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A b s t r a c t .  For the problem of estimating the normal variance a 2 based on 
random sample X1 , . . . ,  X~ when a preliminary conjectured interval [Color02, 
C0~r02] is available, the minimum discrimination information (MDI) approach 
is presented. This provides a simple way of specifying the prior information, 
and also allows to consider a shrinkage type estimator. MDI estimator and 
its mean square error are derived. The estimator compares favorably with the 
previously proposed estimators in terms of mean square error efficiency. 
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1. Introduction 

Let  X I , . . .  , X n be i.i.d. N(#,  cr 2) where cr 2 is the pa ramete r  of interest.  Then  
usual es t imator  of ~2 is the unbiased sample variance U given by 

n 

(1.1) U = E ( X i -  X ) 2 / ( n -  1) 
i=1 

where X is a sample mean. Often we might be confronted with a s i tuat ion to 
consider es t imat ion of the variance by combining prior information in the form of 
a point  or an interval in the est imat ion space around which accuracy seems most  
crucial. Such information,  which is available ei ther from the past  experience of 
the exper imenter  or from some reliable sources, might be useful in a number  of 
situations. For example,  in the case of normal  distr ibution,  the empirical rule, 
Range ~ 4~, can be used to detect  some prior value ~r02, near which cr 2 is expected 
to lie (of. Mendenhal l  ((1979), p. 55)). If tha t  information is strong enough, we 
would be well advised to use an unusual  est imator ,  cr n ^ 2, whose mean square error 
(MSE) is less than  tha t  of sample variance U if ¢~ takes some value around a02, 
even though its MSE is greater  t han  tha t  of U for a S sufficiently away from ~r02. 
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One method to utilize this kind of information is through estimation after 
preliminary test first introduced by Bancroft (1944). This method suggests the 
preliminary test estimator 

(1.2) PT= {~r~ if 2 ( °~ / (°~ / )~'n--1 1 - ~ < (n -  1)U/crg < )(21 ~ , 

U otherwise 

where 2 2 _ ;~n_l(a)) c~. The basic idea of this estimator is that we should P(~n-1 > = 
use ~g instead of U if H0 : a2 = ~02 appears to be true, and just the reverse if 
H0 appears to be false. As this loose specification permits great latitude in choice 
of (~, various optimality conditions have been imposed, seeking to define a choice 
of optimum c~ (cf. Toyoda and Wallace (1975), Ohtani and Toyoda (1978) and 
Hirano (1978, 1980)). In a case the value ~g is assumed to be always less than 
or equal to a 2  Pandey and Mishra (1991) proposed an improved estimator based 
on a weighted function of U and or02. From a different viewpoint, Inada (1989) 
proposed following type of estimator 

(1.3) { ~rg if C -1  < U/o-o 2 < C, 

T(w, C)= wU if U/(7g >_ C, 
w-lU if U/crg <_ C -1 

where w E (0,1] and C > 0 are chosen by a minimax MSE criterion under the 
preliminary conjecture that the true value of cr 2 lies in the interval [ColOr02, C0~02]; 
where Co is a known positive constant. Based on MSE efficiency, he made com- 
parisons among three estimators, U, PT and T(w, C), and showed that, especially 
for small or intermediate sample sizes, the minimax estimator T(w, C) performs 
better than the others. There are other improved estimators, such as pre-test es- 
timators (cf. Gelfand and Dey (1988) and Ohtani (1991)), that incorporate prior 
information about #. However, since our primary concern is to get an improved 
estimator using the information about a2, those are not illustrated here. 

