

We consider a situation where we observe X ~ f ( x  I 0), and are interested in 
the (scalar) parameter 0. In Bayesian analysis one is required to elicit the prior 
information about 0 in terms of a single prior distribution, 7r0. This prior distri- 
bution is typically chosen so that  it has a (mathematically) convenient functional 
form and conforms to certain prior features that are easy to elicit. It therefore 
becomes essential to study the sensitivity of any posterior measure of interest to 
small changes in the elicited prior 7c0. The general approach that  has recently been 
taken is the following. A class F, consisting of priors that  are 'close' to 7Co and 
have the same easy-to-elicit features, is first constructed. Then, the sensitivity of 
a posterior measure of interest is investigated by computing its range as the prior 
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varies over F. The idea being that when this range is 'small', one can be satisfied 
that  the posterior measure is insensitive to plausible changes in the elicited prior. 

1.2 Statement of the problem 
Here, we assume that  ~r0 is unimodal with (unique) mode 00, and consider the 

e-contamination class of priors given by 

(1.1) r = {zc = (1 - e)%0 + eq : q is a prob. density such that  ~r is unimodal 

with mode 00 and zr(00) <_ ho}. 

Here, 0 < e < 1 can be thought of as the amount of elicitation 'error' or the 
uncertainty in 7r0, and h0 _> (1 - e)zc0(00) is a constant. The bound h0 for zr(00) is 
used to avoid the concentration of all contamination mass at 00. The value of h0 
may be chosen so as to satisfy an elicited upper bound on the prior probability of 
an appropriate interval containing 00. Some other choices are given in Berger and 
Berliner (1986). (Also, specifying a very large value for h0 will effectively remove 
this restriction.) Moreover, it turns out that  posterior answers are, in general, 
not particularly sensitive to the choice of h0. The above class was first studied in 
Berger and Berliner (1986) where the ML-II prior for this class was derived, and 
later in Sivaganesan (1989), where the range of the posterior mean was derived. 
When one believes that the prior distribution is close to 7c0 and that it is unimodal 
with mode 00, the above class is a conceptually appealing way of expressing the 
uncertainty in zr0. For further discussions and motivation for choosing this class, 
see the articles indicated above. 

Clearly, the posterior probability of an interval is a quantity of interest in 
many situations. In this paper, we show how one can compute the range of the 
posterior probability of an interval as the prior varies over the class F, as given in 
(1.1). 

We have organized the paper as follows. In Section 2, we define certain sub- 
classes of F and state certain assumptions that  will be used throughout the paper. 
In Section 3, we give the main results concerning the calculation of the sup and inf 
of the posterior probability of an interval, and provide some illustrative examples. 
Finally, in Section 4, we provide the proofs of the main results. 

1.3 History 
The notion that the prior information, usually being vague, can only be ex- 

pressed by a class of prior distributions (rather than a single prior) was first ex- 
pressed by Good, e.g., see Good (1983). This was then re-vitalized in Berger 
(1984), which has an extensive and illuminating discussion on this notion and lays 
the basic foundation for the "robust Bayesian view". For more on this, also see 
Walley (1990) and the references therein. 

Various types of classes of priors have been proposed and studied. Among 
them are the e-contamination class, the density band class, and the class specified 
by quantiles. The e-contamination class was first considered in this context by 
Huber (1973) where the range of the posterior probability is considered for the 
class of arbitrary contaminations. Number of variations of this class have later 
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been studied, among others, by Sivaganesan and Berger (1989), Sivaganesan (1989, 
1990), Moreno and Cano (1988) and Lavine et al. (1991). The density band class 
was first studied in DeRobertis and Hartigan (1981), and was later extended by 
Lavine (1991a, 1991b), DasGupta and Studden (1991), DasGupta (1991) and Bose 
(1990). 

