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Abstract .  A general ratio estimator of a population total is proposed as an 
approximation to the estimator introduced by Srivastava (1985, Bull. Internat. 
Statist. Inst., 51(10.3), 1-16). This estimator incorporates additional infor- 
mation gathered during the survey in a new way. Statistical properties of the 
general ratio estimator are given and its relationship to the estimator proposed 
by Srivastava is explored. A special kind of general ratio estimator is suggested 
and it turns out to be very efficient in a simulation study when compared to 
several other commonly used estimators. 

Key words and phrases: Finite population sampling, sample weight function, 
linear model, regression estimator, the Horvitz-Thompson estimator. 

1. Introduction 

Assume a finite population U with index set {1 , . . . ,  N}. An unknown, but 
observable, variable y is defined on U with value Yi at unit i. Let Y be the 
population total of y and y = (Yl,.-. ,YN). A sample w of U is defined as a 
non-empty subset of U, which has probability p(~) of being drawn. 

Consider an es t imator  ?srl of the population total proposed by Srivastava 
(1985) which is given by 

(1.1) ]~'srl ~--" r(0.)) E Y i / 7 r r ( i ) ,  
iw 

where 

(1 .2)   r(i) = 
wi 

* The work of this author was supported by AFOSR grant ~830080. 
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and }-~i~ denotes the sum over all i in sample cv, Y~i  denotes the sum over all cv 
containing the unit i. The r(.) is called the "sample weight function" defined on 
all nonempty ~, which is independent of the actually drawn sample, and may be 
chosen at will by the statistician. During a survey, the values Yi (for i belonging 
to a sample co) are collected. Usually, extraneous information about the nature 
of the population is also available. For instance, it is well known in forestry that 
volumes of trees in a forest fit an exponential distribution quite well. With the 
help of previous information, an experienced cruiser in a forest survey might be 
able to give a quite good guess to the parameters of the exponential distribution. 
This kind of information should be utilized in the estimation stage. The function 
r(.) was introduced for the purpose of utilizing such information. If 7ri, the inclu- 
sion probability of unit i, is positive for all i, !ksrl is an unbiased estimator of Y 
(Srivastava (1985)). Suppose the extraneous information is formally introduced as 
a vector y* which represents a guess of y, such that y* is independent of the drawn 
sample. When the parameter space is R N = {(Yl , - . . ,YN) ' :  Yi >_ O,i = 1 , . . . , N } ,  
a necessary and sufficient condition for Ysrl to have zero variance at y* E R N is + 
that 

(1.3) E 1/ri = 1/r(aJ), 
iw 

and 

(1.4) y /Y* = 

for all w such that p(a~) > 0, 

i = 1 , . . . , N ,  

where r~ = r({i}) > 0 and Y* is the total of y~. For a sample weight func- 
tion which satisfies equation (1.3), the corresponding 12srl is admissible among 
all homogeneous linear unbiased estimators of Y and its variance is given by the 
following: 

(1.5) 
2 

Var(Ysrl) = E 7rr(i)¢Cr(j)- 7rr2(i,j ) ( riYi rjyj 

where 

(1.6) 
~oij 

and ~-~-~ij denotes the sum over all w containing the units i and j .  Details of the 
result listed above were given in Srivastava and Ouyang (1992). 

The most important concept underlying estimator (1.1) is the sample weight 
function. This function relies on the availability of extraneous information about 
the nature of the population other than the information given by a sample. Such 
information does exist, for example, in social surveys. Srivastava and Ouyang 
(1992) give an example to demonstrate how to collect this information in social 
surveys. Indeed, questionnaires collected by a sample s provide much more in- 
formation than the information given by {Yi, i E s}. Without doubt, we should 
use as much information as we can in the estimation stage. A technique given in 
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Srivastava and Ouyang (1992) uses such information and provides a better result 
in the example used. Encouraged by this result, Ouyang and Schreuder (1992) 
tried to use this technique in forest survey. An important step in this technique is 
to "match" the y's in a sample to the y*'s in the guessed population. Thus, the 
sample weight function obtained was based on the "match" from the sample. This 
can improve estimation as shown but makes estimation of precision more difficult. 
We need to either refine this technique or develop other theories to incorporate 
sample related "extraneous" information. In this paper we only demonstrate that 
if we have a model of the population, this model can provide improved estimation 
for the population. We do this by incorporating this additional information into 
e s t im a to r  Ysrl efficiently and simply as shown below. 

