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Abstract. Principal component analysis has made an important contribution
to data reduction. In two sample problems, one great interest is whether we
can reduce the number of variables to a smaller number in similar fashions
for both samples. More precisely, we consider the hypothesis H,, that the
subspaces spanned by the latent vectors of the population covariance matrices
corresponding to the first principal components are the same in two groups. In
this paper, we propose a simple and easily interpreted test procedure for H,,.
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1. Introduction

Let z(9) (g = 1,2) be vector variables with p components. In practical appli-
cations, the same p variables are being measured on objects in different but related
two groups. The data reduction in principal component analysis is done by using
the first m principal components whose coefficient vectors are orthonormal with
relatively large variabilities in each groups. We treat the hypothesis H,, that the
subspaces spanned by the m latent vectors of the population covariance matrices
corresponding to the first m principal components are the same in two groups.
Krzanowski (1979, 1982) discussed the similarity measure of two subspaces, its ge-
ometric interpretation and the simulation studies instead of considering the asymp-
totic distribution. In this paper, the test procedure proposed by Krzanowski is
modified so that it is available for multiple roots cases. Schott (1988) has also
given a procedure for testing H,, for general cases. His test criterion, however,
depends on the rotational freedom in the hypothesis H,,, which is not uniquely
determined for multiple roots cases. In testing the hypothesis H,,, the rotational
freedom in H,, is an obstacle to constructing similar tests, even asymptotically.
In order to get over these difficulties, one attempt is the approximation using the
maximization on that sorts of freedom described afterwards.

Flury (1984, 1986, 1987) has developed the common principal components
(CPC) method and recently partial CPC method. However, his common subspace
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does not correspond to the first m principal components in each groups. Chen
and Robinson (1989) treated test statistics for a common factor space in factor
analysis. Their hypothesis is generally different from H,, when restricting to PCA,
but their test statistic is the same as ours only if we consider the testing probrem
of H,, when the first m latent roots are all distinct and the remainders are all the
same in each groups.

A test statistic which underlies our test procedure is described in Section 2, and
its asymptotic distribution for general case is derived in Section 3. We complete
our test procedure by using an approximation of the critical points of our statistic
in Section 4. The approximate critical points of our statistic and actual ones
obtained by simulation study are tabulated in Table 1 and the influence of the
maximization in approximating the critical points is examined in Table 2. An
illustrative example is given in Section 5.

2. The test statistics

Assume that x(g), o ,x(g) g = 1,2) are random samples of independent ran-
1 N,

dom vectors (9 normally distributed with covariance matrices %9, Write £(9)
in spectral decomposition as £(9) = T AW@T) where A9) = diag(égg), ey 61(,9))
with 5§g) > > 61()9), I = [Fgg) : ng)] = [’Ag),...,'y,(,?) : fyg_)'_l,...,'yz(,g)], and
I, =TT, Then the hypothesis H,, means that %(Fgl)) = %(F?)). Here I, is
the p x p identity matrix, and §R(F§g )) denotes the subspace spanned by the column
vectors of T\, Using the fact that R = R, it is easy to show that
H,, is equivalent to %(Fgl))_i_%(f‘gm) or Fél)'I‘gm = 0. Consequently, we obtain
the prominent property:
tr ré”’rﬁ”rﬁ”’ré” =0 if Hy, is true,
>0 otherwise.

Now we constitute the test criterion based on this property. It is natural

to adopt the sample covariance matrices S as the estimators of (9. Then

nyS9 is distributed as a Wishart distribution Wp(ng, »(9)), where ny, = N, — 1.
Decompose S in the same manner as ©(9): §(9) = C@) pE)C9) where D) =

diag(d?, ..., di¥) with d{ > ... > di, €@ = [0 . O] = [{,... ¥ -
c,(qgil,...,c,(,g)] and I, = C9CY. When 59 > 67(,%1 (¢ =1,2), C{Q)C’?)' and
Cél)C’él)/ are consistent estimators of Pﬁ”r?” and 1‘5”1‘9)’, respectively, due to
the general results given in Chapter 2 of Kato (1966). This implies that if H,, is
true,
(2.1) T,, = trC{'cP e oV
should not be too large. Therefore, we propose T, as a test statistic for H,,.
It is easily shown that :

(2.2) tr T TETE T = TP

= m— TP TP rd

=p—m— T TP T,
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The quantity tr Pﬁ“’rf)rg?)’rﬁ” has been proposed as a measure of total similarity
between %(Fgl)) and %(I‘gg)) in Krzanowski (1979). We can also give a geometric
interpretation that the quantity tr I‘él)'F§2)F§2)/F§1) is equal to the sum of squares
of the cosines of the angles between each of the column vectors in Fél) and each

one in F?). Note that the identities replaced Fgg ) by Ci(g) in (2.2) are all available
as the definition of T}, and convenient to diagnose the asymptotic null distribution
of T}, given in the next section.