The class specified by quantiles has also received much interest. This was 
first studied in Berliner and Goel (1986) where the problem of finding the range 
of the posterior probability of certain intervals was considered. Different ver- 
sions of this class were later studied by Berger and O'Hagen (1988), O'Hagen 
and Berger (1988), Moreno and Cano (1988) and Sivaganesan (1990). Among 
other types of classes that have been studied are the parametric classes, e.g., see 
Polasek (1985), and the classes specified by distribution bands, e.g., see Basu and 
DasGupta (1990). 

2. Preliminaries 

Here, we define two sub-classes, Fu and FL, of P which we will use in finding 
the range of the posterior probability. The class Fu consists of priors each of 
which is equal to (1 - e)~0 except in some interval B where it is a constant. In 
Section 3, we will show that the sup of the posterior probability of an interval C is 
attained by a prior 7~ E Pu for which B C C. The class FL will be defined likewise, 
except that it will consist of those distributions that are constant in two disjoint 
intervals, and, we will show in Section 3 that the inf of the posterior probability of 
C is attained by a member of F L. Now we define these two classes more explicitly. 
For simplicity in these definitions, and in the forthcoming calculations, we will 
assume that ~0 is continuous in its support. 

2.1 Class Pu 
Let ~- E F be of the form 

K O c B  
(2.1) #(O) = (1 - e)rco(Oo) O ~ B, 

for some open interval B and an appropriate constant K. Here, the length of the 
interval B (given an end point) and the value of K are implicitly defined to satisfy 
the requirement that ~ C F. Specifically, K is equal to the value of (1 - e)7c0(.) at 
the end point of B closer to 00 when 0o ~ B, and when 00 E B, it is equal to h 
for some (1 - e)%(00) < h < h0. And, the length of the interval B satisfies the 
condition 

( 2 . 2 )  - ( 1  -  >o(O)]dO = 

Thus, ~ will take one of the following four forms determined by B. 
(i) When t3 = (s, t(s)) with s > 0o, 

(1-e)rco(s)  0 e B 
~-(0) = (1 e)rco(O) 0 ~ B, 
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where t(s), for s > 0o, is determined by (2.2). 
(ii) When B = (s(t), t) with t < 0o, 

5(o) = { (1 - ~)~o(t) o • B 
(1-e)Tro(0) 0 ~ B ,  

where s(t), for t < 00, is determined by (2.2). 
(iii) When B = (0o, ~(h)) for t(h) > 0o (or -- (t(h), 0o) for t(h) > 0o), 

f h o • B 
#(0) l (1 - ~)~o(O) o ¢ B, 

where (1 - e)TCo(0o) < h < ho, and t(h) satisfies (2.2). 
(iv) When B = (s, t)  for s < 0o < t, 

- ~)~o(O) o ~ B, 

where the values of s and t are chosen to satisfy (2.2). 
Now, we define Fu  C F by 

(2.3) Fu  = {7c • F : 7c is of the form #}. 

2.2 Class F L 
Here, we consider priors ~ • F which are of the form 

cl 0 E B1 
~(0)= c2 0 • B 2  

( 1 -  ~)~0(0) elsewhere. 

Here, Bi = (ai, bi) (i = 1, 2), are two disjoint intervals, and ci (i = 1, 2) are given 
by 

(1 - @ r 0 ( a d  if a~ > 00 
c i =  (1-e)vro(bi)  if b i < 0 0  

h if ai_<00_<b~, 

for some (1 - e)Tro(00) < h < h0. 
Observe tha t  the values of the end points ai, bi (i = 1, 2) together must satisfy 

the requirement tha t  ~ defined above be in F. Specifically, one must have, 

2 

(2.4) Ec~(b~ - a~) - / B  (1 -- e)Zro(O)dO = e. 
i=1 1 U B 2  

Note tha t  t h e  contaminat ion tha t  yields ~ has its mass, e, concentrated over two 
disjoint intervals B1 and B2 in such a way tha t  ~ is constant  over each of B1 and 
B2 (while remaining unimodal  with mode 00). Here, we allow the possibility of 
one interval being empty (or having zero mass for the contaminat ion)-- resul t ing 
in a ~ having the same form as # of Subsection 2.1. Note tha t  #, like #, also has 
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the conceptually simple form of being constant over a certain range, and equal to 
(1 - e)~r0(0) elsewhere. Now, we define FL _ F by 

(2.5) FL = {Tr E r :Tr is of the form ~}. 

