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A b s t r a c t .  SenGupta and Pal (1991, J. Statist. Plann. Inference, 29, 145- 
155) have recently obtained the locally optimal test for zero intraclass correla- 
tion coefficient in symmetric multivariate normal mixtures, with known mixing 
proportion, for the case when the common mean, m, and the common vari- 
ance, a2, are known. Here, we establish that even under the general situation, 
when some or none of m and a2 are known, simple optimal tests can be de- 
rived, which are locally most powerful similar, whose exact cut-off points are 
already available and which retain all the previous optimality properties, e.g. 
unbiasedness, monotonicity and consistency. Some power tables are presented 
to demonstrate the favorable performances of these tests. 

Key words and phrases: Intraclass correlation coefficient, locally most power- 
ful similar test, mixture distribution. 

i .  Introduction 

Little seems to be known about any general method of construction of optimal 
tests for no mixture against mixture models. We note here that in a symmetric 
multivariate normal (SMN) (Rao ((1973), p. 196), Johnson and Wichern ((1982), 
p. 373)) mixture population, the test for no mixture (contamination) reduces to 
the test for zero intraclass correlation coefficient, p, when the mixing proportion, 
p, is known. Situations where distributions with known p are used are quite com- 
mon in practice, e.g., bidirectional (p = i/2) circular normal distribution (Bartels 
(1984)) in directional data analysis; mixture of standard SMN (SSMN) distribu- 
tions (Titterington, et al. ((1985), p. 68), p = 1/2) and mixture of SSMN and 
SMN distributions (Henze and Zirkler ((1990), p. 3610)) in test for multivari- 
ate normality; mixture of SSMN distributions (Kocherlakota and Koeherlakota 
(1981)) and mixture of SSMN and SMN distributions (Srivastava and Lee (1984)) 
in robustness studies of estimators and tests etc. Also "... another general area 
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where mixtures of distributions are important" is that of reliability studies for "the 
overall failure distribution" of a multi-component item (Everitt ((1985), p. 560)). 
Intraclass correlation structure is also quite popular in "... many areas of appli- 
cations, particularly population genetics ..., reliability studies (products from the 
same machine ...) ... and survey sampling ..." (Koch ((1983), p. 212)). Here 
again, in many applied areas p, though unknown, is usually positive, e.g., in split- 
plot experimental designs (Koch et al. ((1988), p. 48)), finite population regression 
models in sample survey (Brewer and Tam ((1990), p. 423)), multivariate linear 
models (Bai et al. ((1990), p. 515)), efficient combination of experiments (Verrill 
et al. (1990)), etc. The SMN mixture model with p > 0 thus applies also, when 
a product, in batches, is acquired from two different suppliers (machines) in a 
known (or approximately known) proportion according to say, possibly time and 
cost considerations. Further applications of this model may thus be envisaged from 
the above examples as particular cases, e.g. tests for multivariate normality as in 
Titterington et al. (1985) when p > 0, etc.; or as generalizations, e.g., models for 
robustness studies--taking possibly dependent (p > 0), rather than independent, 
homoscedastic variables for the second component in expression (i) of Srivastava 
and Lee (1984), or SMN components with Pl = 0, P2 2 0 rather than SSMN 
components in expression (i.i) of Kocherlakota and Kocherlakota (1981), or tak- 
ing Pl = 0, (~ = 0, P2 _> 0 in the model of Henze and Zirkler (1990). In a recent 
paper, SenGupta and Pal (1991) have considered the locally most powerful (LMP) 
test for p = 0 in a SSMN mixture population with known p. For further moti- 
vations and applications, the reader is referred to that paper• Here we consider 
the extension from the SSMN to the SMN mixture population. Our introduction 
of the common mean m and the common variance o.2, possibly both unknown, 
for the marginals of each of the two SMN components of the mixture, constitutes 
the natural and practical generalizations of the situations considered above. We 
establish the appealing simplicity of the LMP similar tests derived here, ease of 
construction and of availability of cut-off points, monotonicity of power functions 
and hence unbiasedness of the tests, consistency of the tests and finally asymptotic 
normality of the test statistics under both the null and alternative hypotheses. 

