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Abstract .  Principal component analysis has made an important contribution 
to data reduction. In two sample problems, one great interest is whether we 
can reduce the number of variables to a smaller number in similar fashions 
for both samples. More precisely, we consider the hypothesis H,~ that the 
subspaces spanned by the latent vectors of the population covariance matrices 
corresponding to the first principal components are the same in two groups. In 
this paper, we propose a simple and easily interpreted test procedure for Hm. 
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component, conditional Haar distribution. 

i. Introduction 

Let x(g) (g = 1, 2) be vector variables with p components. In practical appli- 
cations, the same p variables are being measured on objects in different but related 
two groups. The data reduction in principal component analysis is done by using 
the first m principal components whose coefficient vectors are orthonormal with 
relatively large variabilities in each groups. We treat the hypothesis Hm that  the 
subspaces spanned by the rn latent vectors of the population covariance matrices 
corresponding to the first m principal components are the same in two groups. 
Krzanowski (1979, 1982) discussed the similarity measure of two subspaces, its ge- 
ometric interpretation and the simulation studies instead of considering the asymp- 
totic distribution. In this paper, the test procedure proposed by Krzanowski is 
modified so that it is available for multiple roots cases. Schott (1988) has also 
given a procedure for testing Hm for general cases. His test criterion, however, 
depends on the rotational freedom in the hypothesis H~,  which is not uniquely 
determined for multiple roots cases. In testing the hypothesis H,~, the rotational 
freedom in H,~ is an obstacle to constructing similar tests, even asymptotically. 
In order to get over these difficulties, one attempt is the approximation using the 
maximization on that  sorts of freedom described afterwards. 

Flury (1984, 1986, 1987) has developed the common principal components 
(CPC) method and recently partial CPC method. However, his common subspace 
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does not correspond to the first m principal components  in each groups. Chen 
and Robinson (1989) t reated test statistics for a common factor space in factor 
analysis. Their hypothesis is generally different from H ~  when restricting to PCA, 
but  their test  statistic is the same as ours only if we consider the testing probrem 
of H ~  when the first m latent roots are all distinct and the remainders  are all the 
same in each groups. 

A test  statistic which underlies our test procedure is described in Section 2, and 
its asymptot ic  distribution for general case is derived in Section 3. We complete 
our test  procedure by using an approximation of the critical points of our statistic 
in Section 4. The approximate critical points of our statistic and actual  ones 
obtained by simulation s tudy are tabulated in Table 1 and the influence of the 
maximization in approximating the critical points is examined in Table 2. An 
illustrative example is given in Section 5. 

2. The test statistics 

Assume that  x~ g), z (g) (g = 1, 2) are random samples of independent  ran- . • • , N 9 

dom vectors z(g) normally distr ibuted with covarianee matrices E(9). Write E (g) 

in spectral decomposition as E(g) = r(g)Zx(g)r(g)' where A (g) = diag(5~g), . . . ,  @(g)) 

with ~g) > . . .  > 5p(g) F ( g ) =  [F~g): F~ g)] = [7~ 9), , ~ )  ~ (g) , ,@g)], and 
- -  - -  , " ' "  : / m + l  " ' "  

Ip = F(g)F (g)'. Then the hypothesis Hm means tha t  R(F~ 1)) = R(F~2)). Here Ip is 

the p x p identity matrix,  and R(F~ g)) denotes the subspace spanned by the  column 

vectors of F~ g). Using the fact tha t  R(F~g))± = R(F~g)), it is easy to show that  

P(1)'r(2) = O. Consequently, we obtain is equivalent to  2)) or - i  
the prominent  property: 

t = ( 1 ) I ~ ( 2 ) ~ ( 2 ) P ~ ( 1 )  r , 2  t 1 t 1 12 = 0  if H ~  is true, 

> 0 otherwise. 