3. The asymptotic null distribution of 13,

Under H,,, we have the relation
@_tn|Q@ O
r®—r { 9 R},

called the rotational freedom in H,,, where QQ = Fgl)/ng) and R = Fgl)/I‘g) are
m X m, (p—m) X (p—m) orthogonal matrices, respectively. Let ngy = kyn where
kg are fixed positive numbers satisfying ) 4+ k2 = 1 and let 72 = nina/(n; + na).
We investigate the limiting distribution of 7T, as n tends to infinity with the help
of the results on the asymptotic behavior of C9) summarized in Anderson (1963).

Assume that 6 > 6%11 (9 = 1,2) so that H,, may make sense. We first
study the limiting distribution of @7}, for simple roots case. Put U = '9)/C(9),
U@ = (u (Q)) 1 <14,57 <p. Then u(g) and u(g) for i > j are independent in

1/2

the limiting distribution. The ng u(g ) for i > j are asymptotically independently

distributed as normal with mean 0, variance 5(9 )6(g )/ (6(9 ) 6(.9)) , and u(g) and
u%’ ) (g) for 7 # j converge stochastically to 1 and 0, respectively.

Partltlonmg the matrices U into submatrices with m, p — m rows and

columns,
Ul = {Ul(f) U(g)}
U21 UQ(g)
we get

(3.1) ﬁl/QC(I)IC(Z) _ n1/2U(1)/ ) nl/ZQUl(f) + Hi/2U2(;)’R ] n;/zUéf)‘

The elements of n%/zU(l)’

nd nl/ 2U 51 in (3.1) are asymptotically normally dis-
tributed; U(l)' and Ull) converge stochastically to I, and I,_,, respectively.

In order to describe the distribution of matrices, we use the following notations:
if A is a xt matrix, then vec(A) is the at dimensional vector formed by stacking the
columns of A, while if B is bxu matrix, then A® B is the abx tu Kronecker product
of B and C. We use the following three important properties: vec(ABC) =
(C'® A)vec(B), (A®B)(C®D) = AC®BD and (A®Q B)) = A’® B’. Then (3.1)
can be rewritten as

(3.2) vec(ﬁl/QCS)’C’%z)) 1/2((](2)/6‘2’ QI m)vec(n}/QU(l)/)
+ K1/2(Im UQ(;) R)vec(né/QUz(f)).
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Therefore, the limiting distribution of vec(A'/ 2051) /01(2)) as n — 0o is normal with
mean 0, and covariance matrix,

(33) V= rko(Q ® L-m)A Q@ Iy n) + k1 (Im ® RIAD (I, ® R'),
with

(3.4) AW =diag(A?,. . AW)  g=12
(35) AL = diag(8/8%0, /(81 — 819,12, 600809 /(61 — 69))?),
g=12, i=1,...,m.

On the other hand, since a7, = (vec(ﬁl/zCél)'Clm))’(vec(ﬁl/QCél)'C?))), we
have the following theorem.

THEOREM 3.1. For simple roots case, the limiting distribution of T, as
n — 00 is the same as the distribution of the sum of squares of normal variates
with mean 0 and covariance matriz V.

Next, we consider the limiting distribution of 771}, as n — co under H,, for
multiple roots case. Due to Anderson (1963), the n}/‘?Ul(;)', Ul(f), né/ZUg) and
Uz(;) in (3.2) are independent in the limiting distribution. The Ul(f) and UQ(;) have
the limiting distributions on orthogonal matrices according to the multiplicities
of the roots; the ni/ 2U1(;)' and né/ 2U2(f) have the same distributions as given for
simple roots case. The QUl(f) and Uz(é)'R converge to V7 and V5 in distribution,
respectively, where V; is distributed on the set of m x m orthogonal matrices,
and V3 is distributed on the set of (p — m) X (p — m) orthogonal matrices. The
conditional limiting distribution of vec(n!/ 20513'(7:{2)) as n — oo giving V) and V;
is normal with mean O and covariance matrix ¥, where VU is defined by replacing
Q and R by V; and Vs, respectively, in ¥. Thus, we have the following theorem.