In this paper, we propose and study yet another estimator under the conjec- 
ture that cr 2 lies in the interval [Color02, C0cr0z]. It is the minimum discrimination 
information estimator (MDIE) which is based on the idea of a constrained opti- 
mization of the Kullback-Leibler discrimination information function. The form of 
the interval [Cola02, C0~r02] is chosen to make comparisons with T(w, C) possible. 
It is not necessary for derivation of the MDIE. Advantages of this estimator over 
PT and T(w, C) are argued on three grounds. First, it has a closed form. Second, 
its derivation is straightforward. Third, it has more sensible MSE efficient interval 
than the other estimators. Here the MSE efficient interval defines an interval of 
cr 2 in which an estimator has smaller mean square error than U. 

Section 2 derives the MDIE and places it in the context of an alternative 
approach. MSE of this estimator is also derived. Section 3 compares the MDIE 
with the other existing estimators based on the MSE criterion, and analyzes the 
results, showing reasonability of the proposed estimator. Section 4 contains some 
conclusions and further research topics of interest related with this study. 
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2. Minimum discrimination information estimator 

We are concerned with the estimator of normal variance (72 using information 
obtained from both data and a preliminary conjecture about a2. We consider the 
information measure of Kullback and Leibler (1951), defined by 

(2.1) 
f f(xl0) 

I ( f  : g) = I f(x]O) log dx 
J g(xl0) 

where I ( f  : g) is a random variable which uses the statistics 0 = {2 ,  O02} with 
o0 2 = ELI(x  - 

Motivation for choosing this disparity measure can be found in Shore and 
Johnson (1980). Our aim is to find a normal density f(x]0 ) as close as possible 
to reference distribution g(x[O) subject to the preliminary conjecture about a 2 
in the form of a constraint provided externally to the data. This problem bears 
analogy to the "external constraints problem (ECP)" in the minimum discrimina- 
tion information (MDI) procedure (cf. Gokhale and Kullback (1978)). We shall 
call the estimator of a 2 obtained from this procedure as minimum discrimination 
information estimator (MDIE). We want to find estimates of # and (72 such that 
I ( f  : g) is minimized, subject to the external constraint that true value of (72 lies 
in an interval -1 2 2 [Co (70, C0(70], Co _> 1; thus we 

(2.2) 
minimize I ( f  :9), 

subject to ~2 E [Co1(7~, C0~g]. 

If we write J( and O0 2 for the maximum likelihood estimator of # and cr 2 
respectively, then 

(2.3) 
1 1 

I ( f :  9) = ~_ff{(~2 + #2) _ 2 2 #  + 2 2 } + l o g S -  log(7 2" 

This is a convex function of {#, ~2} with global minimum at {2 ,  o°2}. However, 
introducing external constraint ~2 E [Cola02, C0(702] to I ( f :  g), we get MDIE of 
(72; 

(2.4) 

{ Co1 o 
TM D I = O02 

if O02 < C  01do 2, 

if O02 ~ [Co la2, C - 0do2], 

if O02 > Coao 2. 

Furthermore, it can be easily shown that this is the unique estimator which 
optimizes the criterion (2.2) under a class of shrinkage estimators of the form; 

(2.5) ~2(c~) = c~o02 + (i - ct)(72, 0 _< a _< i. 

The MDIE, obtained by (2.2), may be formally viewed as a counterpart of 
restricted or bounded estimators of a normal mean (cf. Casella and Strawderman 
(1981) and Bickel (1981)) and of regression coefficients (cf. Klemm and Sposito 
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(1980) and Escobar and Skarpness (1987)). In other words, those estimators and 
the MDIE are formally similar in that they were driven by an optimization of their 
respective object functions under each interval constraint of parameter concerned. 

Mean square error associated with the estimator (2.4) is 

(74 
(2.6) MSE(TMDI) = -~(n - 1)(n + 1){F(8I; b) - F ( ~ ;  a)} 

2c ~4 
- - - ( n  - 1){F(32; b) - F(~2; a)} 

n 

+ (74{F(/33; b) - F(~3; a)} 

+ (Cocr~ - a2)2{1 - F(/33; b)} + (Cola 2 - a2)2r(f13; a) 

where a = rtColo-02/(2o'2), b = nCo~/(2(72) and/3i = (n + 5 - 2i)/2, i = 1, 2, 3. 
Here F denotes the incomplete gamma function defined by 

L 
t 

(2.7) r ( 9 ; t )  = r ( 9 )  -1 y ' - % - Y d y ,  t > 0. 