Now we consti tute the test criterion based on this property. It is natural  
to adopt the sample covariance matrices S (a) as the estimators of E (g). Then  
ngS (g) is d i s t ~ u t e d  as a Wishart  distrib,~;i)on '(g) (g) ,( )r:(g) 'Wp(ng'E(g)) 'g where ng= Ng - 1 .  
Decompose S in the same manner  as E : S = C D C where D(U) = 

diag(d~g),... ,d(p ~)) with d{ g) > . . .  > d(p g), C(g) = [C}g): C~ g)] = [ c [ 9 ) , . . . , c ~ ) :  

c (g) , ,C(p g)] and I v = C(g)C (g)' When 5~) > e~)+, (g = 1,2), "~1~(2)m(2)"1 and r a + l  . . . .  

p ( 2 ) p ( 2 ) l  and p(1)p(1), respectively, due to #,(1)~(1), are consistent estimators of ~1 ~1 -2 ~2 , '~2 "~2 
the general results given in Chapter  2 of Kato (1966). This implies tha t  if H ~  is 
true, 

. .~(1),.~(2)m(2),m(1) 
(2.1) rra = ~r~2 U1 "-'1 ~2 

should not be too large. Therefore, we propose Tm as a test statistic for -Tim. 
It is easily shown that  

(2.2) t r  ~2r (1)"P(2)'1 ~11~(2)/'P(1}~ '2 . ~ ( 1 ) , ' ~ (2 )  ~ ( 2 ) , ' - ~  ( 1 )  

= l;r [ 1 1 2  1 2  1 1  

= m -- tr  p(1)~p(2)p(2)/p(1) 

. ~ ( 1 ) , ~ ( 1 ) ~ ( 1 ) , ~ ( 1 )  
= p - -  TYt --  1 ; r l  2 1 2  1 2  1 2  . 
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The quant i ty  tr  r(x)/r(~)r(2)lP(1) has been proposed as a measure of total  similarity 

between ~(F[  ~)) and N(F~ 2)) in Krzanowski (1979). We can also give a geometric 

interpretat ion tha t  the quant i ty  tr  ~r'(1)/p(2)r '(2)/p(1)~t ~ ~2 is equal to the sum of squares 

of the cosines of the angles between each of the column vectors in F~ l) and each 

one in F~ ~) . Note tha t  the identities replaced F~ ~) by c}g ) in (2.2) are all available 
as the definition of T,~ and convenient to diagnose the asymptot ic  null distr ibution 
of T,~ given in the next section. 

3. The asymptotic null distribution of T,~ 

Under Hm, we have the relation 

o 1 R ' 

= p(1)ip(2) 
r(1)/r(2) and R ~2 ~2 are called the rotat ional  freedom in H,~, where Q = ~1 ~1 

m x m, (p - m) x (p - m) orthogonal matrices, respectively. Let n g =  ~gn where 
~g are fixed positive numbers satisfying ~1 + t~2 = 1 and let ~ = n~n2 / (n l  + n2). 
We investigate the limiting distr ibution of ~T,~ as n tends to infinity with the help 
of the results on the asymptot ic  behavior of C(g) summarized in Anderson (1963). 

~(g) 2) so Assume tha t  6~ ) > V m + l  (g  = 1, tha t  H,~ may make sense. We first 

s tudy  the limiting distr ibution of gT,~ for simple roots case. Pu t  U (g) = F(9)~C (g), 

U(g) , (g)~ [uij ), 1 < i , j  < p. T h e n -  (g) ~ (g) = _ _ ,ai~ an(1 uij for i > j are independent in 

1/2 (~) for i > j are asymptotical ly independently the limiting distribution. The n~ Uiy 

distr ibuted as normal with mean 0, variance 5}~)5~g)/(~}g)- ~g))2, and u}~) and 

u(~) - (~) for i ¢ j converge stochastically to 1 and 0, respectively. i j  -- 'ttji 
Part i t ioning the matrices U (~) into submatrices with m, p -  m rows and 

columns, 

1/2T~(1)t 1/2T (2) 
The elements of n 1 ~12 and n 2 u21 in (3.1) are asymptotical ly normally dis- 