2.3 Notation and assumptions 
Throughout the rest of the article we will be concerned with an interval C = 

(a, b) in the real line, and assume that  the length of this interval is large enough 
to contain an interval B, as defined in Subsection 2.1 (see equation (2.2)). This 
assumption is made for ease of presentation; the other case can be treated using 
similar lines of argument. 

We will use the notation l(O) to denote the likelihood function (for the data 

x at hand), and assume that  it is unimodal with unique mode, denoted by 0. We 
will also use P~(C) to denote the posterior probability of C with respect to prior 
7r, i.e., 

(2.6) P (C) = fc l(O) (O)dO 
f l(O) (O)dO' 

m 

and the symbols P(C) and _P(C), respectively, to denote the sup and inf of P~(C) 
taken over 7c E F (for F as in (1.1)), i.e., 

(2.7) P(C) = supP~(C) and P(C)  = inf P~(C). 
~rcF ~rEF 

3. Statement of results and examples 

In this section, we give the main results which can be used to calculate the 
sup and inf of the posterior probability of an interval. We then give an illustrative 
example with normal prior and normal likelihood. 

3.1 Calculation of P(C) 
In the following theorem we show that  P(C) can be obtained by maximizing 

P~ (C) over the subclass Fu. The proof is given in Section 4. 

THEOREM 3.1. 

is unimodal. Then, 
Let P(C) and ru  be as in (2.3) and (2.7), and suppose l(O) 

P(C) = sup P~(C). 
~EFu 

The calculation of P(C) is greatly simplified since the maximization over Fu 
can be easily done due to the simplicity of the form of 7r C Fu (see Subsection 
2.1). This is apparent from the following expressions for P~(C). Note that,  for 
7c E I~U, 

Ao + fB Ic(O)l(O)[K - (1 - e)Iro(O)]dO 
(3.1) P~(C) = A + fB l(O)[K - (1 - e)Tco(O)]dO ' 
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where A = (1 - e)m(x I r~o)/e and A0 = AP~°(C). For instance, if B = (s,f(s))  
for some s > 00 (see Subsection 2.1), P~(C) can be wri t ten as 

A0 + (1 - e) (£(*) Ic(O)l(O)[rco(s) - rco(O)]dO 

A + (1 - e) ft(8)l(O)[rro(S) - rro(O)]dO 

The advantage here is tha t  we can write P'~(C), for 7r E Fu ,  in terms of an end 
point of the interval B. Thus, the calculation is essentially reduced to maximizing 
a function of one variable. In the following remarks, which are easy to verify, 
we give bounds on the end points of the interval B = (s, t) for which the sup is 
attained. These can be useful in the calculation of P(C).  

Remarks. 
1. When 00 E C = (a,b), it suffices to consider a < s < t < b. 
2. When 00 < a, it is sufficient to consider 00 < s < t < <  b. 
3. Similarly, when 00 > b, it is sufficient to consider a < s < t < 00. 

3.2 Calculation of P__(C) 
It turns out tha t  in order to calculate P_(C), one only needs to minimize P~(C) 

over the sub-class FL of F. We state this result in the following theorem whose 
proof is given in Section 4. 

THEOREM 3.2. Let FL and P_(C) be as in (2.5) and (2.7), and suppose that 
l(O) is unimodal. Then, 

P ( c )  = inf w ( c ) .  
TrEFL 

The above result means tha t  the prior rc E F which minimizes P~ (C) is of the 
form #, as given in Subsection 2.2. Tha t  is, it is equal to (1 - e)Tr0(.) except in 
two (disjoint) intervals (B1 and B2) where it is constant.  