Let g(x ] m, o.2, p) denote  the k-variate SMN density, Nk(M, o.2Ep), with mean  
vector M = ( m , . . . ,  m) ' ,  o.2 > 0, Ep = ((p + (1 - P)Sij)), 5ij being the Kronecker  
delta and - ( k  - 1) -1 < p < 1. This density can also be regarded as a densi ty 
of k exchangeable normal  r andom variables with the same marginal  parameters  
m and o.2. Let  g(p)(x ] m,o.2,p) be the density obta ined as a "p-mixture"  of 
g(x[ m, o 2,  0) and 9(x ] m, o.2, p), tha t  is 

(1.1) I o.2, ; )  = e x p { - ( x -  M ) ' ( .  - M)/2o. 2 } 

+ q(2~ro.2)-k/2(det E;)-I/2 
• e x p { - ( x -  M)/2o. 2} 

where 0 < p < 1, and q = 1 - p. For brevity, write g(p) (x I m, o -2, p), g(x I m, o -2, p) 
and 9(x I m, o.2, 0) a s  g(p), gp and g0 respectively. Let  X 1 , . . . ,  Xn be a r andom 
sample from (1.1). Here we derive LMP similar tests  of H0 : p = 0 against 
the one sided al ternatives H1 : p > 0. Note tha t  for large k, p should be non- 
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negative. Usual reversal of inequalities in the definitions of the critical regions 
yields analogous tests for the alternatives p < 0. 

2. LMP similar tests 

Suppose we want to test H0 : 0 = 00 against H1 : 0 > 00, 0 E f~ C R l, 
in the presence of a nuisance parameter r / E N" c R k, k >_ 1. Let Da be the 
class of all similar level a tests of H0 against H1 and let /3~(0, rl) be the power 
function of a test ~ E D~. Spjotvoll (1968) presented the form of the LMP 
similar test in some generality. For the existence of the test, it was assumed that 
c%3~(0, rl)/00 exists for all 0 E f2 and ~ E Af  for every ~ E D~. However, it was 
observed later (Durairajan and Kale (1982)) that this condition alone does not 
suffice. The dominance of the test over a local interval with its one appropriate 
end-point at 00 may be destroyed, since such an interval in general will depend on 
the nuisance parameter r~. A second condition that for every ~ c Do, the family 
{ 0 ~ ( 0 ,  rl)/cg0; r 1 E N'} is equicontinuous at 0 = 00 suffices. This is satisfied, e.g., 
if 02/3~(0, rl)/002 _< M < 0% 0 E f L  For further details on equicontinuity see, 
e.g., Dugundji ((1975), p. 266). For the construction of the test the regularity 
conditions assumed were that  the underlying distribution admits a probability 
density function (p.d.f.) with support independent of the parameters, the partial 
derivative in 0~,(0,  rl)/000 can be passed inside the integral arising for the power 
function and the family of p.d.f.s possesses a boundedly complete sufficient statistic 
under H0. 

The structure of the LMP similar test for the mixture population in each of 
the cases in the previous section is based on the inequality 

(2.1) s=l ~pplng(P)(Xs I 77~'°2'P) Ip=0 > e(~;), 

where c(t) generically denotes a constant depending on a fixed value t of the 
sufficient statistic under H0. Verification of regularity conditions for our problem 
is straightforward though tedious. It needs to be pointed out that for each of 
the three cases considered below, the LMP similar test statistic is invariant with 
respect to the corresponding nuisance (location-scale) parameter(s) involved under 
the respective group of affine transformations X ~ Y, Y =  a X + b l ,  a > 0, b E R 1. 
Hence/3~ (0, rl) =/3~ (0) is free of 7. Thus the condition of equicontinuity becomes 
superfluous--the usual condition (Ferguson ((1967), p. 235)) of mere continuity of 
09 (o)/oo at o = Oo sumees. 

Since p is known, (2.1) reduces to a similar expression with 9(p) being re- 
placed by 90, i.e., the test statistics coincide with those for the SMN distribu- 
tion. For ease of reference, the test statistics are quoted below from Gokhale and 
SenGupta (1986) wherefrom their exact null distributions and the corresponding 
cut-off points are also available. Thus a tremendous gain is achieved here both 
from the theoretical and the computational aspects. 