THEOREM 3.2. For multiple roots case, the limiting distribution of i1y, as
n — 00 is the same as that of the random variable X' X with

X = K'é/g(‘/l ® Ip_m)Zl + H}/Q(Im ® VQ)ZQ,

where Vi s distributed on the set of m X m orthogonal matrices, V, is distributed
on the set of (p —m) x (p —m) orthogonal matrices, Z1 is Np(p—m) (0,AM) and
Z3 8 Ny(p-m)(0, AD), and Vi, Va, Z1 and Zs are all independent.

In observing the limiting null distribution of #T,,, it is convenient to give
another expression for it. From the identities (2.2) with replacing I‘Z(g ) by Ci(g ) we
also have AT, = (vec(nX/2C{' CMY (vec(n!/2CS?' V). As in the argument
for deriving Theorem 3.2, we have the following theorem.
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THEOREM 3.3. For multiple roots case, the limiting distribution of 01T, as
n — oo is the same as that of the random variable Y'Y with

Y = 63 2 (In @ Wa)Zy + 632 (W1 ® Ip_m) Za,

where W7 is distributed on the set of m x m orthogonal matrices, Wy is distributed
on the set of (p —m) x (p —m) orthogonal matrices, Z1 is Ny (p—m) (0, AM)Y and
Z3 i8 Nin(p—m) (0,A®), and Wy, Wy, Z1 and Zy are all independent.

In Theorem 3.2, if the conditional covariance matrix of X giving V;’s, is free
from V;’s, then X is normally distributed. In Theorem 3.3, the similar observation
shows the normality of Y. Thus, we can clarify that the limiting null distribution
of nTy, is weighted sum of chi-squared for the cases where the condition “6&1) =

c = Oy Ol m o = 5,(,2)”, or the conditon “6%2) = ... = 57(3), (55,3_1 =
cee = 5,(,1)” holds. In particular, if the above two conditions hold simultaneously,
then 77}, multiplied by some constant is asymptotically distributed as chi-squared
distribution with m(p — m) degrees of freedom. Notice that the joint use of the
two expressions X’X and Y'Y facilitates the above clarification. As can be seen
in Theorems 3.2 and 3.3, the limiting null distribution of nT,, as n — oo is rather
complicated because it involves the conditional Haar distribution.

We should have explained the asymptotic null distribution for multiple roots
case more precisely to constitute the test criterion. However, only if it is known
that Vi, Vo, Wy, and W; are orthogonal matrices, the devices proposed in the next
section completes the test criterion.

4. A test procedure

The asymptotic null distribution of 77}, as n — oo is cumbersome in general.
It depends on the unknown parameters @0, R and 5§g), g=12,i=1,...,p, and
involves the conditional Haar distribution according to the multiplicities of the
population roots. Although one thing to do for approximating the distribution of
nl,, is to substitute estimates of unknown parameters, it is difficult to estimate
the multiplicities of the roots, and the substitution cannot work well. Some coun-
terplans for them should be made up minding that the resultant critical region
will be conservative. We use axfc as an approximation to the null distribution
of nT,,, where a and f are constants and Xfc denotes a chi-squared variable with
f degrees of freedom. Then, we determine the critical point so that the test is
conservative with respect to the rotational freedom in H,, and the multiplicities of
the roots. The unknown parameters 5§g Vs are replaced by their estimates. First,
the constants a and f are determined so that the mean and variance of axfc are
the same as the asymptotic mean, say e, and variance, say v, of n7},, respectively.
This implies that a = v/2¢, and f = 2¢%/v. For simple roots case we have

(4.1) e=tr¥=rytr AL 4 ko tr A,
4.2 v=2tr % = 23 tr AD2 4 262 tr A2
1 2
+4r1k2tr(Q @ RYAD(Q @ R)AD,  say v(Q, R).
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For general cases we have

Il

(4.3)

e=E[tr¥] = ngtr AN + k1 tr AP
(44) v

E[2 tr \112] = E[’U(Vl, Vz)]
= 2k2tr A2 4 262 tr AD? 4 4k o Eftr(Vy @ Va) AD (V1 @ V) AP,

Il

where the expectation is taken with respect to V4 and V5. The multiplicities of the
roots are generally unknown and cannot be easily estimated, it seems complicated
to compute v explicitly even though the multiplicities are known.

