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A b s t r a c t .  Consider the linear model Y = XO + E in the usual matrix nota- 
tion where the errors are independent and identically distributed. We develop 
robust tests for a large class of one- and two-sided hypotheses about 0 when 
the data are obtained and tests are carried out according to a group sequen- 
tial design. To illustrate the nature of the main results, let ~) and 0 be an 
M- and the least squares estimator of 0 respectively which are asymptotically 
normal about 0 with covariance matrices ~ 2 ( X t X ) - I  and T2(XtX)  -1 respec- 
tively. Let the Wald-type statistics based on 0 and 0 be denoted by R W  and 
W respectively. It is shown that R W  and W have the same asymptotic null 
distributions; here the limit is taken with the number of groups fixed but the 
numbers of observations in the groups increase proportionately. Our main re- 
sult is that the asymptotic Pitman efficiency of R W  relative to W is (a2/72). 
Thus, the asymptotic efficiency-robustness properties of 0 relative to 0 trans- 
late to asymptotic power-robustness of R W  relative to W. Clearly, this is an 
attractive result since we already have a large literature which shows that 0 is 
efficiency-robust compared to 0. The results of a simulation study show that 
with realistic sample sizes, R W  is likely to have almost as much power as W 
for normal errors, and substantially more power if the errors have long tails. 
The simulation results also illustrate the advantages of group sequential de- 
signs compared to a fixed sample design, in terms of sample size requirements 
to achieve a specified power. 

Key words and phrases: Clinical trial, comparison of two treatments, com- 
posite hypothesis, inequality tests, interim analysis, long tailed distribution, 
M-estimator, Pitman efficiency, power-robustness, repeated tests, Wald-type 
statistics. 

1. Introduction 

A distinguishing feature of group sequential procedures is tha t  they  enable 
us to carry out several repeated analyses at various stages as the da ta  accrue. 
Usually in group sequential analysis the number  of such interim analyses is small 
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compared to the number of observations. For the comparison of two means, it has 
been demonstrated that a properly designed group sequential procedure could be 
expected to require smaller total sample size than the corresponding traditional 
non-sequential procedure to detect a departure from the null hypothesis when 
such a departure is "large". These are the main attractive features of group 
sequential procedures compared to the fixed-sample procedures. For a review of 
group sequential analyses, see Jennison and Turnbull (1991). 

It appears that the group sequential analysis has been applied mainly in clin- 
ical trials where ethical issues play a major role. The ethical issues arise due to 
the necessity to avoid subjecting patients to inferior treatments by detecting such 
treatments early in the study using interim analyses. Thus, group sequential de- 
signs with multiple treatments has not attracted much attention (see Whitehead 
(1983), Chapter 8). However, in many areas of research, other issues such as total 
cost and resource limitations (space, instruments, personnel etc.) play the major 
role. In such situations, group sequential designs may be more attractive than fixed 
sample designs. This paper is concerned about group sequential analysis involving 
linear models and tests of various hypotheses about the regression parameter. 

Tests of a few different types of hypotheses in group sequential designs have 
been studied in the literature; for example, two-sided hypothesis with two means 
(Pocock (1977), O'Brien and Fleming (1979)), one-sided hypothesis with two 
means (DeMets and Ware (1980, 1982)), and equality of k means (Siegmund 
(1980)). However, tests of multivariate one-sided hypothesis and inequality con- 
straints on the regression parameter in the linear model have not been investigated 
although, this has been studied extensively for fixed sample designs (see, for ex- 
ample, Robertson et al. (1988) and the many references therein). In this paper, 
we consider robust tests of such hypotheses in group sequential designs; here ro- 
bustness is interpreted with respect to departures of the error distribution from 
normality. Our formulation is quite general. It does incorporate the simple but 
important two- and k-sample problems mentioned above. It also allows repeated 
analysis of covariance to accommodate concomitant variables. 

The general class of hypotheses that we consider here can be tested using 
a Wald-type statistic based on the least squares estimator of the regression pa- 
rameter although, as indicated above, this has not been investigated. Since the 
least squares estimator is sensitive to outliers, we propose to replace its role by 
a more robust estimator, for example by an M-estimator. It turns out that the 
efficiency-robustness of an M-estimator with respect to the least squares estima- 
tor translates to power-robustness of the corresponding test statistic in terms of 
Pitman efficiency. In other words, as one would expect, the test statistic based 
on an M-estimator is itself less sensitive to outliers than is the one based on the 
least squares estimator. A Monte Carlo study illustrates this large sample result 
for reasonably small samples and moderately long tailed error distributions. The 
illustration of the power-robustness of the test statistic based on a robust estima- 
tor compared to that  based on the least squares estimator is the main theme of 
this paper. 
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2. Preliminaries 