TT(1) / t r ibuted;  ~22 and U~  ) converge stochastically to I n  and Zp_,~, respectively. 
In order to describe the distr ibution of matrices, we use the following notations: 

if A is a × t matrix,  then vec(A) is the at dimensional vector formed by stacking the 
columns of A, while if B is b × u matrix,  then  A ® B  is the ab × tu  Kronecker product  
of B and C. We use the following three important  properties: v e c ( A B C )  = 
(C t ® A)vec (B) ,  (A @ B ) ( C  ® D) = A C  ® B D  and (A ® B) '  --- A 1 ® B 1. Then (3.1) 
can be rewrit ten as 

v e c ( ~ 1 / 2 C ; 1 ) I c ~ 2 )  ) = .  1 / 2 / r r ( 2 ) l n l  r \ / 1/2T (1)/ ,  (3.2) r~2 ~11  ~ ® l p - m ) V e c [ n l  u12 ) 

+ '~1 ~,~ ® 

we get 

(3.1) 
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Therefore, the limiting distribution of vec(gl /2c~) 'C}2))  as n --+ oc is normal with 
mean 0, and covariance matrix, 

= ,~2(Q' ®/ ; -~)A(1)(Q ® Ip_~) + ~1(I.,~ ® R)A(2)(I.~ ® R'), (3.3) 

with 

(3.4) 

(3.5) 

A (g) = diag(A~g),. . . ,A~)),  g = 1,2, 

= dxag(Si 5 r n + l / ( S i  - -  " r e + l /  , ' ' ' ,  i p 

9 = 1 , 2 ,  i = l , . . . , m .  

O n  the  o the r  hand, since 5T.~ -1/2 (1), (2) , - 1 / 2  (1), (2) 
= (vec(n  C 2 C 1 ) ) ( v e c ( n  C~ C 1 )), we 

have the following theorem. 

THEOREM 3.1. For simple roots case, the limiting distribution of ~Tm as 
n ~ oc is the same as the distribution of the sum of squares of normal variates 
with mean 0 and covariance matrix ~ .  

Next, we consider the limiting distribution of 5T,~ as n -~ ec under H,~ for 

multiple roots case. Due to Anderson (1963), the n l /2U~  )', U~  ), n~/2U(~ ) and 

U(~ ) in (3.2) are independent in the limiting distribution. The U~  ) and U (1) have 
the limiting distributions on orthogonal matrices according to the multiplicities 

1/2. (1), 1/2. (2) 
of the roots; the n 1 ui2 and n 2 u21 have the same distributions as given for 

rr(1), simple roots case. The Q U ~  ) and ~:2 • converge to Vx and V: in distribution, 
respectively, where V1 is distributed on the set of m × m orthogonal matrices, 
and V2 is distributed on the set of (p - m) x (p - m) orthogonal matrices. The 

conditional limiting distribution of vec(nl/2c~l! 'c~2)) as n ~ oo giving V1 and V2 
is normal with mean 0 and covariance matrix q2, where ~ is defined by replacing 
Q and R by V1 and I/2, respectively, in ~. Thus, we have the following theorem. 

THEOREM 3.2. For multiple roots case, the limiting distribution of ~T~  as 
n ~ oc is the same as that of the random variable X ' X  with 

1/2/.  1/2/T 
X = ~2 iv1 ® Ip- ,OZ1 + ~1 I1,~ ® V2)Z2, 

where V1 is distributed on the set of m x m orthogonal matrices, 1/2 is distributed 
on the set of (p - m) x (p - m) orthogonal matrices, Z1 is N,~(p_m)(0 , A (1)) and 

Z2 is N,~(p_,~)(0, A(2)), and V1, 1/2, Zx and Z2 are all independent. 