2. An approximation to ]Tsrl 

Suppose a guess of y, y*, is available such that y* E R N after a sample is 
drawn by using a sampling design, which may or may not depend on a eovariate of 
the population. An iterative procedure to solve equations (1.3) and (1.4) is given 
in Srivastava and Ouyang (1992). For a set of given Try(i), say 7r~ (we might let 
7c~ = 7ri), the iterative procedure consists of using 

(a) ~o(i) = ~ (i = 1 , . . . , N ) ,  

(b) r ~  = 7c~(i)/(y*/Y*) (i = 1 , . . . ,X ) ,  

(2.1) (c) rm(a)  = ( r? )  -1 , 

(d) 7 rp+l ( i )=  Er~(co)p(co) ( i =  1 , . . . , X )  

where iteration starts with m = 1. A numerical example given in Ouyang and 
Schreuder (1992) shows that the iterative procedure works well (for one, five, and 
hundred iterations). But it is not easy to express the estimator obtained analyti- 
cally. This fact leads to the consideration of the following eatimator obtained by 
using a "half" step iteration procedure. 

Suppose s(.) is a sample weight function with s(w) > 0 for all co such that s(.) 
is an approximate solution to equations (1.3) and (1.4). Let 7r~ = %(i) in (2.1). 
Then (2.1) (b) and (e) provide a sample weight function 

(2.2) t(a~) -- y;/%(i)] Y*, for all aJ. 

Obviously t(co) > 0 for all co. This "half" step iteration gives an estimator 

which will be called the "general ratio estimator" in this study. 
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3. Statistical properties of !/  

To study l y it is natural to consider the "model" based on the y*: 

Yi = ( Y * / Y * ) Y  + ei = OiY + ei, i = 1 , . . . , N ,  (3.1) 

where 

(3.2) E e i = 0 '  E 0 i = l '  and y * = 0 i Y * ,  for all i .  
i i 

THEOREM 3.1. Let  7rt(i) be defined by (1.2) with r( . )  replaced by t( . ) .  Then  

- l e i l  

PROOF. Straightforward. 

Usually, 1? is a biased estimator of Y. But when ~r~ (i) is an exact solution of 
equations (1.3) and (1.4) or e~ = 0 for all i, 1) is unbiased. The following gives a 
useful formula for the bias• 

THEOREM 3.2. Let 3' = ~/(w) = s (w)  }-~i~ 0~ /%( i ) ,  then 

(3.4) 

PROOF. 

THEOREM 3.3. 

(3.5) 

Then  

(3.6) 

E ( ? )  = z - C o y ( ? ,  7) .  

Similar to the proof of Theorem 5.1 in Raj (1972). 

Let  

7ct~(i,j) = ~ p ( ~ ) [ t ( ~ ) ]  2. 
aAj 

K - - , % ( i ) % ( j )  - 7rt(i)7%(j) - 7rt(j)~rs(i) + 7rt~(i,j) 
MSE(I ?) Z_, 

• , , Yi Yj 
Yi Yj y. yj 

PROOF. Let a ~  = 1 i f i  E w and ai~ = 0 i f i  ~ w. S o ] )  = t(w)}-~iai~y~/ 
% (i). Straightforward calculation gives 

E { [ t ( w ) ] 2 a ~ o a j ~ / [ % ( i ) % ( j ) l }  = 7rt2(i , j ) /[%(i)Tr~(j)] ,  

E{t(w)a~,~/Trs(i)  } = 7rt(i) /Tr~( i), 

E {  [ t ( ~ ) a ~ / ~  (i) - 1] [ t ( ~ ) a j ~ / ~ s ( j )  - 1] } 

= [%(i)Tr~(j) - 7 r t ( i )%( j )  - 7rt(j)~r~(i) + 7 r t ~ ( i , j ) ] / ( % ( i ) % ( j ) ) .  
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When yi = OiY* for all i, since y* = OiY*, then  

(3.7) ? = Y* O~l~(i Oil~s(i = Y*, 

hence MSE(]  7) = 0 at y*. Then  apply Rao's theorem on the mean square error of 
est imators tha t  possess the ratio est imator proper ty  (Rao (1979)) to obtain (3.6). 