Let us write the linear model corresponding to a set of n independent obser- 
vations as Y = XO + E where Y is n x 1, X is n x p and 0 = (01 , . . . ,0p)  t. We 
shall assume tha t  every element of the first column of X is one so tha t  01 is the 
intercept. Let the null and alternative hypotheses be 

(2.1) Ho : 0 E K and H 1 : 0  E C 

respectively, where K and C are closed, convex and positively homogeneous sub- 
sets of the p-dimensional Euclidean space, and K C C; a set P is said to be 
positively homogeneous if Ax C P whenever x E P and ), > 0. For various tech- 
nical reasons, let us assume tha t  the linear space spanned by K is contained in 
C. This formulation is quite general, and it does incorporate H0 : RO -- 0 against 
H i :  RiO >_ O, R20 7 ~ O, where R = [R~R~] t is a full row-rank matr ix  and R1 or R2 
could be R itself. Obviously, this special case incorporates the familiar one- and 
two-sided two sample problems, the usual analysis of variance problems and the 
analysis of covariance problems. 

Let ~)~ be a robust est imator of 0, for example an M-es t imator  or a bounded in- 
fluence est imator (see Yohai and Zamar (1988), Gilt inan et al. (1986) and Krasker 
and Welsch (1983)) based on a sample of size n; in what  follows we shall drop the 

suffix n. Our objective is to use 0 for the testing problem (2.1). The conjecture 
is tha t  tests based on robust estimators rather than  the least squares est imator  
would also be robust in terms of power. 

Now let us define some regularity conditions: 

CONDITION A. 

(i) nl/2(O-O) d N(O, T2B -1) as n --~ ec for some ~- > 0 and a positive definite 
matr ix  B; B does not depend on 0, and the scale for ~ is fixed by some condition 
to avoid indeterminacy. 

(ii) f and /) are consistent estimators of ~- and B respectively; /)  does not 
depend on 0. 

(iii) 17.o (0 - O, ~) = £o (0, ~), where 12o denotes the distr ibution at 0. 

Let us define 

(2.2) T~ = n ¢ - 2 [ i n f { ( 0 -  b) tB(O-  b): b E K} - i n f { ( 0 -  b) tB(O-  b): b e C}]. 

Note that Tn is a measure of how closer is 0 to the alternative parameter space than 
to the null parameter space. Since 0 is expected to be close to 0, we would reject Ho 
when Tn is large. If 0 is the least squares estimator then for testing H0 : RO = 0 
against Hx : R0 ~ 0 where R is a full row-rank matrix, Tn is the usual Wald 
statistic S-2(RO) t {R(XtX) - IR t } t (RO)  with the usual choices, B = n - l ( X t X )  
and ~2 = S 2 where S 2 is the variance of the least squares residuals. For a discussion 
on Tn when the sampling procedure is not sequential, see Silvapulle (1992). 

We assume tha t  the group sequential procedure is designed to have a maximum 
of M interim analyses. Let nj  denote the number of observations from the j - t h  
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group, j = 1 , . . . ,  M. To obtain asymptotic results, we allow the total maximum 
possible sample size n = (hi + -.. + riM) to increase while the proportions of 
observations in the groups are fixed. That is, we interpret the group sequential 
procedure as one that  involves interim analyses at the fixed time points tl,  • • •, tM 
where t j  = (n l  + ' "  + n j ) / n .  

For any sequence S~ and 0 < t < 1, we shall write Sn( t )  for S[~t] where [.] 

denotes the integer part. Let W~ = n l / 2 T - ~ B 1 / 2 ( O  - O) and W(t) be a vector 
of p independent copies of the standard Wiener process on [0, 1]. Now, we define 
another condition. 

CONDITION B. As n ~ oo, the joint distribution of {W~(t l ) , . . . ,W~(tM)} 

converges to that  of { t ~ l / 2 W ( t l ) , . . .  , t M 1 / 2 W ( t M ) ) } .  

This condition says that  a particular finite dimensional distribution of W~ (t) 
converges to that  of t - 1 / 2 W ( t )  (see, Billingsley (1968)); it is weaker than the 
requirement that W~(.) converges weakly in the usual Skorokhod topology of 
D[0, 1]p (see, Sen (1981)). Let us make another remark about Condition B. Of- 
ten we can obtain a representation of the form n l / 2 ( 0  - O) = n -1 /2  ~ i  + %(1), 
where ~1, . . . ,  ~ are independent with mean zero and finite covariances which are 
bounded in some sense. This representation for the least squares estimator is 
obvious once we replace n ( X t X )  -1 by its limit in the expression for that  estima- 
tor; for such a representation of an M-estimator with possibly asymmet r i c  errors, 
see Silvapulle (1985); and for a class of one-step generalized M-estimators with 
high break down point see Simpson et aI. (1990). Once this representation is ob- 
tained, we can show that  Condition B is satisfied by an argument similar to that  
in Billingsley ((1968), p. 69). 