In observing the limiting null distribution of ~T,~, it is convenient to give 
another expression for it. From the identities (2.2) with replacing F} g) by C} ~), we 

1/2 (2), (1) , 1/2 (2)/ (1) also have fiT,~ = (vec(g C 2 C 1 )) (vec(fi C 2 C 1 )). As in the argument 
for deriving Theorem 3.2, we have the following theorem. 
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THEOREM 3.3. For multiple roots case, the limiting distribution of ftTm as 
n ~ oc is the same as that of the random variable Y~Y with 

Y = ~1/2(I~ ® W2)Z1 + h i ~1 ® r~_m)Z2, 

where W1 is distributed on the set of m × m orthogonal matrices, W2 is distributed 
on the set of (p - rn) x (p - m) orthogonal matrices, Z1 is N.~(p_.~)(0, A (1)) and 

Z2 is N.~(p_.~)(0, A (2)), and W1, W2, ZI and Z2 are all independent. 

In Theorem 3.2, if the conditional covariance matr ix  of X giving V/'s, is free 
from Vi's, then X is normally distributed. In Theorem 3.3, the similar observation 
shows the normali ty of Y. Thus, we can clarify tha t  the limiting null distr ibution 

of gT,~ is weighted sum of chi-squared for the cases where the c o n d i t i o n  .(~1) = 
. . . .  -~ , ~,~+1 -- " - , or the conditon "5 2) = . . .  = ~,~(2), ~ 1 -- 

. . . .  @(1),, holds. In particular, if the above two conditions hold simultaneously, 
then gTr~ multiplied by some constant  is asymptotical ly distr ibuted as chi-squared 
distr ibution with rn(p - rn) degrees of freedom. Notice tha t  the joint use of the 
two expressions X~X and Y~Y facilitates the above clarification. As can be seen 
in Theorems 3.2 and 3.3, the limiting null distribution of ~T~ as n --+ oc is rather  
complicated because it involves the conditional Haar distribution. 

We should have explained the asymptot ic  null distribution for multiple roots 
case more precisely to const i tute the test criterion. However, only if it is known 
tha t  V1, V2, W1, and W2 are orthogonal matrices, the devices proposed in the next 
section completes the test criterion. 

4. A test procedure 

The asymptot ic  null distribution of fiT~ as n --~ oc is cumbersome in general. 

It depends on the unknown parameters Q, R and ~}9), g = 1, 2, i = 1 , . . .  ,p, and 
involves the conditional Haar distr ibution according to the multiplicities of the 
populat ion roots. Al though one thing to do for approximating the distr ibution of 
~T,~ is to subst i tute estimates of unknown parameters,  it is difficult to est imate 
the multiplicities of the roots, and the subst i tut ion cannot work well. Some eoun- 
terplans for them should be made up minding tha t  the resultant critical region 
will be conservative. We use ax} as an approximation to the null distr ibution 

of ~T,~, where a and f are constants and X} denotes a chi-squared variable with 
f degrees of freedom. Then, we determine the critical point so tha t  the test is 
conservative with respect to the rotat ional  freedom in H,~ and the multiplicities of 

the roots. The unknown parameters 5}g)'s are replaced by their estimates. First,  
the constants a and f are determined so tha t  the mean and variance of ax} are 
the same as the asymptot ic  mean, say e, and variance, say v, of nT~,  respectively. 
This implies tha t  a = v/2e, and f = 2e2/v. For simple roots case we have 

(4.1) e = t r ~  = ~ l t r A  (1) + ~2 t rA  (2), 

(4.2) v = 2 t r ~  2 = 2~2t rA (1)2 + 2~;2 t r A  (2)2 

+ 4 ~ I ~ 2 t r ( Q ® R ) ' A ( t ) ( Q ® R ) A  (2), say v(Q,R) .  
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For general cases we have 

(4.3) 

(4.4) 

e = E[tr q2] = ~2t rA (1) + t~ 1 t rA (2), 

v = E[2 tr ~2] = ElY(V1, V2)] 

= 2 ~  t rA (1)2 + 2n~ t rA (2)2 + 4~l~2E[tr(V1 ® V2)'AO) (V1 ® V2)A(2)], 

where the expectation is taken with respect to V1 and V2. The multiplicities of the 
roots are generally unknown and cannot be easily estimated, it seems complicated 
to compute v explicitly even though the multiplicities are known. 