When  s(w) = t(w), (3.6) becomes the variance of Y~rl. An unbiased est imator  
of MSE(]  y) based on (3.6) can be easily proposed if ~r~j is known. Now since 

(3.8) = t(~) Z(o~Y)/~(i) + t(~) Z ~/~(~) 
iw iw 

= Y + t(~) Z ~ /~ ( i ) ,  
iw 

another  expression for MSE(] y) can be obtained by the following equation 

(3.9) 

2 

THEOREM 3.4. The MSE(I  y) is given by 

(3.1o) M S E ( ] ) )  ~- E i  7r t2( i )~-  [Trs (i)]2 ~i2 _}_ E 7rt2(i'J)7rs(i)Trs(j)- 7rs(i)7rs(J)~isJ" 
i¢j 

PROOF. Use the argument  to obtain Var(Ysrl) given in Srivastava (1985) in 
(3.9) to obtain (3.10). 

From (3.10), MSE(] 7) looks very similar to Var(e), where 

(3.11) e = e(w) = s(w) E ei/%(i) 
iw 

in an "estimate" of 0 = q + -.- + eN. The following theorem shows tha t  in fact 
Var(e) is an approximation to MSE(I~). 

THEOREM 3.5. Suppose E{I'/(w ) - 11} < 1. Then 

(3.12) MSE(!Y) ~ ( ) =- Var  e . 

PROOF. Given in the Appendix. 

Since ~/(w) is an unbiased est imator  of the total  of 0i, i.e., 1, ]~,(w) - 11 should 
be small, in fact, usually much smaller than  1 (the total  of 0i). Hence it is not too 
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hard to satisfy the condition given in Theorem 3.5. Finally, we compare 1) and 
srl • 

THEOREM 3.6. As estimators of Y ,  the statistics Y and Ysrl a r e  related as 
follows: 

(i) If  the s(.) is the exact solution of equations (1.3) and (1.4), then Var(!)srl) 
= MSE0Y). 

(ii) If  the s(.) is not the exact solutions of equations (1.3) and (1.4) but Yi = 
OiY for all i, then Var(]Jsrl) > MSE(I)) = 0. 

(iii) Suppose the condition in Theorem 3.5 holds and 

(3.13) 21c~1 < fOiY, i = 1 , . . .  ,N, 

for 5 = Var(v(cv))/[1 + Var(v(w)) ]. Then Var(l~srZ) is larger than MSE(I~) to the 
first order of approximation. 

Var(~3~srl) > MSE(Y). 

PROOF. Given in the Appendix. 

Thus, based on Theorem 3.6, if we have only an approximate solution to 
equation (2.4), 17 should be preferred over !~srl. 

4. A special case of the general ratio estimator 

A special case of !~srZ proposed by Srivastava (1985) is the Horvitz-Thompson 
estimator ]~HT = }-~i~ yi/Tri. Let YHT be the "Horvitz-Thompson estimator" of Y* 
as if the y~'s are unknown. A special case of 1~ is: 

,41, 

An obvious result of the estimator given by (4.1) is 

THEOREM 4.1. If  YHT and ]Z~T converge to Y and Y* in probability respec- 
tively, Y1 converges to Y in probability. 

Under some mild conditions, ?HT and ]~I~T do converge to Y and Y* in proba- 
bility respectively. A summary of these results are given in Ouyang et al. (1991a). 
Note that  Y converges to Y in probability implies 1~ is asymptotically unbiased. 
The form of ]Zz looks similar to the ratio estimator given in H£jek (1981), but 
there is a conceptual difference between them since the y* in ]~1 can be decided 
using extraneous information. The estimator I~1 has a special application in the 
following situation. 