In  what  follows, we shall assume that  Condi t ions  A and B are satisfied unless 
the contrary is obvious. 

Since the probability of type I error may depend on the particular point in 
the null parameter space, we need to ensure that  the m a z i m u m  probability of type 
I error over the null parameter space does not exceed a nominal level, say 0.05. 
The "spending function" (Lan and DeMets (1983)) of a group sequential design 
specifies how the total risk (i.e. the maximum probability of type I error over the 
null parameter space) is to be spent during the M stages of interim analyses. Let 
a be the total risk and let c~j be the maximum probability over the null parameter 
space of rejecting the null hypothesis at least by stage j when the null hypothesis 
is true. So, C~l <_ •. • <_ a M  = a. In  what  follows we shall assume that  c~1, • . . ,  a M  
and hence ~ are given. 

To define another process, let K(@ = Uj=I Kj(@ where Kj(~,) = { b -  j~/ : 
b E K} and 7 E K; since K is a convex cone, K(7) is the tangent  cone of K at ~/. 
Now, define 

(2.3) T(t; ~/) = i n f [ { t - 1 / 2 W ( t )  - B t / 2 b } t { t - 1 / 2 W ( t )  - B1/2b}  : b E K(7)] 

- i n f [ { t - 1 / 2 W ( t )  - B 1 / 2 b } t { t - 1 / 2 W ( t )  - B 1 / 2 b } :  b E C]. 

In what follows, we shall write T~(.) for [ T ~ ( t l ) , . . . , T ~ ( t M ) I  and T(-;7) for 
[T( t l ;@, . . .  , T ( t M ; 7 ) ] .  This is consistent with the usual notation since we are 
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interested in the values of the function Tn(t) and T(t; 7) only at t l , . . . ,  tM. Note 
that T~(.) is a function of (~ and hence its distribution may depend on 0. Therefore, 
in probability statements involving T~(.) we shall write "pro". However, T(.; 7) 
is a function of t -~ /2W(t )  which does not depend on any unknown parameters; 
therefore, we do not need a suffix for "pr". 

3. The main results 

Let us first state a theorem relating to the null distribution of Tn(.). 

THEOREM 3.1. Assume that Conditions A and B are satisfied and that the 
null hypothesis in (2.1) holds. Then T~(.) converges in distribution to T(.;0), 
O E K .  

(i) Suppose that K is a linear space. Then the distribution of Tn(.) is the same 
for any 0 E K,  and hence T~(.) converges in distribution to T(.; 0) as n -* oc. 

(ii) Suppose that K is not necessarily a linear space. Then for any positive 
integer k ~_ M and any given constants c l , . . . ,  CM > 0, we have 

sup[Prb{Tn(ti) > ci for some i = 1 , . . . , k } :  b E K] 

= pr0{Tn(ti) > ci for some i = 1 , . . . , k }  

p r { T ( t i ; 0 ) > c i f o r s o m e i = l , . . . , k }  as n ~ oc. 

The proof of the above theorem is given in the Appendix, and its implications 
are discussed in the next section. The main use of Theorem 3.1 is that it gives 
some results relating to the null distribution of the test statistics and enables us 
to define a set of M critical values for the M stages of interim analyses. 

Now, we wish to show that the effficiency-robustness properties of some robust 
estimators translate to power robustness of the corresponding test statistics. So, 
let us consider the sequence of local hypotheses H0~ : 0 = 0* and HI~ : 0 = 
(0* + n - 1 / 2 A )  where 0* is a boundary point of K and A is a fixed point such that 
(0" + n-1/2A) E C for n _> 1. Let us suppose that 01 and 02 are two estimators 
satisfying the regularity conditions in Section 2 with ~'1 and ~-2 respectively. Note 
that we are assuming that the matrix B is the same for both estimators but the 
values of ~- may be different. We wish to compare the power of T~I (.) corresponding 
to 01 with that of Tn2(') corresponding to 62. So, let m = m(n)  be the integer part 
of n£ for some fixed 0 < ~ < oc. Suppose that Tnl(') and T,~2(-) have the same 
joint asymptotic distribution under Hln. Then we may refer to ~ as the Pitman 
asymptotic efficiency of T~I (.) relative to T~2 (.). As an example, note that if A = 2 
then T,~2(.) corresponds to a group sequential procedure with twice the sample 
size as that corresponding to Tnl('), but both procedures have equal asymptotic 
power. Now, we have the following: 