Now we propose a test procedure based on 771, by determining the critical
point 7 so that P(ax} > r | Hy) is maximized with respect to the orthogonal
matrices (), R for simple roots case. Since, as is described later, the maximum of
P(ax% > r | Hp,) is obtained when v = v(Q, R) is maximized, the inequality

(4.5) winv(Q, R) < E[p(V1,V2)] < maxv(Q, R)

implies that the test procedure proposed above will do well for general cases. Note
that (4.5) is valid for all possible multiplicities of the roots.

From (4.1), (4.2), the asymptotic mean of #T,,, e, is independent of Q, R,
and the asymptotic variance of 2T, v(Q, R), depends on @), R. The following
facts show that the maximum of P(ax?c > r | Hp) is attained when v(Q, R) is
maximized. The first fact is that the null distribution of 17}, can be approximated
as exfc /f where f = 2¢2/v(Q, R). The second one is that the percent point of
bZ is equal to b times the percent point of Z for each positive number b and a
random variable Z. The last one is that the upper 100« percent point of Xff /f is
monotonically decreasing in f for properly small a, which is checked by a table for
the percent point of chi-squared distribution but is not analytically proved yet.

THEOREM 4.1. Let v(Q,R), AW (g = 1,2) be given in (4.2), (3.4), (3.5).
Then we get

(4.6) rga}%cv(Q, R) = Qtr(@A(l) + ,ilA(2))2’

and the mazimum is attained when Q = I, R =I,_,,.

Proor. It suffices to maximize
(4.7) tr(Q ® RYAM(Q ® R)AP,

subject to orthogonal matrices ), R. For this purpose, the basical tool is the
following results due to Anderson (1963): let A and B be symmetric matrices
with latent roots a; > --- > a, and by > --- > by, respectively, and let H be a
p X p orthogonal matrix. Then maxgy tr HAHB =) a;b;.

Let @ = (gij), 1 < 4,5 <m, (4.7) can be written as

(4.8) SN @t RAVRAY.
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Since the Agl) and A;Q) are diagonal matrices with decreasingly ordered diagonal
elements, all summands in (4.8) simultaneously attain each maximum values when
R = I,_,,. Putting

I = diag(6{76%0,, /(617 — 89, )2, 606 /(89 - 6,,)%),

m m

g=1,2, k=1,...,p—m,

the maximum value of (4.7) subject to orthogonal matrices R can be expressed as
(4.9) S wQu Q.

Since the IIECI) and Hg) are diagonal matrices with increasingly ordered diagonal
elements, all summands in (4.9) simultaneously attain each maximum values when
@ = I,,. This completes the proof.

To see the effects of @@ and R, it is also important to mind the minimum of
P (axfc > 1 | Hy,) subject to orthogonal matrices @, R. As in the proof of Theorem
4.1 above, we can obtain

(4.10) Iéli}r:il v(Q,R) = Qtr(@A(l) + nlA@)*)Z,

with

A@* = diag(AD* . AP,
AP = diag(ePe /(6P ), P86 — 62,
i=1,...,m.
The minimum value is attained when
0 1 0] 1
(4.11) Q= : | , R=
1 ‘ 0 1 . 0]
Although the minimum value is not necessarily attained due to the restriction

to T'(9) we can regard it as a lower bound at least. The difference between (4.6) and
(4.10) tends to be large when the hypothesis H,, itself is awkward and indistinct,

that is, 67(;'3 ) and 6,(7?11 are close to each other. On the contrary, it tends to be small

when 6§g ),...,6% are close to each other and 67(53_1, e 61(,9 ) are close to each other.
Further note that (4.10) coincides with (4.6) when 6:(19) = ... = 69 for either of
two groups and 67(53_1 =...= 6;(,‘17 ) for either of two groups. In Table 1, we compare

the critical points of our test with actual ones obtained through a simulation study
for the cases Q = I, R = I,_,,, where the rotational freedom does not affect,
in order to examine the adequacy of the asymptotic chi-squared approximation.
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Table 1. The simulated critical points of 7T}, and approximate ones used actually.