Consider the Horvitz-Thompson estimator under fixed size sampling design. 
Suppose the 7ri are proportional to the y[. By replacing the ri and ~r~(i) in (1.4) 
by n and 7ri, we obtain an equation ny* /Y*  = zq. We state this result as a lemma. 
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LEMMA 4.1. Suppose for a sampling design with fixed sample size n, the 7ci 
are proportional to the y[. Then r(cJ) - 1 and ri = n constitute a solution to 
equations (1.3) and (1.4). 

Consider the following case. Suppose at the beginning of a sampling survey, 
guesses of y~, say xi, such tha t  xi > 0 for all i, are available. A sampling design is 
used such tha t  the 7ri are proportional to the xi. Suppose after drawing a sample, 
new guess y~" of Yi, such tha t  y* /Y*  = 0i which is close to x i / X ,  are obtained, 
where X is the populat ion total  of xi .  (This si tuation happens, for example, 
when the xi 's  are good estimates of the yi's.) By Lemma 4.1, since r(w) - 1 and 
ri - 1 /n  are a solution to equations (1.3) and (1.4) when y~" = xi for all i, it 
follows tha t  if ( y { / Y * , . . . ,  y*N/Y*) is "slightly" different from ( x l / X , . . . ,  XN/X) ,  
r(w) = 1 is an "approximate" solution of equations (1.3) and (1..4). Hence it is 
natural  to consider est imator 171 in this case. Note tha t  all the results given in 
Section 3 apply to the est imator 171. 

5. Application to sampling with a regression model 

For the estimator 17srl proposed by Srivastava (1985) and 17 considered in this 
study, it is important  tha t  the introduced sample weight function be independent  
of the drawn sample. Consider a survey on a population which has the following 
linear model s tructure 

(5.1) yi = a + ~xi + ei, i = 1 , . . . , N ,  

where ei are uncorrelated random error with mean zero and variance ~r2x¢ and $ ' 

the ~ is unknown but  1 < n < 2. In model (5.1), the xi 's  are known, but  c~,/3 are 
unknown parameters.  Suppose in the model, it is known tha t  a << ~xi. To use 
the 171 given in (4.1), let xi be the first guess of y~. Then a pps sampling procedure 
of size n (i.e., sampling with inclusion probabili ty proportional to size) is used to 
draw a sample a~. If after the survey, some idea about the a and ~ say (~0 and/3o, 
which does not depend on the sample, is available, we can simply use 

(5.2) Y* = ~o + ~oXi, i = 1 , . . . , N ,  

as a second guess of Yi. 
If such information about  (~ and ~ is not available, a and /3 have to be es- 

t imated  by the sample. Let x = ( x l , . . . , X N )  r, let 1 b e  a N x  1vec to r  with 1 
everywhere, then 

(5.3) -I  = [ ( l ' w ) ' d i a g - l ( g i ' "  . ,gN)(1,  W)]-l(1, x) ' d i a g - l ( g l , . . . , g N ) y  

is a "census fit" of a and/3  with weight diag -1 (91 , . . . ,  gN), where diag -1 ( g l , . . . ,  
gN) is a diagonal matr ix  with g 1 1 , . . . ,  gN 1 appeared as the diagonal elements in 
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k to get BLUE order. Those g l , . . . ,  gN are decided upon by us, for instance, gi = xi 
for a and/3.  An est imator  of ~ and/3  (with sample w = { 1 , . . . ,  n}) is 

[°] (5.4) 

! (i ") (i Xl) " diag -1(7~1gl, • • •, 7Cngn) " 

Xn Xn 

. d i a g - l ( ~ l g l , . . . , ~ n g n )  

Let 

^ 

(5.5) y* = & +/3xi ,  i = 1 , . . . , N  

as a second guess of Yi. Replace them in (4.2) to get an est imator  

(5.6) 

- 1  (ix) 
i xn 

But  now the second guess used in ]?le depends on the sample. In order to show the 
unified theory developed in Section 3 can also be applied to ]Yl~ asymptotically,  
we need to show that  

E(]~I~ _ y )2  _ E ( %  - y )2  __. 0, (5.7) 

where 1?1 in (5.7) is the "estimator" obtained from (5.6) with & and/~ replaced by 
and/~ in (5.5). 