THEOREM 3.2. Let O1 and 02 be two estimators of O. Suppose that, Condi- 
tions A and B are satisfied with ~-~ and T2 for 01 and 02 respectively; the B matrix 
in Condition A(i) is assumed to be the same for O1 and 02. Let T~j be defined as 

in (2.2) with Oj, ~-j and Bj, for j = 1, 2. Then the Pitman asymptotic efficiency 
of T~l(.) relative to T~2(') is (72/T1) 2. 
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4. Discussion 

4.1 Critical values 
First assume tha t  the null hypothesis holds with K being a linear space. Then 

by part  (i) of Theorem 3.1, the distribution of T~(.) and its limiting distr ibution 
do not depend on the particular value of 0 in K.  Hence, it suffices to compute 
the finite sample or asymptot ic  critical values corresponding to 0 = 0; for these 
critical values, the probability of rejecting the null hypothesis at or prior to stage 
j is a j  for j = 1 , . . . , M  and for every 0 E K.  

Now, assume tha t  the null hypothesis holds but K may not be a linear space. 
Then by part  (ii) of Theorem 3.1, the distribution of T~(.) and its limiting dis- 
t r ibution depend on the particular value of 0 in K.  However, 0 = 0 is the least 
favourable point in K for T~(.) and its limiting distribution. To illustrate this 
for the finite sample case, suppose tha t  the vector of critical values [cl, • . . ,  CM] 
correspond to the spending function [ a l , . . . ,  (~M] for Tn(.) at 0 = 0. Then for any 
0 E K and j = 1 , . . . , M ,  we have 

pr0[reject H0, at least, by stage j] = Pro[Tn(ti ) > ci for some i _< j] 

_< Pr0[T~(ti) > ci for some i G j] 

= Pr0[reject H0, at least, by stage j] = a j .  

The same holds even if the role of Y~(.) is replaced by its asymptot ic  distr ibution 
T(.;O). 

Thus, whether K is a linear space or not, and whether we are dealing with 
the finite sample or asymptot ic  case, we need the critical values corresponding 
to 0 = 0 only. So, in what follows whenever we refer to critical values we would 
implicitly assume that they correspond to 0 = O. 

Let [dl, . . . ,  dM] denote the vector of asymptotic critical values for T~(-). Then 
C~l = pr[T(t l ;0)  > dl] and ay = pr[T(ti ;0) > di for some i < j] for j = 2 , . . . , M .  
It is well-known tha t  pr[T(t; 0) > dl] can be writ ten as a weighted sum of X 2 
probabilities (known as chi-bar squared distribution). Unfortunately, it appears 
tha t  the probabilities for c~d (j _> 2) do not reduce to such expressions, and we do 
not know if it is at all possible to develop a convenient algorithm for computing 
d2, . . . ,  dM. Since the evaluation of T(t; 0) involves constrained minimization of 
only quadratic functions of W(t),  we can generate pseudo random observations 
on T(.; 0) rather easily; so, a solution is to est imate [ d l , . . . ,  dM] by Monte Carlo. 
However, one possible difficulty is tha t  the validity of [dl,. • . ,  dM] for finite samples 
depend on the rate of convergence of Tn(.); note tha t  in the early stages of a group 
sequential analysis, we are likely to have only small samples. Hence, it would be 
desirable to use the exact critical values rather than  the asymptot ic  critical values 

[dl,...,dM]. 
Let [ c l , . . . , cM]  denote the exact critical values for T~(.). Then, as above, 

we have c~1 -- pr0{Tn(tl) > cl] and a j  = pro{Tn(ti ) > ci for some i < j} .  Since 
we can generate pseudo observations on Tn(.) with 0 = 0 rather easily, we can 
est imate c l , . . . ,  CM by Monte Carlo. It is easier to est imate cl first, and then c2 
and so on; this is the procedure adopted in our simulations. 
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4.2 Size function 
Let 0i and 02 be two estimators of 0 satisfying Conditions A and B. Suppose 

that K is not a linear space and that the true value 0 ~ 0. Let T~I(.) and T~2(-) be 
two statistics. Then the probabilities of type I error for T~I(') and T~2 (.) depend 
on the particular value of 0 in K (see, Theorem 3.1, part (ii)). In an application, 
if T~I(.) and T~2(.) were used and their size functions were different then it would 
be difficult to make a meaningful comparison between the p-values for T~I(.) and 
T,~2 (.). This difficulty may arize even if the critical values for the two test statistics 
are exact for the least favourable point, the origin. However, for 01 and 02 with a 
common B matrix, this difficulty is overcome in large samples since, by Theorem 
3.1, Tnl (') and Tn2(') have the same limiting size functions. (Recall that there are 
well-known estimators with a common B matrix; for example, least squares and 
M-estimators.) If K is a linear space, the difficulty does not arise (see below). 