The MSE of the estimator can thus vary over the range ~2 ~ 0. Numerical eval- 
uations, done for various values of Co, (702 and n, indicate that the MSE of TMDI 
is significantly small when true value of ~2 is located in or near the conjectured 
interval [Co1~ ,  C0~ 2] and gets larger as it goes further away from the interval (cf. 
Figs. 1, 2, 3 and 4). Although this provides an explanation of how the suggested 
estimator behaves in accordance with our goal of this study, they do nothing 
to resolve the question of which estimator is to be preferred among TMDI and 
other estimators in the introduction. Preliminary test estimator PT in (1.2) and 
minimax estimator T(w, C) in (1.3) can clearly be criticized on the ground that 
they have loose specifications. They could not be expressed as closed formulas, 
so it may be hard to set the best estimator for them in a real estimation situa- 
tion. Since derivations of those estimators take subjective approaches, it is not 
possible to compare them with MDIE theoretically except with respect to their 
measurements of goodness. For the comparison, we will measure the goodness of 
an estimator by its mean square error. 

3. Comparison of MDIE with other estimators 

The estimator TMDI claims only to minimize the Kullback-Leibler information 
measure that has the external constraint a 2 C [ColaS, C0a~]. Therefore, under the 
same preliminary conjecture, we now compare its MSE efficiency with that  of other 
estimators mentioned in the introduction. We shall denote the efficiencies of (1.2), 
(1.3) and (2.4) relative to (1.1) by e(PT), e(T(w, C)) and e(TMDI), respectively. 
That is, 

(3.1) 
e(PT) = M S E ( U ) / M S E ( P T ) ,  
e(T(w, C)) = M S E ( U ) / M S E ( T ( w ,  C)), 

e(TMDI) : MSE(U)/MSE(TMDI). 
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Fig.  1. Eff iciencies o f  t h e  t h r e e  e s t i m a t o r s  u n d e r  t h e  set  { n  = 7, Co = 1.5, a 2 = 1.0, 

w = 0.422, C = 2.37, a = 0.05}. 
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Fig.  2. Eff iciencies of  t h e  t h r e e  e s t i m a t o r s  u n d e r  t h e  se t  { n  = 7, Co = 2.0, a s = 1.0, 

w = 0.626, C = 1.64, a = 0.05}. 

E x p r e s s i o n s  o f  m e a n  square  errors  o f  U, PT a n d  T(w, C) (ef. I n a d a  ( 1 9 8 9 ) )  are 

M S E ( U )  = 2cr4/(n - 1), 

M S E ( P T )  = cr4[{F(31; d) - F(31;  h) + 1}(n + 1 ) / ( n  - 1) 

- 2{ r (32 ;  d) - r (32 i  h)} - 1] 

(3 .2)  + ( 2 a g a  2 - a~){V(/33; d) - F(/33; h)}, 

M S E ( T ( w ,  C))  = a 4 [ { w - 2 F ( ~ l ;  l) + w2(1 - F(Zi ;  v ) )} (n  + 1 ) / ( n  - 1) 

- 2{w-iF( /32 ;  l) + w(1 - F(/32; v))}  + 1] 

+ 2 ( ~  2 - ~0~){r(93;  Z) - r (Z3;  v ) } ,  

where  d - = X2n_l(o~/2)cr~/(2~2), I = - = ) ~ _ 1 ( 1  a/2)cr~/(2a2); h (n 1 ) C - l c r ~ /  
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Efficiency 
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Fig.  3. Eff iciencies of  t h e  t h r e e  e s t i m a t o r s  u n d e r  t h e  se t  { n  = 20, Co --  1.5, ~ = 1.0, 
w --  0.801, C --  1.25, ~ --  0.05}. 
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G r a p h  of  e(TMDs) u n d e r  each  case  of t h e  e s t i m a t i o n  s i t u a t i o n s .  