Notice that  when we are talking the asymptot ic  behavior of an est imator  in 
sampling, we always suppose that  there is a sequence of finite populat ions such 
that  the sizes of the populat ions _go to infinity. Also a sampling design is assigned 
to each population. Let 0i = ~]i/Y, 0* = y~ /Y* .  

THEOREM 5.1. Under some mild conditions, ~-~.i~(O* - Oi)/~r~ converges to 

zero in 4th mean i.e., E [~'.i~(0* - 0~)/Tq] 4 --* 0. 

The conditions and proof of Theorem 5.1 are given in the Appendix.  Using 
Theorem 5.1, we have 

THEOREM 5.2. I f  E (~-~i~ yi/Tri) //[(Ei~ 0*/Try) (~-~i~ 0~'//Tr~)] is bounded, 

then under the condition of Theorem 5.1, !~1e - 1~1 converges to zero in 2nd mean, 
i.e., E(?I  - 71) 2 O. 
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PROOF. Use Theorem 5.1 to obtain 

E(121e - 121) 2 

:. { }' 
{r 14}1"{ [ 4} Eiw Yi/Tri ] 

By Theorem 5.2, the results of the bias of 121 given in Section 3 can be applied 
to 121~ asymptotically. Theorem 5.2 implies 121~ - I21 converges in mean. Since 

E(121e - y)2 = E(121 - y)2 + 2E(121 - Y)(121 - -  121e) "~ E(121 - -  121e) 2, 

we h a v e  E(121 - 121e) 2 --~ 0 by Theorem 5.2 and, i f  E(121 - Z)2 is bounded, 

IE(121 - Y ) ( ? l  - 121o)1 _< [E(121 - Y)211 /~[E(121  - ? 1 ~ ) ' ]  1/~ - *  0, 

so we have proved the following theorem. 

THEOREM 5.3. Under the conditions of Theorem 5.1 and 5.2, if E(121 - y)2 
is bounded, then (5.7) is true. 

Under the condition of Theorem 5.3, the mean square error of 121 is asymp- 
totically the mean square error of 121~. Hence, the estimator of the mean square 
error of 121 is asymptotically the estimator of the mean square error of 121e. 

6. Simulations 

We compare 121~ and other commonly used estimators numerically. The pop- 
ulations used in the numerical comparisons are forestry populations^(Schreuder et 
al. (1987)) which generally satisfy model (5.1) with 1 < k < 2. Let YI~ denote the 
estimator given in (5.6) with gi = x~5/Tci in (5.4), hence the & and ¢) given in (5.4) 
are the 'best linear estimators' of a and/3 based on the drawn sample as if k = 1.5 
in model (5.1). We consider the classical ratio estimator (ratio of mean, denoted 
by 12r), the Horvitz-Thompson estimator (12HT), and the ordinary^linear regression 
estimator (~r)  and the best linear model unbiased estimator (Y~) in our com- 
parison. The last two estimators are given in (6.24) and (6.23) of Sukhatme et 
al. (1984). Another estimator to be compared is the general regression estimator, 
denoted by 12gin where 

(6.1) ~rgr = gy i /Tr i  + N~I ~- X~l -~1  E 1 / T r i  - ~l E x i / T c i ,  
iw iw iw 

and &l and/~1 are obtained from (5.4) by letting gi = 1 for all i. This estimator 
was proposed by Sgrndal (1980) and denoted by Tpz. Another general regression 
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estimator (TBLu) has the form (6.1) except that  & and/3 were obtained from (5.4) 
1.5 by letting gi = xi /rr~, i.e., the &, a n d  /~1 used in TBLU were the 'best linear 

estimators' of a and/3 with k = 1.5 in model (5.1). Among these two estimators, 
Siirndal (1980) preferred TpI (i.e., I3"9r in this study). 