4.3 Symmetric errors 
Let us assume that the error distribution is symmetric about the origin. Let 

be an estimator of 0 such that (0 - 0) is asymptotically N{0, ~-2(XtX)-I} for 
some 7 > 0. So, 0 could be an M-estimator (see Hampel et al. (1986)) or a 
high break down point estimator (see Yohai and Zamar (1988), Simpson et al. 
(1990)). Let 0 be the least squares estimator. Note that the B matrix for 0 and 
0 is l i m n - l x t x ;  hence, by Theorem 3.1 the asymptotic critical values for the 
two corresponding test statistics 2r~(.) and 2rn(.) are also the same. By Theorem 
3.2, the Pitman asymptotic efficiency of 2Pn(.) relative to 2~(.) is {var(error)/~ -2} 
which is precisely the asymptotic efficiency of 0 relative to 0. In other words, the 
asymptotic efficiency-robustness of 0 relative to 0 translates to power-robustness of 
5~(.) relative to 55~(.). This is a very useful result since a large literature already 
exists which shows that some M-estimators satisfying the above conditions are 
asymptotically more efficient than the least squares estimator when the errors 
have long tails and that they are almost equally good when the errors are normally 
distributed. 

4.4 Asymmetric errors 
Now, assume that the error distribution is not necessarily symmetric. Let us 

write the linear model as Y = 1/30 + Z/3 + E where 1 is a column of ones, and the 
columns of Z are centered so that l tZ  = 0. So, we have/3 = (02,. . . ,  Op) t. Since 
the error distribution is not necessarily symmetric, there is an arbitrariness in the 
definition of/30 (see Carrol and Welsh (1988), Silvapulle (1985)). So, assume that 
the null and alternative hypotheses do not involve the intercept. 

Let /) be a robust estimator of/3 such that (/) - /3 )  is asymptotically N{0, 
T2(ZtZ) -1 } for some ~- > 0. So, 2) could be an M-estimator (see Silvapulle (1985), 
Carrol and Welsh (1988)). Now, instead of Tn in (2.2), let us define 

(4.1) = b b Co}] 

where Ko and Co are the null and alternative parameter spaces for the slope com- 
ponent/3. Let ~ be the least squares estimator of/3. Since (~-/3) is asymptotically 
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N{0, o-2(ZtZ) -1} where cr 2 = var(error), let us define 

(4.2) Un -- S - 2 [ i n f { ( ~ - b ) t z t z ( ~ - b )  : b E K o } - i n f { ( ~ - b ) t Z t Z ( ~ - b )  : b E Co}] 

where S 2 is the residual variance corresponding to least squares. By Theorem 
3.1, U~(.) and U~(.) have the same asymptotic size functions, and hence the same 
asymptotic critical values. Further by Theorem 3.2, the Pitman asymptotic effi- 
ciency of Un(') relative to U~(.) is (~2/T2) which is the asymptotic efficiency of 

/3 relative to/~. So, again we can make comments about the asymptotic critical 
values and the Pitman efficiency similar to those in Subsection 4.3. 

A drawback of Huber-type M-estimators is that they have low break down 
points when the number of regression parameters, p is large. So, recently there 
has been some interest on high break down point estimators (for example, see 
Giltinan et al. (1986)). However a major draw back of many such estimators is 
that they require the error distribution to be symmetric. One exception is the 
so called Mallows-type estimator or one-step version of it (see Mallows (1975), 
Simpson et al. (1990), Giltinan et al. (1986)). These are essentially weighted M- 
estimators with appropriately chosen weights which depend on X. Let/~ be one 
such estimator. Assume that (¢) - /9 )  is asymptotically N(0, 72Q~ 1) where 7 > 0 
and Q~ depends on X. Let 2] be the corresponding weighted least squares estimator 
with the weights being the same as those for/9. Then, (/3 - /9 )  is asymptotically 
N(0, cr2Qg 1) where ~r 2 = var(error). Let 0-n and 0-~ be the test statistics in 14.1) 
and (4.2) respectively with Z t Z  replaced by Qn. Then by Theorem 3.1, U~(.) 
and Un(.) have the same asymptotic size function. Further, by Theorem 3.2, the 
asymptotic Pitman efficiency of 0-~(.) relative to 0-~(.) is ((r2/~ -2) which is the 
asymptotic efficiency of ,~ relative to/9. So, again we can make comments similar 
to those in Subsection 4.3. 