These intervals will always be on the opposite sides of C and, in most cases, 
each will either be contiguous with C or part ly overlapping C. Thus, for # E FL, 
we have 

(3.2) p ' ( c )  = 
2 

A o  + - (1  -  >o(e)]de 
2 A + Ei=l  fs~ l(O)[ci - (1 - e)rCo(O)]dO 

where ci (i = 1, 2) is the constant value of ~ over the interval B~ = (ai, bi) (see 
Subsection 2.2). Thus, for ~ C FL, Pc(C) can be expressed as a function of 
the four end points of the intervals B1 and B2. Note, however, tha t  these end 
points are subject to the constraint (2.4). Calculation of P ( C )  is thus reduced to 
minimizing a function of three variables subject to bounds. 

Very often, however, one can make more specific s ta tements  about  the lengths 
and locations of the intervals B1 and B2 in a way tha t  can be very useful in further 
simplifying the calculation of P (C) .  We outline these in the following remarks, 
where we let B1 be the interval on the left of C. 
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Remarks. 
(1) When  suP0<_a l(O) is 'much smaller' (or 'much larger') than suP0>b l(O), B1 

(or B2) will be empty. For instance, if B2 = (s, t) minimizes P~(C) over 7c c FL 
for which B1 = ¢ and, infB~ l(O) > sup0_< a l(O), then this inf is the same as the 
overall inf P ( C ) .  

(2) When  00 and 0 are bo th  in C, it can be easily verified that  B1 and B2, 
when bo th  non-empty,  will be overlapping C and satisfy l(al) = l(b2). 

(3) When  00 ~ C and is smaller (or larger) than 0, it can be easily seen that  
B 1 (or B2) will be contiguous with C, i.e., bl (or a2) will be equal to a (or b). 

Example 1. Consider the canonical normal example where X t 0 ~ N(O, 1) 
and 7r0 - N(0,  2), and let e = 0.1. Suppose now that  x = 1.0. Then, the 95% 7c0- 
H P D  credible region is given by C = ( - .93 ,  2.27). Calculation yields P(C) = .951 
and P ( C )  = .945. The sup is a t ta ined by 7r E Fu,  for which B = (0, 1.81), and 
the inf is a t ta ined for ~r C FL for which B1 = ( - 1 . 0 1 , - . 7 9 )  and B2 = (1.57, 3.01). 

When  x = 3.0 in the above, the 95% 7c0-HPD credible region is C = (.40, 3.60). 
In this case P ( C )  is .963, and is a t ta ined by ~r E Fu  for which B = (1.80, 3.43). 
Also, minimization of (3.2) with B1 = ~b yields an inf value of .861 when B2 = 
(2.48, 3.60). Hence, using Remark  (1) above, we have _P(C) = 0.861. 

Example 2. (Berger (1985), p. 147) An intelligence test  is given to a child, 
and the result X is N(O, 100), where 0 is dis t r ibuted according to the prior 
7r0 - N(100,225) .  It is desired to test  H0 : 0 < 100 versus H1 : 0 > 100. Suppose 
that  the prior uncertainty is expressed by a class of the form F with e = 0.1, 
and an additional restriction that  the median is 100 for each 7r. This addit ional 
restriction can be easily accommodated  in the calculations with simple modifica- 
tions. These calculations yield a range of (.89, .91) for the posterior probabil i ty  of 
H1 (or, (.10, .12) for the Bayes factor) when z = 115. Similarly, when x = 125, 
the range for the posterior probabil i ty  is found to be (.98, .99). 