In the comparison, rrps sampling is used with estimators !~HT, !Egr, !21~. For 
I~, ~ ,  Yw~, simple random sampling without replacement (SRSWOR) is applied. 
The reason for doing this is that  estimators !~, ~ ,  !~wr are usually used under 
SRSWOR, but e s t i m a t o r s  YHT, ~/'gr, Yle are developed based on rrps sampling. 
The estimator lYg~ will become Yll when rcps sampling is replaced by SRSWOR. 
Real forestry data sets described in Schreuder et al. (!987) are used, selected 
with the expectation that  they would show strong linear, weak linear, or well 
defined curvilinear relationships between the variable of interest and covariate. 
The simulation biases of all estimators given in Table 1 are satisfactorily small. 
Table 1 shows that  1>~ is more efficient than Y~ and YHT in general (better than 
1>~ in 12 cases out of 16, much better than ]>r in 8 cases). 1~1¢ is as efficient as :~g~ 
in all cases and they are close, lzl~ is also more efficient than ~ r  in 8 cases, much 
more so in 5 cases and is less efficient than ~ in 8 cases but only slightly so. 1>~ 
is usually not as good as ~ .  

~ and 13"g~ can also be compared in terms of robustness. Three forestry data  
sets are used here using Poisson sampling and Poisson-Poisson sampling (Ouyang 
et al. (1991b)). All three tree data consist of three variables: y, net volume 
of trees; xl, diameter (at breast high) squared times height of trees; and x2, 
ocular estimate of net volume of trees by experienced cruiser. Both xl and x2 
are highly correlated with y, but x2 is more expensive to get. Some trees with 
large volume have x2 = 0 because it is sometimes difficult to assess the true usable 
volume of a tree ocularly. Two data  sets (BLM1 and BLM2) are seriously affected 
by these bad data points. They provide a good check on the robustness of the 
estimators. Besides YI~, Y~, l~gr, we also consider the unadjusted estimator (i.e., 
]>HT) and the adjusted estimator in Poisson sampling (Brewer and Hanif (1983)) 
and three natural generalizations of the unadjusted and adjusted estimators for 
Poisson-Poisson sampling. These three estimators are denoted by 1>i, lYi~, ~II  
respectively, and they are totally unadjusted, adjusted (for sample size) in both 
stages and adjusted (for sample size) in the second stage only (Ouyang et al. 
(1991b)). For Poisson sampling, samples of expected size 30 were drawn with 
inclusive probability proportional to x2 (with a small positive value added to the 
x2 = 0 values). For Poisson-Poisson sampling, first stage Poisson sampling samples 
of expected size 50 were drawn with inclusion probability proportional to Xl, then 
second stage Poisson sampling samples of expected size 30 were drawn from the 
first stage samples with inclusion probability proportional to x2. The simulation 
biases of all the estimators are acceptable except Yz~ has 6% bias in Poisson-Poisson 
sampling for population BLM1. The numerical comparison results are given in 
Table 2 respectively. 

Both Yg~ and Yle are more efficient than the other estimators in almost all 

cases (except YIi is better than ]>gr and Fie for the 'good' data BFV in Poisson- 
Poisson sampling). 1>,¢ might be somewhat more robust than 1Y9~ for the two 'bad' 
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da ta  sets B L M 1  and B L M 2 .  This may be due to the ratio es t imator  s t ructure  
of I)1~. Based on these simulations, there is little to choose one est imator  over 
another. 

Appendix 

PROOF OF THEOREM 3.5. Let f(O) = E{[e(w)]2[1 + O(~/(w) - 1)]-2}. Since 
the number  of possible samples is finite, the order of E and the differentiating 
operator  can be interchanged. Straightforward calculation gives 

{1/[n!]}f(n)(o) = ( - 1 ) ~ ( n  + 1)E{[e(w)]2(7(w) - 1)~}. 

Let 1/p = l i m n - ~  [1/[n!]f(~)(O)] 1/~ = E{l~/(co) - 1]}. Since E{lT(w ) - 11} < 1, 
p > 1, the first order approximation in Taylor series expansion yields 

(A.1) E{[e(w)]2/['7(~o)] 2} = f (1)  - E{[e(~)]2}. 

Hence from (3.10) and (A.1), 

E l Y  - y]2 = E{[e(w)/7(w)]2} ~_ E[e(w)]2 = Var(e(w)). 

PROOF OF THEOREM 3.6. 
(i) In this case s(w) = t(w) for all w with p(w) > 0. So ? s r l  : ~" 

(ii) When  y~ = O~Y for all i, I y = Y for all aJ with p(cz) > 0 as shown in the 
proof  of Theorem 3.4. On the other  hand, under the given condition, we have 
Var(]~srl) > O. 