5. Simulation results 

A simulation study was carried out to investigate some of the main results 
presented above. In particular, our objectives were (i) to compare a robust statistic 
based on an M-estimator with that based on the least squares estimator, and (ii) 
to illustrate that substantial reductions in total sample size required are possible 
with a group sequential design compared to a fixed sample design. 

5.1 Design of the study 
We consider the two-way analysis of variance model: Yijk = # -[- ai + 7j -~- 5ijk, 

i = 1, 2, j = 1, 2, 3 and k is the index for an observation within a given cell. This 
model may be written as Y = XO + E where 0 t = (01,02, 03, 04) = (#, al ,71,72) 
and the columns of X corresponding to (ax, 71,72) are centered. 

Let us define H0 : 03 = 04 = 0, H1 : 03, 04 __ 0 and //2 : 0 is unrestricted. 
The hypothesis testing problems investigated are (i) H0 against /-/2 (this is a 
two-sided problem), (ii) H0 against H~ (this is a one-sided problem) and (iii) 
HI against /-/2 (this is an inequality constraint problem and hence the origin is 
least favourable). The error distributions considered are (I)(t), 0.8(I)(t)+ 0.2q)(t/3), 
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0.8~(t) + 0.2q~{(t- 2)/3} and 0.8(I)(t)+ 0.2(I)(t/5), where q~ is the standard normal 
distribution function. These four error distributions provide a reasonable neigh- 
bourhood of symmetric and asymmetric distributions around if). Let 0 be the 
M-estimator corresponding to Huber's Proposal 2 (Huber (1977, 1981)) with the 
kinks in the ~ function being at ±1.5. Thus, for a set of n observations, the 
estimate 0 and a scale estimate & were obtained by solving the estimating equa- 
tions ~ ( r i ) x i  = 0 and Y~x(r i )  = (n - p)A,  where xi is the i-th row of X, 
ri = {(yi - x~O)/cr}, Ib(t) = (d/dt )p( t ) ,  

2-1t  [t[ < c 
fl(t) = el/; I -- 2--1C 2 I~] ~ C 

with c = 1.5, x(t) = t~b(t)-p(t) and A = E{x(U)} with U being a standard normal 
random variable. It may be verified that Conditions A and B are satisfied for this 
estimator. Since H0, H1 and / /2  do not involve the intercept term, the results hold 
even though one of the error distributions is not symmetric. The M-estimators 
were computed using the Huber-Dutter algorithm (Huber and Dutter (1974)). The 
inequality constrained estimators were computed using the subroutine BCOAH in 
the IMSL. All the programs were written in double precision FORTRAN. 

We considered a group sequential procedure with 3 groups, 18 observations in 
each group and the spending function specified by [al, c~2, c~3] = [0.01, 0.025, 0.051. 
So, we have M = 3 and nl = n2 = n3 = 18. 

While it is possible to estimate the asymptotic critical values by Monte Carlo, 
we prefer to use the exact ones. We observed that the exact critical values for 
normal errors were slightly larger than those for the other long tailed contaminated 
normals that we considered. This is consistent with similar observations for the 
fixed sample case (see Schrader and Hettmansperger (1980)). So, to adopt a 
conservative approach, we used the exact critical values for the normal errors, 
which were estimated by Monte Carlo. We estimated the Average Number of 
Observations to Termination (ANT) as {18pl + 36p2 + 54(1 - Pl - P2)} where 
Pl and Ps are the probabilities of rejecting the null hypothesis precisely at stages 
1 and 2 respectively. Note that ANT is proportional to the :'average number of 
groups to termination" (see, Pocock (1977), Table 3), and "expected number of 
tests performed before termination" (see DeMets and Ware (1980), Section 3.2). 
ANT corresponds to "Average Sample Number" used in fully sequential procedures 
(see, Sen (1981), p. 236). We also estimated the number N* which we define as 
follows: suppose that for a given model and a test statistic, the group sequential 
design, with overall size 5%, yielded a power of p%; then the corresponding fixed 
sample test at 5% level requires N* observations to yield a power of p%. Thus, 
(N* - ANT) is the reduction in sample size requirement achieved by the group 
sequential design compared to the fixed sample design. Hence, it is a measure of 
the efficiency of the former compared to the latter. 

5.2 Results 
We shall use the following abreviations for the test statistics: LS02,  LSO1 

and LS12  denote T~(.) based on the least squares estimator for H0 against //2, 
H0 against HI and H1 against H2 respectively. Similarly, M02, M01 and M12 
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Table 1. 