Example 3. Suppose that  the life t ime of an electronic component  has an 
exponential  distr ibution with mean 0 (in units of 100 hrs), and that  the prior 
information about  0 is elicited by the dis tr ibut ion It0 - Inverse Gamma(9,  .01). A 
sample of 5 components  tested has a total  life t ime of 65. Suppose that  we are 
interested in the posterior probabil i ty tha t  0 > 8, when the uncertainty in the 
prior 7r0 is expressed by a class of the form F (with 00 = 10). Calculations using 
the results of Theorems 3.1 and 3.2 yield a range of (.91, .96) for the posterior 
probability. The sup is a t ta ined by a prior in Fu  for which B = (10.6, 14.6), and 
the inf is a t ta ined for a prior in FL for which B1 = (6.2, 9.3) and B2 = ¢. 

The choice of h0 had either little or no effect on the above answers. The 
extent  of the influence of h0 largely depends on the function for which the posterior 
expecta t ion is considered. When  this function is an indicator function of a set, 
as in this paper, the effect would be minimal as opposed to those functions which 
have much more 'variability'  (at 00). 
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4. Proofs of the theorems 

In the following theorem, we re-state the main result of Theorem 4.2 of Berger 
and Berliner (1986) using the class Fu. 

THEOREM 4.1. When l(O) is unimodal, 

sup f l(0) (0)d0 : sup f l(0) (0)d0 
~EF 5EF 

We now give some lemmas that will aid in the proof of the main results. 

LEMMA 4.1. Suppose 7r~o is a (sub-)probability density with support (c, d), and 
is decreasing. For 0 < e' < 1 and h~o k 7r~o (c), 

! 
F' = {Tr = % + e' q : q is a prob. density with support (c, oo), 

~(c) <_ h' o and ~ is decreasing}. 

let ~' ~ r '  maximizes f~v~ l(O)~(O)dO over r'. Then, if l(O) is unimodal ~' is Also, 
either of the fo rm 

{%(s) c < s < o < t  
(4.1) 7r'(0) = 7r~(0) 0 ~ (s,t), 

where s and t are such that 7r ~ E F t, or 

h c < O < t  
(4.2) ~-'(0) = %(0) 0 _> t, 

for  some - d  < ~ < d and t > c. 

PROOF. Follows from Theorem 4.1. 

LEMMA 4.2. Suppose 7r~ is a (sub-)probability density with support (c, d), and 
is unim odal with mode Oo E (c, d). For 0 < 6 < 1, let 

! F ~ = {7c = % + e'q : q is a prob. density with support (c, oc), 

7C(0o) <_ h~o and 7c is unimodal with mode 00}. 

Also, let 7c' E F' maximizes f ~  l(O)Tc(O)dO over F'. Then, for  c < d < oe and l(O) 
decreasing, 7c' is of the fo rm 

h c < O < c '  
(4.3) 7r'(O) = % ( 0 )  0 >_ c', 
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where, h = sup{Tr(c) : 1r E r ' } ,  and c' is chosen to satisfy 7/ E F' .  Moreover, when 
-oo  <_ c < d, and l(O) is increasing, 7c' is of the form 

h d' < O < d  
(4.4) ~'(0) = ~;(0) 0_< d'. 

Here, h = sup{To(d) : 7c E r ' } ,  and d' is chosen so that 7 /E  F'. 

PROOF. For a given 7r E F',  there exists c~ such tha t  e _< Cl _< c', 7r'(0) > 7r(0) 

in (e, el), and 7r'(O) _< 7r(0)in (el,OC). It is now easy to show tha t  f/l(O)Tc(O) <_ 

f/l(O)Tc'(O)dO, proving (4.3). (4.4) follows similarly. 

m 

We observe tha t  it is easy to verify the existence of 7r E F which at ta ins  P(C),  
let this be ~r. Similarly we will use 7r* to denote  tha t  7c E F which at ta ins  P ( C ) .  
T h a t  #, 7c* E F, and are unique is easy to verify under  mild conditions. We will, 
however, omit  the details for simplicity. 