Now we propose a test procedure based on ~T,~ by determining the critical 
point r so that P(ax~ > r [ H, 0 is maximized with respect to the orthogonal 
matrices Q, R for simple roots case. Since, as is described later, the maximum of 
P(ax2f > r ]H~)  is obtained when v -- v(Q, R) is maximized, the inequality 

(4.5) rainy(Q, R) <_ E[v(V1, V2)] _< maxv(Q, R) 
Q,R Q,R 

implies that the test procedure proposed above will do well for general cases. Note 
that (4.5) is valid for all possible multiplicities of the roots. 

From (4.1), (4.2), the asymptotic mean of ~T,~, e, is independent of Q, R, 
and the asymptotic variance of ~T,~, v(Q, R), depends on Q, R. The following 
facts show that the maximum of P(ax~ > r ] H~) is attained when v(Q, R) is 
maximized. The first fact is that the null distribution of ~Tm can be approximated 
as ex2f/f where f = 2e2/v(Q,R). The second one is that the percent point of 
bZ is equal to b times the percent point of Z for each positive number b and a 
random variable Z. The last one is that the upper 100a percent point of X2f/f is 
monotonically decreasing in f for properly small a, which is checked by a table for 
the percent point of chi-squared distribution but is not analytically proved yet. 

THEOREM 4.1. Let v(Q,R), A (g) (g = 1,2) be given in (4.2), (3.4), (3.5). 
Then we get 

(4.6) maxv(Q, R) -- 2tr(~2A (1) + ~1A(2)) 2, 
Q,R 

and the maximum is attained when Q = Im, R = Ip_,~. 

PROOF. It sumces to maximize 

(4.7) tr(Q ® R)'A (1) (Q ® R)A (2), 

subject to orthogonal matrices Q, R. For this purpose, the basical tool is the 
following results due to Anderson (1963): let A and B be symmetric matrices 
with latent roots al >_ ... >_ ap and bl >_ "" >_ bp, respectively, and let H be a 
p × p orthogonal matrix. Then maxH tr H~AHB = ~ ajbj. 

Let Q = (qij), 1 _~ i , j  ~_ m, (4.7) can be written as 

2 ~ (1) (2) 
(4.8) E E q i j t r R A  i RAy . 
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Since the A~ 1) and A~ 2) are diagonal matrices with decreasingly ordered diagonal 
elements, all summands  in (4.8) simultaneously a t ta in  each maximum values when 
R = I p - m .  Put t ing  

ii~g) • (9) (g) (g) ,~(g) ~2 6(g)6(g) /{5(9) ,~(g) ~2~ =dlag(61 5re+k~(51 -Vrn+kJ  , ' " ,  rn m+k/~  m --Vm+k~ /, 

g = 1,2,  k = 1 , . . . , p -  rn, 

the maximum value of (4.7) subject to orthogonal matrices R can be expressed as 

(4.9) ~ . .~ t r r (1) , -~rr(2)  

Since the II (1) and II (2) are diagonal matrices with increasingly ordered diagonal 
elements, all summands  in (4.9) simultaneously a t ta in  each maximum values when 
Q -- I,~. This completes the proof. 

To see the effects of Q and R, it is also important  to mind the minimum of 
P ( a x }  > r ! H m )  subject to orthogonal matrices Q, R. As in the proof of Theorem 
4.1 above, we can obtain 

(4.10) min v(Q, R) = 2 tr(t~2A (1) ÷ ~1A(2)*) 2, 
Q,R 

with 

a(2) * = d iag(A~)* , . . .  ,A~2)*), 

A}2)* • (2) (2) (2) (2) (2) ( 2 )  5(2) ~2"~ dlag((~i ~p / (~i  (~;2))2, rn+l] ' ,  = - " - ,  ~ i  ~ . ~ + 1 / ( ~ i  

i =  l , . . . , r n .  