(a) K] = Kg = 0.5

69) 6;1) 5;1) e (n1,n2) r
82 62 s (40,40)  (100,100) (200,200) (400, 400)

6 6 6 010 599 5.58 5.46 5.40 5.35
6 6 6 005 681 6.28 6.11 6.06 6.00
001 859 7.78 7.49 7.43 7.34
8 6 4 010 7.2 6.73 6.58 6.53 6.48
8 6 4 005 833 7.66 7.46 7.41 7.32
001  10.94 9.71 9.37 9.31 9.08
10 6 2 010 1887 21.05 20.52 2044  20.34
0 6 2 005 2025 95.29 24.32 2417 23.81
0.01 2168 35.94 32.86 3218 31.12
6 6 6 010 659 6.13 5.98 5.93 5.88
8 6 4 005 755 6.93 6.74 6.68 6.60
001  9.76 8.65 8.34 8.27 8.11
6 6 6 010 1483 13.83 13.14 12.85 1262
10 6 2 005 18.04 16.88 15.53 1510 14.55
001  21.09 95.74 21.31 2001 18.65

(b) k1 = 0.8, k2 = 0.2

6%1) 5%1) 6&1) o (n1,n2) r
I S (40,160) (100,400) (200,800) (400,1600)

6 6 010  6.07 5.61 5.48 5.42 5.35

6 6 005 697 6.32 6.16 6.10 6.00

0.01  9.01 7.83 7.58 7.45 7.34

6 4 010 7.36 6.77 6.62 6.55 6.48

8 6 4 005 859 7.77 7.55 7.44 7.32

0.01  11.64 9.92 9.53 9.38 9.08

10 6 2 010 2286 21.84 21.04 2067 20.34

10 6 2 005 27.89 26.85 25.20 2451 2381

0.01  32.38 41.37 34.81 3324 31.12

6 6 6 010 7.6 6.54 6.37 6.32 6.23

8 6 4 005 837 7.48 7.26 7.14 7.02

001  11.37 9.51 9.12 8.93 8.67

6 6 6 010 21.67 19.37 18.21 1771 17.24

10 6 2 005 27.28 24.20 21.96 21.08  20.10

0.01 32.42 39.04 30.99 28.51 26.13
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Table 2. The influence of the maximization in our test procedure.

& D sl () K1 = K2 = 0.5 (b) k1 =0.8, kg = 0.2
&2 53 s o 010 005 001 010 005 001

6 6 6 r 535 6.00 7.34 535 6.00 7.34
6 6 6 535 6.00 7.34 535 600 7.34
P* 0.100 0.050 0.010  0.100 0.050 0.010

6 4 r 648 7.32 9.08 648 732 9.08
8 6 4 r* 632 708 867 638 T7.17 882
P* 0.086 0.040 0.006 0.091 0.043 0.008

10 6 2 r 2034 23.82 31.12 2034 23.82 31.12
10 6 2 r* 1825 2067 2576 19.08 21.92 27.92
P* 0.055 0.019 0.002 0.074 0.031 0.004

6 6 r 588 6.60 811 6.23 7.02 867
6 4 r* 588 660 811 623 702 8.67
P* 0.100 0.050 0.010 0.100 0.050 0.010

6 6 6 r 1262 1455 18.65 17.24 20.10 26.13
10 6 2 r* 1262 1455 18.65 17.24 20.10 26.13
P* 0.100 0.050 0.010 0.100 0.050 0.010

4 2 2 r 3433 38.90 4849 34.33 38.90 4849
4 2 2 r* 33.38 37.52 46.12 33.73 38.03 45.99
P* 0.086 0.039 0.006 0.091 0.043 0.008

r  33.21 37.79 4743 33.21 37.79 4743
™  31.97 3597 4431 3243 36.65 45.46
P* 0.081 0.036 0.005 0.088 0.041 0.007

4 4 2 r 2332 26.78 3256 23.32 26.78 32.56
4 4 2 r* 2198 24.80 30.69 2249 2555 31.97
P* 0.072 0.030 0.004 0.083 0.037 0.006

6 6 2 r 2098 2444 31.75 20.98 24.44 3175
6 6 2 r* 1917 21.73 27.10 19.88 22.79 28.92
P* 0.062 0.023 0.002 0.0v7 0.033 0.005

4 2 2 r 2842 3224 40.26 25.24 28.78 36.25
4 4 2 r* 2727 30.55 37.37 24.45 27.61 34.23
P* 0.079 0.034 0.005 0.084 0.038 0.006

Table 2 contains the critical points of our test, ones obtained using (4.10) and
P(ax?c > r) where 7 is the critical point of our test and a and f are calculated
using (4.10), say P* in Table 2, to check the influence of the maximization in
our test procedure. We set (p,m) = (8,3) and 559) =1(g=1,21=4,...,8).
Here the significance levels are 0.10, 0.05 and 0.01 and the sample sizes are chosen
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satisfying (a) k1 = ke = 0.5, and (b) k1 = 0.8, ko = 0.2.