LEMMA 4.3. (i) When C = (a, b) C_ (0o, oo), #(0) for 0 ~ C is of the form 

{~}a) a l < O < a  
(4.5) Or(O) = e)Tro(O) 0 <_ al  or >_ b. 

Here, al is defined as that number, when it exists, for which (1 - e)Tco(ax) = 
~r(a). Else, al -- 0o. 

(ii) When Oo e C = (a, b), ~r(O) for 0 ~ C is given by 

#(0) = (1 - e)Tro(O). 

PROOF. Let  7 = P(C). Then,  using (2.6), we have f(Ic(O)-7)l(O)Tr(O)dO <_ 
0 for all 7r E F. Now, using the above and the fact tha t  f(Ic(O)-7)l(O)¢r(O)dO = O, 
we obtain 

(4.6) f(±c(o) - e(O))dO <_ 0 for all r. 

For n > 0 sufficiently large, let 7c~ E F be defined by 

(1 - ~)~o(O) 
~ ( o )  = ~-(o) 

~-(a) 

O<ax,  b < O < n  
a < O < b  
a l < O < a .  

Here al  is as defined in the s ta tement  of the lemma, and 7c~(0), for 0 >_ b + 
n, is defined so tha t  7rn E F. Now, clearly 7r~ = # on (a,b), and 7r~ < # on 
(-oo, n)\(a, b). Hence, using (4.6), f (Ic(O) - v)l(O)(Tr~(O) - #(O))dO <_ 0 for all 
n > 0, which gives 

( - ~ , ) l ( o ) ( ~ n ( o )  - ~(O))dO + l ( - v ) Z ( O ) ( ~ , ~ ( O )  - #(O))dO <_ O. 
Y 

-oo,~)\(a,b) J(n,o~) 
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Now, letting An and Bn, respectively, be the first and second terms in the above 
inequality, we have An _> 0 is increasing and Bn ~ 0 as n ~ oc. But ,  we have 
An + Bn _< 0. This gives, l i m n - ~  An = 0, and hence An = 0 for all n > 0. Thus, 
#(0) = 7rn(0) on ( - c o ,  n)\(a, b) for all n > 0. This proves par t  (i) of the lemma. 
The proof of par t  (ii) is similar, and is omitted.  

LEMMA 4.4. Let C = (a, b) C_ (0o, ~ ) .  Then, for 0 E C, 7r* is of the form 

~r* (0) = max{ (1 - @ro (0), 7r* (b)}. 

The proof is similar to that of Lemma 4.3, and hence is omitted. 

PROOF OF THEOREM 3.1. Our goal is to show tha t  ~r E Fu.  The proof  is 
complicated by the need to consider various cases. For brevi ty and readability, we 
give the proof  for the case where C = (a, b) C (00, oc) and l(O) is modal  in C. The 
proof for the other cases are similar, and are therefore omitted.  

Now, using (i) of Lemma 4.3, we obtain that  ~r satisfies (4.5), i.e., ~(0) = 
(1 - e)Tr0(0) for 0 > b and for 0 < hi. Moreover, it is clear tha t  ~r maximizes 

f :  l(O)~r(O)dO over all ~r E F for which ;r = # on C',  the complement  of C. Thus, 
letting 

# ( . )  = (1 - @ro( ' ) I c ( ' )  and 
.b  

e' = j a  (~r(0) - ( 1  - e)Tco(O))dO, 

we have (using Lemma 4.1) that  ~r in C is either of the form (4.1) or (4.2), with c 
replaced by a. Now, let ~r in C be of the form (4.1). Then, we must  have 

(4.7) ~-(a) = (1 - e)Tco(a), i.e., al  = a in (4.5). 

To show this, suppose that  #(a)  > (1 - e)Tr0(a), and let 

(1 - e) o(0)  1(0) = 

Then, 

for O ~t C 
for O E C. 