The minimum value is a t ta ined when 

(4.11) [i [i 1 
Q =  , R =  

O 

Although the minimum value is not necessarily a t ta ined due to the restriction 
to F(9) we can regard it as a lower bound at least. The difference between (4.6) and 
(4.10) tends to be large when the hypothesis H,~ itself is awkward and indistinct, 

tha t  is, 5~ ) and ~(g) "m+l are close to each other. On the contrary, it tends to be small 
_, ;(9) 6p(9) when (~g) , . . . ,  ~ )  are close to each other anu %~+1, • • •, are close to each other. 

Further  note tha t  (4.10) coincides with (4.6) when 5~ g) . . . . .  5~ ) for either of 

two groups and ~(g) • • = (~(g) for either of two groups. In Table 1, we compare urn÷ 1 : "  
the critical points of our test  with actual ones obtained through a simulation s tudy  
for the cases Q = I~ ,  R = fp-m,  where the rotat ional  freedom does not affect, 
in order to examine the adequacy of the asymptot ic  chi-squared approximation. 
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Table 1. The simulated critical points of KzTm and approximate ones used actually. 

(a) ~1 ~- ~2 ~- 0.5 

5~ 2) 5~ 2) 5~ 2) (40,40) (100, 100) (200,200) (400,400) 

6 6 6 0.10 5.99 5.58 5.46 5.40 5.35 

6 6 6 0.05 6.81 6.28 6.11 6.06 6.00 

0.01 8.59 7.78 7.49 7.43 7.34 

8 6 4 0.10 7.22 6.73 6.58 6.53 6.48 

8 6 4 0.05 8.33 7.66 7.46 7.41 7.32 

0.01 10.94 9.71 9.37 9.31 9.08 

10 6 2 0.10 18.87 21.05 20.52 20.44 20.34 

10 6 2 0.05 20.25 25.29 24.32 24.17 23.81 

0.01 21.68 35.94 32.86 32.18 31.12 

6 6 6 0.10 6.59 6.13 5.98 5.93 5.88 

8 6 4 0.05 7.55 6.93 6,74 6.68 6.60 

0.01 9.76 8.65 8.34 8.27 8.11 

6 6 6 0.10 14.83 13.83 13.14 12.85 12.62 

10 6 2 0.05 18.04 16.88 15.53 15.10 14.55 

0.01 21.09 25.74 21.31 20.01 18.65 

(b) N,1 ~-- 0.8, n2 • 0.2 

~2) 5~2) 5~2) (40,160) ( 1 0 0 , 4 0 0 ) ( 2 0 0 , 8 0 0 ) ( 4 0 0 , 1 6 0 0 )  

6 6 6 0.10 6.07 5.61 5.48 5.42 5.35 

6 6 6 0.05 6.97 6.32 6.16 6.10 6.00 

0.01 9.01 7.83 7.58 7.45 7.34 

8 6 4 0.10 7.36 6.77 6.62 6.55 6.48 

8 6 4 0.05 8.59 7.77 7.55 7.44 7.32 

0.01 11.64 9.92 9.53 9.38 9.08 

10 6 2 0.10 22.86 21.84 21.04 20.67 20.34 

10 6 2 0.05 27.89 26.85 25.20 24.51 23.81 

0.01 32.38 41.37 34.81 33.24 31.12 

6 6 6 0.10 7.16 6.54 6.37 6.32 6.23 

8 6 4 0.05 8.37 7.48 7.26 7.14 7.02 

0.01 11.37 9.51 9.12 8.93 8.67 

6 6 6 0.10 21.67 19.37 18.21 17.71 17.24 

10 6 2 0.05 27.28 24.20 21.96 21.08 20.10 

0.01 32.42 39.04 30.99 28.51 26.13 
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Table 2. The  influence of the  max imiza t ion  in our tes t  procedure.  