To complete the notation, let Xs = (X,1,X82,...,Xsk) ~, X~i denoting 

the i-th component of the vector Xs, Jg denote the sample mean vector; X = 
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( 2 , = 1 E  k k i=1 = (Y~i=l X , i ) / k ,  s = 1, 2, . . . ,  n, W = E ~=1 Y~i=l(k X , i -  

XT,) 2, B = k E2_l(J~8 - ~-)2 and T = E,~__l E ~ i ( X , ~  - X )  2 = B + W.  Under 
gp, W / ( 1  - p)~r 2 is dis t r ibuted as X~(k-1), B / { 1  + (k - 1)p}¢ 2 is dis t r ibuted as 

2 X~-I and W and B are independent  (Rao (1973)). 
For the cases when the parameters  m and cr 2 are known, wi thout  loss of 

generality we assume m = 0 and cr 2 = 1. In each of the four cases, the critical 
region reduces to the form: Reject  H0 if Ti > c, so that  it suffices to present the 
test statistics, Ti only. 

(2.2) Case 1. 

(2.3) Case 2. 

(2.4) Case 3. 

(2.5) Case 4. 

k 

m and cr 2 both  known: T1 = E XsiXsj' 
s = l  i~kj=l 

rn known, c ~2 unknown: T2 = ~ Xsi E X,~, 
i 

m and o 2 both  unknown: Ta = B / T ,  

m unknown, cr 2 known: T4 = (k - 1)B - W. 

[There is a misprint for this Case 3 in Gokhale and SenGupta  (1986). For case (iii) 

there replace 2,  by x in the expression for T, p. 267, 1. 8]. The problems under 
H0 associated with Case 1 for the non-mixture si tuation deserve special mention 
and interested readers are referred to SenGupta  (1982, 1987). SenGupta  and Pal 
(1991) have established monotonicity, unbiasedness, consistency and asymptot ic  
normali ty related to the special Case 1 of the mixture situation. We establish 
below these propert ies for the general Cases 2 through 4 also. 

3. Monotonicity of the power functions 

Case 2. m known, (72 unknown: The critical region can be wri t ten as 

= X 2 T~ E Y :  > 0  where Y : =  Xsi  - e  E st" 
s = l  i 

8, s = 1, 2 , . . . ,  n are i.i.d, and each Y~ has the distr ibution given below: 

(3.1) 

k[1 + ( k -  1)p]X21 

- 2 y ,  d _ e[(S - P)Xk-12 + { 1 +  (k-- 1)p}X ] under gp 

k x ~ -  e[X~_I + X~] under 9o, 

and 

(a.2) P(T2 > c I P) = 1 - P(T~ <_ 0 I P )  

s = 0  
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where Go(x) and Gp(x) are respectively the c.d.f.s of Y" with distributions as 
specified in (3.1), and "*" denotes convolution. The expression in the RHS of 
(3.2) follows directly since T~ is a symmetric statistic of Y"s. 

Note that the last expression in the RHS of (3.1) is an increasing function of 
p for p > 0. This implies that for 0 < Pl < P2 < 1, Y" is (stochastically) larger 
under gp~ than under gp~. Hence, Gp~ (x) < Gp~ (x) for all x belonging to the set of 

~ a~(~). continuity points of Y,'. Consequently for any positive integer r, Gp2 (x) < p~ 
From (3.2) we then get, 

n 

(~-s)* P(T2 >c [ P 2 ) : 1 -  E ( : )  ps(1 - P ) n - s  [G~* ,Gp2 (0)1 
8----0 

n 
(~-,)* > , -  E (o)] 

s = O  

= 1 - P ( T ;  __ o I p l )  = P ( T ~  > c I P~). 

The power function is thus monotonically increasing and hence the test is unbiased. 

Case 3. 
a s  

(3.3) 

Both m, a S unknown: The critical region can be equivalently written 

T~ = k(1-~) Z ( 2 ,  - x) ~ - c ~  ~ (x.~- **)2 > 0. 
s 8 i 

Let us first regroup (Behboodian (1972)) the n observation vectors X1, X2, . . . ,  
X~ into two groups: one of independent vectors X,,1,X~2,..., Xu~, with com- 
mon density go and the other of independent vectors Xu~+l, X ~ + 2 , . . . ,  X ~  with 

common density gp. Let T~,~ = k(1 - c) E ~ ( ) ~  - .~u)2 _ c}-~ }--~i(X~i - )~ , )2  
where, 

k n 

Xus = (Xusl,Xus2,... ,Xusk)', f(us = E Xusi/k and Xu = E f(us/n. 
i=1 s = l  

Let, 

Then, 

t u ~ . ,  -- x.s/ . ,  T~I _- Z ( x . s -  x.,)2/. ,  
s----i s=l 

n 9% 

~.2-- ~ x°s/(n-u), ~:2= Z (X-~-~-2)2/(n-u), 
s=u+l 8=u+l 

k 

= _ = Z ( x . ~ ,  2 . ~ )  2. 
s----i i=l s=u+l i----I 

Tu,n = ku(1 - c)T2ul z[_ k(n - -  u)(1 - c)T~2 

+ (ku(n-u) (1 -  c)/n)(Xul- X~2) 2 - c ( Z ~  + Z~). 