True 02 ) 

03 04 

0.0 0.0 

1.0 1.0 

MERVYN J. SILVAPULLE AND PRANAB K. SEN 

Simulation estimates 1) of size (%), power (%), ANT and N*. 

Test statistic 

LS02 M02 LS01 M01 LS12 M12 

Error distribution: 4~(t) 

Size: 4 4 5 5 5 5 

Power: 85 83 91 91 80 78 

ANT: 43 44 39 39 43 44 

N*: 52 50 49 51 47 45 

Error distribution: 0.8O(t) + 0.3~(t/3) 

0.0 0.0 Size: 3 4 5 5 4 4 

1.5 1.5 Power: 81 91 88 96 75 87 

ANT: 42 40 38 35 42 41 

N*: 56 51 55 54 46 45 

Error distribution: 0.8(b(t) + 0.292{(t - 2)/3} 

0.0 0.0 Size: 4 5 6 5 4 5 

1.5 1.5 Power: 72 88 81 93 67 84 

ANT: 44 41 40 37 45 42 

N*: 55 51 55 52 48 46 

Error distribution: 0.8O(t) + 0.2~(t/5) 

0.0 0.0 Size: 3 4 5 4 4 3 

1.75 1.75 Power: 63 92 73 96 59 89 

ANT: 46 40 42 35 46 39 

N*: 57 51 57 53 51 47 

1)The estimates are based on 1000 replications. Size and power are the probabilities of 
rejecting the null hypothesis at least by the last stage, under the null and alternative hypothesis 
respectively. 

2)Since the test statistics do not depend on (01,02) it was fixed at (0.0, 0.0). The true values 
of (03,04) given in the table are applicable to the first four test statistics only. To obtain the 
true values for the last two test statistics, change the sign of the value of 04. 

deno te  the  co r r e spond ing  ones based  on  the  M - e s t i m a t o r .  Some of the  s i m u l a t i o n  

e s t ima te s  are g iven in Tab le  1. T h e  m a i n  obse rva t ions  are the  following: 

(i) The errors are normal:  Since the  exact  cr i t ical  values  were e s t i m a t e d  for 

n o r m a l  errors,  t he  e s t i m a t e d  sizes of L S -  a n d  M - s t a t i s t i c s  are no t  different  f rom 

the  n o m i n a l  levels. Note  t h a t  the  p robab i l i t i e s  of re jec t ing  the  nu l l  hypo thes i s  by  

L S -  a n d  M - s t a t i s t i c s  are essent ia l ly  the  same;  in  fact,  th i s  was the  case for each of 

the  th ree  stages.  So, there  is ha rd ly  any  difference be t w e e n  L S -  a n d  M - s t a t i s t i c s  

in  t e rms  of size a n d  power.  

(ii) The error is con taminated  normal:  Some of the  e s t i m a t e d  sizes are s l ight ly  

smal ler  b u t  sti l l  close to the  co r r e spond i ng  n o m i n a l  level. As expec ted ,  the  p rob-  

ab i l i ty  of de t ec t i ng  a d e p a r t u r e  f rom the  nu l l  hypo thes i s  is h igher  w i t h  the  M -  

s t a t i s t i c  c o m p a r e d  w i th  the  LS- s t a t i s t i c .  Fu r the r ,  the  A N T  requ i red  for such  a 
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Table 2. Monte Carlo estimates of the exact critical values for normal errors. 1) 

LS02 M02 LS01 M01 LS12 M12 
Stage 1 13.02 14.55 10.20 10.95 8.53 9.70 
Stage 2 9.66 10.09 7.35 7.59 6.57 6.90 
Stage 3 6.95 7.30 5.45 5.51 4.60 4.73 

1)The estimates are based on 5000 replications. 
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higher power is smallef for the M-statistic compared to the LS-statistic. A closer 
inspection of the intermediate simulation results reveals that  this is mainly due to 
the fact that  the probability of early detection of the departure from H0 is higher 
with the M-statistic. Another important, but expected observation is that  as the 
tails of the error distribution become heavier, the performance of the M-statistic 
compared to the LS-statistic becomes substantially better. Finally, the advantage 
of the group sequential design compared to the fixed sample design, in terms of 
sample size requirements, is clear from the observation that  ANT is smaller than 
N* in all the cases. 

We also did consider the spending function [al, a 2 ,  o~3] : [0.01, 0.03, 0.05] in 
the simulation study. For each of the four error distributions, each of the two 
spending functions and each of the three hypothesis testing problems, four values 
of 0 in the alternative parameter space were considered. These four values were 
chosen to give a wide range for the estimated power, for example from 0.5 to 0.9. 
The two observations made above also emerge in all these cases. 