~ 1 )  (~(1) (~1) ( a )  ~1 = E2 : 0 . 5  ( b )  t~ 1 = 0 .8 ,  t~2 = 0 .2  

5~ 2) 5~ 2) 5~2) a 0.10 0.05 0.01 0.10 0.05 0.01 

6 6 6 r 5.35 6.00 7.34 5.35 6.00 7.34 

6 6 6 r* 5.35 6.00 7.34 5.35 6.00 7.34 

P* 0.100 0.050 0.010 0.100 0.050 0.010 

8 6 4 r 6.48 7.32 9.08 6.48 7.32 9.08 

8 6 4 r* 6.32 7.08 8.67 6.38 7.17 8.82 

P* 0.086 0.040 0.006 0.091 0.043 0.008 

10 6 2 r 20.34 23.82 31.12 20.34 23.82 31.12 

10 6 2 r* 18.25 20.67 25.76 19.08 21.92 27.92 

P* 0.055 0.019 0.002 0.074 0.031 0.004 

6 6 6 r 5.88 6.60 8.11 6.23 7.02 8.67 

8 6 4 r* 5.88 6.60 8.11 6.23 7.02 8.67 

P* 0.100 0.050 0.010 0.100 0.050 0.010 

6 6 6 r 12.62 14.55 18.65 17.24 20.10 26.13 

10 6 2 r* 12.62 14.55 18.65 17.24 20.10 26.13 

P* 0.100 0.050 0.010 0.100 0.050 0.010 

4 2 2 r 34.33 38.90 48.49 34.33 38.90 48.49 

4 2 2 r* 33.38 37.52 46.12 33.73 38.03 45.99 

P* 0.086 0.039 0.006 0.091 0.043 0.008 

6 2 2 r 33.21 37.79 47.43 33.21 37.79 47.43 

6 2 2 r* 31.97 35.97 44.31 32.43 36.65 45.46 

P* 0.081 0.036 0.005 0.088 0.041 0.007 

4 4 2 r 23.32 26.78 32.56 23.32 26.78 32.56 

4 4 2 r* 21.98 24.80 30.69 22.49 25.55 31.97 

P* 0.072 0.030 0.004 0.083 0.037 0.006 

6 6 2 r 20.98 24.44 31.75 20.98 24.44 31.75 

6 6 2 r* 19.17 21.73 27.10 19.88 22.79 28.92 

P* 0.062 0.023 0.002 0.077 0.033 0.005 

4 2 2 r 28.42 32.24 40.26 25.24 28.78 36.25 

4 4 2 r* 27.27 30.55 37.37 24.45 27.61 34.23 

P* 0.079 0.034 0.005 0.084 0.038 0.006 

155 

Table 2 contains the critical points of our test, ones obtained using (4.10) and 
P(ax2I > r) where r is the critical point of our test and a and f are calculated 
using (4.10), say P* in Table 2, to check the influence of the maximization in 

our test procedure. We set (p,m) --- (8, 3) and 5} g) -- 1 (g = 1,2, i = 4,..., 8). 
Here the significance levels are 0.i0, 0.05 and 0.01 and the sample sizes are chosen 
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satisfying (a) ni = n2 = 0.5, and (b) nl = 0.8, n2 = 0.2. 
Finally, we summarize the use of our test procedure to actual data. The 

dimensionality m may be decided according to the latent roots for aimed purpose 
rather than specified in advance. The test statistic ~Tm is calculated using ng and 
C (g) . The critical points at specified significance levels are estimated using n 9 and 
D (g) as follows; the approximate mean ~ and variance 9 are estimated by replacing 
A(~) by D (g), t~g by ng/(nl  + n2), Q by Ira, and R by Ip_~, respectively: the ax 2f 
approximation are performed using ~ and ©. A supplementary task is to replace 
Q and R by (4.11) in order to check that the maximization in our test procedure 
does not deeply effect the result. Table 2 shows that the influences are negligible 

as far as v~+ l~(g) is comparatively away from 5~ ), which is the case that testing Hm 
is meaningful. 