142 ASHIS S E N G U P T A  AND C H A N D R A N A T H  PAL 

U n d e r  g p ,  u~/-21 ~ (G2//~)/~2 1, ( n  - -  u ) T 2 2  c~ [1 + (k - 1 ) p ] ( o 2 1 ~ ) X . 2 u _ 1 ,  

So, 

( - ~ u l  -- X u 2 )  2 " "  [ ( l /u )  + {(1 + (k  - 1 ) p ) / ( n  - u ) } ] ( a 2 / k ) X ~ ,  

Z~ u 2 2 G X~(k-1) and Z ~  ~ (1 - 2 2 p)O- X(n-u)(k-1)" 

(3.4) O . _ 2 T u , n d ( 1  2 (1 C){1 (k 2 - c ) X ~ - I  + - + - 1)p}x~-~-I  

+ (ku(  - u ) ( 1  - 

• [ ( i /u)  + {(1 + (k - 1 ) p ) / ( n  - u ) } ] ( 1 / k ) x  2 
2 - c[x~(k-]) + ( 1 -  X 2 P) (~-~)(k-1)]. 

The distribution of T~ under go is the same as in (3.4) with p = 0. Moreover, under 
both  go and gp, all the X 2 variables occurring in (3.4) are mutual ly  independent.  
We also note tha t  the expression in the RHS of (3.4) is an increasing function of 
p for p > 0. Hence, for any two values Pl and P2, 0 < pl < p2, of p we have, 

P(T~  > O I p2) = I - P (T~  < O I p2) 
T~ 

= 1 -  E 
u=O 

> 1 - ~ - "  
u=O 

/ \ ( n ) p ~ ( l _ p ) ~ _ ~ p , T t  ~ , n < _ O l P 2 )  
\ 

p"(1 - p )  ( ~,~ <_ 0 l P l )  -- P(T~  > 0 l P l  ). 

This implies tha t  the power function is monotonically increasing in p and 
hence the test  is unbiased. 

Case 4. m unknown, ~r 2 known: In this case the critical region comes out 
in a similar form as in (3.3). Hence the monotonici ty and unbiasedness follow by 
arguments similar to those in Case 4. 

We obtain the numerical values for the powers with n = 10 thru  simulation. 
The cut-off points at a = .05 are tabulated in Gokhale and SenGupta  (1986). For 
each n, p and p, we generate 1000 Ti values by generating 1000 values for each of 
the X2-variables involved, with necessary modifications for u = 0 and u = n. Power 
is obtained, then, thru  the empirical c.d.f, of Ti. So, for example, to obtain Table 1, 
the simulation loop was executed p.p.  ( n + l ) .  1000.6 = 9.10.26.1000.6 --- 14,040,000 
times. From Tables 1, 2 and 3 we note tha t  the performance of the test  is quite 
good, for small p, even for as small a sample size as 10. The power increases 
rapidly with p. The monotonici ty of the power function is clearly exhibited. It 
can be shown that ,  as in Case 1 (SenGupta and Pal (1991)), here also the power 
increases rapidly, for small p, with increase in n. For large p, the power is not 
high. This is to be expected. For large p, the distr ibution g(p) even under the 
alternative hypothesis H1 : p > 0 approaches tha t  under the null hypothesis Ho : 
p = 0, and hence any reasonable test  will have to suffer the consequences• 
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p\p .1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .2426 .2276 .2281 .2158 .2012 .1889 .1794 .1697 .1645 

.2 .3490 .3202 .2941 .2857 .2475 .2399 .2100 .1946 .1663 

• 3 .4251 .3986 .3726 .3304 .3186 .2774 .2400 .2173 .1872 

.4 .5109 .4851 .4456 .3864 .3505 .3186 .2791 .2275 .1968 

• 5 .5893 .5479 .4943 .4620 .3997 .3428 .2951 .2526 .2046 

• 6 .5407 .6121 .5565 .5104 .4579 .4090 .3381 .2798 .2084 

.7 .6885 .6392 .6059 .5359 .4835 .4318 .3804 .2878 .2203 

• 8 .7314 .6879 .6487 .5802 .5283 .4455 .4050 .3148 .2487 

• 9 .7603 .7265 .6816 .6213 .5593 .4867 .4194 .3474 .2528 

Table 2. Power of T3-test. 