Thus, p~l  (C) > 7, which is a contradiction since, as is easy to verify, 71" 1 is either 
in F, or is the limit of a sequence of ~r's in F. This proves (4.7). Thus, when ~- is 

o = / ( I t (o )  - 7)l(O) (O)dO 

o f(a = ~o, (-7)l(O)¢r(O)dO + (1 - 7)l(O)~c(O)dO + ( -7 ' ) (1  - e)l(O)Tro(O)dO 
1 1 ,b ) '  

< ~ (-7")l(O)Trl(O)dO + (1 - 7")l(O)~rl(O)dO + (1 - 7")l(O);h(O)dO 
1 1 ,b ) '  

=/ ( I c (O)  - 7')/(0)7rl (O)dO. 
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of the form (4.1), we get, using (4.5) and (4.7), tha t  # e Fu.  Now, let # be of the 
form (4.2). Then, using (4.5), we have 

h for a < O < t  
#(0) = (1 - @to(a1) for a 1 < 0 < a 

(1 - @r0(0) for 0 < al ,  0 > t, 

for some t e (a, b) and h _< (1 - e)Tro(al). Now, if h < (1 - e)~ro(al), one can, as 
before, construct  a 71 1 such  tha t  p,~l (C) > V. Thus h = (1 - e)Tco(al). Hence, 

( 1 - e ) zc0 (a l )  for al  < 0 < t  
# ( 0 ) =  (1 e)~r0(0) otherwise, 

concluding the proof  that  7? c Fu.  [] 

PROOF OF THEOREM 3.2. This proof  also requires the consideration of var- 
ious cases. To keep the presentat ion simple and easy to read, we consider only the  
case where C = (a, b) C_ (00, c~) and l(O) is modal  in C. The proofs for the other 
cases follow similar lines of argument.  Our goal is to show tha t  ~* E FL. From 
Lemma 4.4, we have, 

(4.8) ~r*(0) = max{(1 - e)zro(0), 7r*(b)} for 0 e C. 

Now, it is easy to see that  7r* maximizes f b  l(O)7c(O)dO among all 7r E P such 
that  zr(0) = 7r*(0)in ( - c o ,  b). Hence, using (4.3) of Lemma 4.2 (note tha t  l(O)is 
decreasing in (b, ce)), we have 

(4.9) 7r*(0) = { 7r*(b) for b < 0 < b' 
(1 - e)Tro(0) for 0 > b', 

for suitable b' _> b. Similarly, we have that  7r* maximizes faoc l(O)zr(O)dO among 
all 7r E F for which re(0) = zr* (0) for 0 C (a, oc). Hence, from (4.4), we have 

(4.10) 7r*(0) = ~ h for a' < 0 < a 
( 1 -  e)Tr0(0) for 0 < a', [ 

for some h _> (1 - @ro(a) and 
have 

= 

(1 - e)~-o(O) 
for some suitable constants  a ~ _< a, bl < b and b' > 
~r* E FL, which completes the proof. 

a ' G  a. Thus, combining (4.8), (4.9) and (4.10), we 

for a~ < O < a 
for bl < 0 < b ~ 
otherwise, 

b so that  7r* E F. Hence, 

Discussion. We have shown how the range of the posterior probabil i ty  of 
an interval can be  found for priors with unimodal i ty  preserving contaminations.  
The prior tha t  at tains the sup has the conceptually simple form of being equal to 
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(1 - c)Tr0 except in an interval where it is constant.  This also was the form of bo th  
the ML-II  prior, derived by Berger and Berliner (1986), and the prior a t ta ining 
the sup (inf) of the posterior mean as shown in Sivaganesan (1989). Interestingly, 
the prior tha t  at tains the inf (of the posterior probabil i ty of an interval) also has 
a conceptually simple, yet (possibly) different, form of being equal to (1 - c)Tr0 
except in two disjoint intervals where it is constant.  These ranges can be of interest 
in evaluating robustness with respect to prior in interval est imation and in testing 

hypotheses. 
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