5. An example 

The testing problem for H,~ is considered by Schott (1988). We illustrate how 
to use our test procedure in practical situations by applying it to the example in 
Schott (1988). The data are originally treated in a study by Airoldi and Hoffmann 
(1984). The data rise from the skull measurements on two groups of the vole species 
Microtus californicus: (1) males; (2) females. The sample sizes Ni = n~ + 1 are 82 
and 60, respectively. The four variables are condylo-incisive length, alveolar length 
of upper molar toothrow, zygomatic width, and interiorbital width. Flury (1987) 
analyses the data under partial common principal components model. Schott 
(1988) tests the hypothesis/ /2 on the data and/ /2  is not rejected at any reasonable 
significance levels. In our study, testing hypothsis //2 are considered because of 
the same observation on the latent roots like Schott (1988). The sample covariance 
matrices, with their spectral decompositions, are given in Table 3. To test //2, 
we calculate ~T,~ = 0.17, ~ = 0.88, and ~5 = 0.51. Consequently, for the a)/~ 
approximation, a = 0.29 and f = 3.03, so t ha t / / 2  is not rejected at any reasonable 
significance levels, which is the same conclusion as in Schott (1988). 

6. Discussion 

In our study, the test procedure is proposed based on Tm so that it is conser- 
vative with respect to Q, R, V~ and Wi with estimating 5 g. On the other hand, 
we can constitute an asymptotic similar test under the assumption that all la- 
tent roots are distinct and positive. When H,~ is true, the limiting distribution 
of vee(nl/2C~l)'C~ 2)) as n --* oc is normal with mean 0, and covariance matrix 

which is positive definite. Therefore, replacing • by the estimator ~,  we can 
consider the test statistic 

(6.1) --(  ( c l  c1 )) ( c ,  )), aT~ vec n 1/~ (1)~ (2) ~ - 1  vec i/2 (~)~ (2) 

which is asymptotically distributed as chi-squared with m(p - m) degrees of free- 
dom under H,~. Similarly, from Theorem 3.2, when X is normally distributed, the 
modification like (6.1) using an estimate of the covariance matrix leads to a test 
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Table 3. Data on the vole species Microtus californicus. 
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(a) Sample covariance matrices (× 104) 
Male (nl = 81) 

13.55 10.00 10.65 -2.05" 
10.00 18.19 8.90 3.58 

S (1) = 
10.65 8.90 15.32 3.00 

-2.05 3.58 3.00 27.10 

(b) Latent roots 
D(1) = diag(36.32, 27.01, 8.05, 2.78) 
D(2) = diag(57.44, 21.15, 3.75, 3.17) 

(c) Latent vectors 
.789 .187 .314 .494 7 

/ 

-.239 -.755 .101 .602| 
C (1) / 

-.541 .625 .123 .549 / 
! 

.168 .064 -.936 .303J 

S(2) = 

C (2) = 

Female (n2 = 59) 
18.74 14.78 15.62 2.51] 

14.78 19.00 15.51 7.02 / 

15.62 15.51 19.45 5.91 / 
2.51 7.02 5.91 23.31_] 

.737 .286 .309 .529] 
-.109 -.820 .062 .559 / 
-.653 .483 .140 .566 / 

.138 .116 -.938 .295J 

s ta t i s t ic  d i s t r i bu ted  as ch i - squared  unde r  ce r ta in  a s sumpt ions .  For  mul t ip le  roo t s  

case, however,  t he  l imi t ing d i s t r ibu t ion  of  vec (n l /2C~l ) 'C~  2)) is no  longer  normal ,  

and  so, the  same  device as (5.1) is no t  successful.  T h e  same  o b s e r v a t o n  can  be  
appl ied  to  Y in T h e o r e m  3.3. Fur ther ,  because  of  the  ro t a t i ona l  f r eedom in H,~, 

it migh t  be b e t t e r  to  use the  tes t  by  ~T,~ whe the r  the  mult ipl ic i t ies  of  roo t s  are 

k n o w n  or not .  
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