p\p .1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .1394 .1157 .1074 .1015 .0956 .0835 .0868 .0620 .0620 

.2 .2414 .2227 .1924 .1621 .1452 .1188 .0998 .0837 .0669 

.3 .1845 .3441 .2837 .2502 .2104 .1733 .1424 .1134 .0789 

.4 .5482 .4825 .4201 .3538 .2820 .2312 .1709 .1319 .0829 

.5 .0996 .6388 .5506 .4390 .3663 .2914 .2108 .1560 .0999 

.6 .8275 .7415 .6608 .5485 .4529 .3500 .2646 .1747 .1133 

.7 .9108 .8317 .7417 .6473 .5255 .4257 .3055 .2025 .1228 

.8 .9621 .8984 .8160 .7193 .6104 .4934 .3539 .2337 .1299 

.9 .9811 .9431 .8764 .7741 .6639 .5496 .3999 .2688 .1499 

Table 3. Power of T4-test. 

p\p .1 .2 .3 .4 .5 .6 .7 .8 .9 

.1 .1231 .1190 .1095 .0855 .0894 .0667 .0743 .0615 .0530 

.2 .2290 .2102 .1842 .1625 .1285 .1097 .0924 .0866 .0637 

• 3 .3677 .3137 .2705 .2446 .2021 .1633 .1252 .0958 .0726 

.4 .5005 .4370 .3793 .3178 .2651 .2146 .1727 .1207 .0769 

.5 .6036 .5346 .4683 .3983 .3286 .2752 .2119 .1401 .0983 

.6 .7140 .6426 .5533 .4865 .4064 .3178 .2431 .1648 .0986 

.7 .7939 .7299 .6449 .5581 .4689 .3783 .2853 .1977 .1229 

.8 .8552 .7836 .7191 .6277 .5304 .4290 .3302 .2257 .1288 

.9 .9062 .8528 .7775 .6795 .5949 .4691 .3652 .2403 .1317 

4. Asymptotic normality and consistency 

Case 2. m k n o w n ,  ~2 u n k n o w n :  R e w r i t e  T2 as  T2 = U / V  w h e r e  0 = 

E s  Us~n,  Us = ( E ~ X s i )  2, 17 = E s V s / n ,  V~ = E i  X28. T h e n  e s  = (U~ ,V~) '  
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for s = 1 , 2 , . . . , n  are i.i.d, r andom vector variables. Under  H1, E(Us)  = [1 + 
q(k - 1)p]k~ 2 = (1, say; E(Vs)  = kcr 2 = (2, say; and Disp.(Qs) = (~ij) -= E, say, 
where oij '  s may  be obta ined by tedious calculations. By the mult ivariate  Central  

Limit  Theorem (CLT), V/ -£(Q-- ( )LN2(0 ,  E), where (~ = (U, V) '  and ( = (~1, @)'. 
Thus  under  H~, v/-£[T2 - {1 + q(k - 1)p}] is asymptot ical ly  dis t r ibuted as a 

normal  variable with mean 0 and variance r~, say, where r]~ > 0. Note tha t  the 

function h(U, V)  = U / V  - T2 is total ly  differentiable. So, the explicit form for 
~ ,  though not  needed here, may  be obta ined by the Del ta  me thod  (Rao ((1973), 
p. 388)) if one is still interested. Under H0, the relevant quantit ies are obta ined 
by subst i tu t ing p = 0 in the corresponding above expressions. Let  c~ henceforth 
denote  the size of the test. 

a = P [ ( U / V )  > c I Ho] --~ 1 - (I)[(c - 1)/(~?o/x/n)] ~ c - 1 + (~-a~o/V~), 

~-a being the upper  a point of the s tandard  normal variable. For large n, the power 
of the test  under  p > 0 can be wri t ten  as 

1 - • Ill + ( V 0 ~ / ~ )  - {1 + q(k - 1)p}]/(Vp/v/-£)] 

= 1 - ~[{~7o~-~ - v/-nq(k - 1)p}/7/p] ~ 1 as n --+ oc 

since q(k - 1)p > 0 for p > 0. 