Thus, in summary, we could say that  the overall performance of the M-statistic 
was better than that  of the LS-statistic within the class of error distributions that  
we considered, and the group sequential design required fewer observations on 
average than the fixed sample design. 
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Appendix 

PROOF OF THEOREM 3.1. Let 0 C K be fixed. If we replace ¢ and /3  in Tn 
(see (2.2)) by their probability limits, we have 

(A.1) Tn = nT-2[ inf{(O- b) tB(o-  b): b E K} 

- inf{(O- b)tB(O- b): b C C}] + %(1). 

Now, we have 

(A.2) T (t) = inf{llW (*) - B1/ blI2 : b K - 

- inf{llW (t) - B1/2blI2: b C} + o p ( Z ) .  
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Note that Tn(.) = [T~(tl) , . . . ,Tn(tM)] is a continuous function of W~(.) = 

ITs ( t1 ) , . . . ,  W~(tM)] which converges weakly to [t l l /2w(t l ) , . . .  ,tM1/2W(tM)]. 
Hence T~(.) converges weakly to T(.; 0) = [T(tl; 0 ) , . . . ,  T(tM; 0)]. Now, part (i) 
of the theorem follows since T(.; 0) = T(.; 0) when K is a linear space. 

To prove part (ii), note that K + 0 C K and C + 0 = C. Let S(K, C, n, ~,/), O) 
denote the T~ in (2.2) and let c-i, /)i, and 0 i denote the estimates based on a 
sample of size [nti], i = 1,... ,M. Let k be a positive integer such that k _< M, 
and let Cl , . . . ,  CM > 0 be fixed constants. Then 

(A.3) pro{T~(t~ ) > ci for some i = 1 , . . . , k}  

= pro{S(K ,C, [nti],C -i,/)i,Oi) > ci, for some i = 1 , . . . , k}  
• ^ , ~ .  

<_ pro{S(K + O, C, [nti], c-~,B ~,0 ~) > ci, for some i = 1 , . . . ,  k} 

= pr0{T~(ti ) > ci for some i = 1 , . . . , k} .  

The rest of the proof follows from (A.1), (A.2) and (A.3). 

PROOF OF THEOREM 3.2. Let 0* be a boundary point of K, and A be fixed 
such that ( 0 * + n - 1 / 2 A )  lies i n C  for everyn .  Let H0~ : 0 = 0 "  a n d H l ~  :0  = 
(0" + n-1/2A). Then {HI~} is contiguous to {H0~} (see Hajek and Sidak (1967), 
Sen (1981)). Let rn = rn(n) be the integer part of n(72/~-1) 2. Let (C-l,/)1,01, Tnl) 
and (C-2,/)2, 02, T,~2) be based on samples of sizes n and rn respectively. Let Un = 
n 1 / 2 T 1 1 ( 0 1  -- O* -- n-1/2A) and V,~ = m l / 2 7 2 - 1 ( 0 2  - 0* - n-1/2A). 

Assume that Hon holds. Since @1,/)1) ~ @1, B), we have Zo~ = ZI~ + %(1), 
where Z0~ = nc-{-2inf{(01- b)t/)l(01- b):  b E K} and ZI~ = n~-~-2inf{(0a- 
b)tB(01 - b): b E K}. Now, since K(O*) = lim{K - nl/2~-~10"}, we have Zln = 
Z2~ + %(1), and hence 

(A.4) Z0~ - Z2~ ~ 0 as n --+ oo, 

w h e r e  Z2~ = i n f { ( U n  + f l  1/k - b ) t B ( U n  -~ 7"11A - b ) :  b E K ( 0 * ) } .  S i m i l a r l y  

(A.5) Worn - W2,~ L 0 as n --* oc, 

where W0,~ = mc-2 -2 inf{(02 - b)t/)2(02 - b): b E K} and 

W2m = inf{(Vm + w1-1A - b)tB(Vm + 7 1 1 A  - b): b E K(0*)}. 

Now, by contiguity, we have from (A.4) and (A.5), 

- - W  (A.6) Z0n Z2n ~ 0  and Wo,~ 2,~ 0 under {Hln}- 

The limiting results in (A.6) also hold with K and K(O*) replaced by C. Since 

01 and 02 satisfy Conditions A(i) and (iii), Un and V,~ _+d N(0, B -1) under {Hxn}. 
This, together with (A.6) imply that Tnl(') and Trn2(') have the same limiting 
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distribution under {Hln}. Therefore, the Pitman asymptotic efficiency of Tnl(-) 
relative to T~2(.) is lira(ran -1) = (72/T1) 2. 
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