Finally, we summarize the use of our test procedure to actual data. The
dimensionality m may be decided according to the latent roots for aimed purpose
rather than specified in advance. The test statistic nTy, is calculated using ny and
C9). The critical points at specified significance levels are estimated using ng, and
D'9) as follows; the approximate mean é and variance ¥ are estimated by replacing
A by D@, kg by ng/(n1+ng), Q by I, and R by I,_,,, respectively: the axf,
approximation are performed using é and . A supplementary task is to replace
Q@ and R by (4.11) in order to check that the maximization in our test procedure
does not deeply effect the result. Table 2 shows that the influences are negligible
as far as 67(gzr1 is comparatively away from 67(;‘3), which is the case that testing H,,
is meaningful.

5. An example

The testing problem for H,, is considered by Schott (1988). We illustrate how
to use our test procedure in practical situations by applying it to the example in
Schott (1988). The data are originally treated in a study by Airoldi and Hoffmann
(1984). The data rise from the skull measurements on two groups of the vole species
Microtus californicus: (1) males; (2) females. The sample sizes N; = n; + 1 are 82
and 60, respectively. The four variables are condylo-incisive length, alveolar length
of upper molar toothrow, zygomatic width, and interiorbital width. Flury (1987)
analyses the data under partial common principal components model. Schott
(1988) tests the hypothesis Hy on the data and Hj is not rejected at any reasonable
significance levels. In our study, testing hypothsis Hy are considered because of
the same observation on the latent roots like Schott (1988). The sample covariance
matrices, with their spectral decompositions, are given in Table 3. To test Ha,
we calculate AT, = 0.17, € = 0.88, and 9 = 0.51. Consequently, for the ax}
approximation, ¢ = 0.29 and f = 3.03, so that H» is not rejected at any reasonable
significance levels, which is the same conclusion as in Schott (1988).

6. Discussion

In our study, the test procedure is proposed based on T, so that it is conser-
vative with respect to @, R, V; and W; with estimating 67. On the other hand,
we can constitute an asymptotic similar test under the assumption that all la-
tent roots are distinct and positive. When H,, is true, the limiting distribution
of vec(n'/ 2C’§”'C§2)) as n — oo is normal with mean 0, and covariance matrix
¥ which is positive definite. Therefore, replacing ¥ by the estimator ¥, we can
consider the test statistic

(6.1) ATy, = (vee(n'/>CfM Cf)) T~ (vec(n'/*C5 €17,
which is asymptotically distributed as chi-squared with m(p — m) degrees of free-

dom under H,,. Similarly, from Theorem 3.2, when X is normally distributed, the
modification like (6.1) using an estimate of the covariance matrix leads to a test



A TEST FOR COMMON SUBSPACES 157

Table 3. Data on the vole species Microtus californicus.

(a) Sample covariance matrices (x10%)

Male (n; = 81) Female (nz = 59)
13.55 10.00 10.65 -—2.05 18.74 14.78 15.62 2.51
S = 10.00 18.19 8.90 3.58 5@ = 14.78 19.00 15.51 7.02
10.65 8.90 15.32 3.00 15.62 1551 19.45 5.91
—2.05 3.58 3.00 27.10 2.51 7.02 5.91 23.31

(b) Latent roots
DM = diag(36.32, 27.01, 8.05, 2.78)
D® = diag(57.44,21.15,3.75,3.17)

(c) Latent vectors

789 187 314 494 737 .286 309 529

o — —.239 -.755 101 .602 c@ — —.109 —.820 .062 .559
—.541 625 123 .549 —.653 483 140 .566

.168 064 —.936 .303 .138 116 —.938  .295

statistic distributed as chi-squared under certain assumptions. For multiple roots
case, however, the limiting distribution of vec(n!/ 2051),09) is no longer normal,
and so, the same device as (5.1) is not successful. The same observaton can be
applied to Y in Theorem 3.3. Further, because of the rotational freedom in H,,,
it might be better to use the test by nT,, whether the multiplicities of roots are
known or not.
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