Case 3. m, a2 bo th  unknown: Rewrite  the critical region given by (2.4) as 

T~' > c', where Ta' = ( B / n ) / ( W / n )  = [k ~s( f i s -X)2 /n] / [~-~ .s~-~ . i (X~i  - f (s)2/n] 
= (k ~ Y~/n)  / ( ~  Z~/n)  = k Y / Z ,  say. Note tha t ,  under  bo th  Ho and Hi ,  

xL,  and E ( 2 s )  = Also under Hi ,  V ( 2 s )  = + q{1 + (k - = 

#p/k ,  say. So, Y P E ( ) ( ~  - rn) 2 = #p/k ,  say. Further ,  Zs, s = 1, 2 , . . . ,  n are i.i.d. 
r andom variables. Under H1, Z~ ,-~ pa2x~l) + q(1 - 2 2 2 p)cr X(2), where X~I) and X(2) 

are )i2 variables with d.f. (k - 1) each, so tha t  E(Z~)  = (1 - qp)(k - 1)a 2 = 0p, 

say, and var(Z~) -- ~rd(k - 1)[(k + 1){p + q(1 - p)2} _ (k - 1)(1 - qp)2] = / 3  2, say. 

Then by CLT, x/~(2 - 0p)LN(0,/3~). Let h(Z)  -- 1 / 2 .  Then  v ~ ( 1 / 2  - 
2 4 2 is obta ined by the Del ta  me thod  as 7 2 =/3p/Op. Hence 1/op)LN(o, ~) ,  where % 

by Slutsky's  theorem, under  H1, x/~[T3' - #p/Op] is asymptot ical ly  dis t r ibuted as 
2 2 Under  Ho, the relevant a normal variable with mean 0 and variance Op2 = 7pPp. 

quanti t ies are obta ined by subst i tu t ing p -- 0. Then,  

c~ = PIT3' > c' t H0] ~ 1 - ~ [ v ~ ( c '  - ~o10o)1~o] ~ e' - (~o/0o) + 

For large n, the power of the test  under  p > 0 can be wri t ten  as 

1 - ~ [ { 4 - n ( ~ o / 0 o  - ~ p / e p )  + ~ o } / ~ p ]  - ~  1 as  n -~ oo, 

since #o/0o - #p/O# = - q k p / [ ( k  - 1)(1 - qp)] < 0 for p > 0. 

Case 4. m unknown, a 2 known: Rewrite the critical region given by (2.5) 
as T~ > e/n,  where T~ = Td /n  = k(k - 1)17 - Z, Y and 2 being as defined in 
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Case 3 above. Let #~, 0~ and/~2 denote the value of #p, 0p and ~p2 respectively, 
of Case 3 above with J ' =  1. Also let 5; = (k - 1)#~ - 0;. Hence by CLT and 

using Slutsky's theorem,  under H1, v/n [T~ - 5~] is asymptotically distributed as 
a normal variable with mean 0 and variance ~z.  

Then, 

a P[T~ > c / n  I Ho] 1 ~ [ v ~ { c / n  ' ' ' nS~o . = - *  - - ~ o } / Z o ]  ~ ~ -" v ~ T ~ 9 o  + 

For large n, the power of the test under p > 0 can be written as 

1 - ~ [ { T ~ B ~  - v ~ ( ~ ' p  - ' ' 5 0 ) } / ~ p ]  - ~  1 a s  ~ - ~  o o ,  

s i n c e  d e ; / d p  = k ( k  - 1)q > O. 

5. Comments 

As discussed in SenGupta and Pal (1991), one would probably have knowledge 
about p more often than about p and hence we have considered here tests for p. 
However, in case p is known, tests for p, 0 < p < 1, may be needed i.e. for H0 : 
p = 1. Then, one can obtain LMP similar tests for p (Durairajan and Kale (1982)) 
following (2.1) and considering derivatives of p from the left at p = 1. Further, if 
both p and p need to be tested simultaneously, one may use the multiparameter 
locally most mean powerful similar test of SenGupta and Vermeire (1986). Finally 
when either or both p and q may assume zero values, the test may be based on 
an appropriate Pivotal Parametric Product (p3) (SenGupta (1991)). Details may 
be pursued in the lines of Rachev and SenGupta (1992) and SenGupta and Pal 
(1993). 
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