(2cr2), v ---- ( n -  1)Ca02/(2c2), and the other notations are the same as in (1.2), 
(1.3), (2.4) and (2.6). When considering U which is consistent estimator of a 2, we 
shall confine our comparison of the efficiencies of the estimators for the cases of 
small and moderate sample sizes. 

Following figures show the graphs of (3.1) plotted against o 2 for 3 numerical 
comparisons characterized by the set { n ,  Co, ~r~), w, C, a}. Here w and C denote 
some constants obtained from the criterion of 

inf sup MSE(T(w, C)) 
o<~_<i,c>o ~ e[Co~otCo~o ~] 

and a is a significance level to be determined for calculating M S E ( P T ) .  In our 
comparisons, we used the optimum values of w and C tabulated in Inada (1989) 
and set c~ as 0.05. Since our aim is to compare the efficiencies of the three esti- 
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mators in or near the preliminary conjectured interval, it would be sufficient to 
depict the efficiencies of them only for the region of ~2 E [0, 5]. 

As seen in the figures, PT, T(w, C) and TMD1 outperform U in most part of 
the conjectured interval and, in some extent, in the outside vicinity of the interval. 
Specifically, for various sample size, PT and T(w, C) are more efficient than MDIE 
when true variance a2 lies in or very near the value cr 2. But their efficiencies 
drastically decrease as ~2 goes outside that  region. Particularly near the left limit 
of the conjectured interval, they are even worse than the usual unbiased estimator. 
On the other hand, TMDI retains fairly good efficiency throughout and, to some 
extent, beyond the conjectured interval and has best efficiency of all when ~r 2 
lies around the conjectured interval limits. Figure 4 shows that  this property of 
TMDI remains same regardless of the sample size and the width of preliminary 
conjectured interval. 

In practical estimation situation, we would not insure that  the true value of 
a2 actually lies near cr~ unless there is very strong prior belief that  true variance 
is cry. Therefore, it would be better to use somewhat robust estimator TMDI in 
a sense that  it has the property of uniformly smaller MSE (compared to U) in or 
around the conjectured interval so that even in the case of a wrong preliminary 
conjecture, if it is not crucial, the estimator can still be able to give us an efficient 
estimation of cr 2. 

4. Concluding remarks 

We have introduced an estimator using the MDI approach which is widely 
applicable to a class of estimation problems where prior informations are available. 
The estimator compares favorably with the previously proposed estimators in a 
sense that unlike others, in every case of the preliminary conjectured interval, 
TMDI dominates U uniformly in MSE when the true value of ~2 lies in the interval, 
and this dominance continues to exist in the outside vicinity of the interval. Basic 
idea of the approach is to obtain an estimator that  minimizes the Kullback-Leibler 
information of type under an externally given constraint formulated by the prior 
information. Clearly, there is much scope to supplement our estimation problem 
by further theoretical and practical work. In particular, the work of Section 2 
might be carried out under a more general class of shrinkage estimators of (7 2 in 
the presence of the preliminary conjecture [Colo -2, C0(T02]. For example, a class of 

^ 

estimators cr~ = a(Tn)S 2 + (1 - a(T~))(702 can be considered, where Tn = nS2/cr~) 
and a is a weight function. It may also be pointed out that  cr 2 was constrained 
to lie in the interval of the form [ColOr02, C0cr02 ] so as to be able to compare its 
performance with T(w, C). Expression (2.4) can be easily modified under a general 
constraint of the form [a ~02, b ~02 ], 0 < a < b < oo. Alternative estimation 
schemes, Bayesian approaches, are also of interest. Such research interests are 
currently being investigated. 
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