(iii) Because #i ---- OiY + ei for all i, 

(A.2) V a r ( } % s r l )  = E ( T Y  - Y + e) 2 

= y 2  Var(7) + Var(e) + 2YE[(7  - 1)el. 

Now E(e) = E(s (~)  E ~  ~ / ~ s ( i ) )  = E~ ~ = 0, and 

= E{Oie i%2( i ) / [%( i ) ]2}  + E{Oie j%2( i , j ) / [~rs ( i )%( j ) ] } .  
i i#j 

Since E [ ( ~ / -  1)e] = E(Te  ) - E(e) ,  from (A.2), we have 

(A.3) Var(Lrl)  = V2 Var(7) + Var(e) + 2~{O~Ye~Trs:(i)/[Trs(i)] 2} 
i 

+ 2 ~-~.{oggeFs: (i,j)/[Trs(i)Tr~(j)]} 

(Replace e~ by - l e i l t o  obtain) 
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> V 2 Var('y) + Var(e) - 2 ~ - - ~ { 0 i Y [ e i l r r , ~  (i)/[rr~(i)] u } 
i 

- 2 ~-~{O~Yleyl%=(i,j)/[rc,(i)rr,(j)] } 
@J 

(Use (3.13) to obtain) 

> y2  Var(7) + Var(e) 

- (~{~{(0Y)2%2( i ) / [%(i )]  2} 

- E{<YojY ,2 (i, } 
(Use 01 + . . .  + ON = 1 to obtain) 

= y2  Var(7) + Var(e) 

-6{~{(0~Y)2%2(i ) / [%(i )]  2} 

- ~-~.{OiYOjY%2(i,j)/[rc~(i)%(j)]} } 

+ 5(01Y +. . .  + OevY) 2 - 6Y 2 
= (1 - 6)y2 Var(7) + Var(e) - 5y2.  

Using the definition of 6, (A.3) implies 

(A.4) Var(F~l) > Var(e). 

Now Theorem 3.5 implies 

V a r ( L < )  - MSE(!J) > Var(e) - MSE(I)) ~ 0. 

PROOF OF THEOREM 5.1. We assume tha t  we have Y~i~(0[ - (}i)/Tri con- 
verges to 0 in probability. Under some mild condition's we do have this result. 
Convergence in probability of the Horvitz-Thompson est imator and regression es- 
t imator  has been studied widely in literatures. A summary  and a list of references 
are given by Ouyang et al. (1991a). A common condition in most of the references 
is tha t  there are two constants a and b such tha t  

(A.5) 0 < a _ < T r i < b < l  

holds for all the ~ri under each sampling design. Now we also suppose (A.5) is 
true. Then we have 

(i) y~i~(0* - 0i)/Tri goes to zero in probability, 

(ii) I Ei=(0~ -gi) /~l  -< I E~= 0~/~1 +IE~= 0~/~1 _< I E~= Oil/a+lEi= Oil/a 
<_ 2/a, for all the populations and all the designs. 
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B y  T h e o r e m  1.3.6 in Sett l ing (1980), (i) and  (ii) imp ly  t h a t  ~ i ~ ( 0 ;  - 0~)/7ri 

converges  to  zero in 4 th  m o m e n t .  

REFERENCES 

Brewer, K. R. W. and Hanif, M. (1983). Sampling with unequal probabilities, Lecture Notes in 
Statistics, 15, Springer, New York. 

HAjek, J. (1981). Sampling from a Finite Population, Marcel Dekker, New York. 
Ouyang, Z. (1989). Investigation on some estimators and strategies in sampling, proposed by 

Srivastava, Ph.D. Thesis, Colorado State University, Fort Collins. 
Ouyang, Z. and Schreuder, H. T. (1992). Srivastava estimation in forestry, Forest Science (sub- 

mitted). 
Ouyang, Z., Schreuder, H. T. and Li, J. (1991a). Regression estimation under sampling with one 

unit per stratum, Comm. Statist. Theory Methods, 20, 2431-2449. 
Ouyang, Z., Schreuder, H. T., Max, T. and Williams, M. (1991b). Poisson-Poisson and binomial- 

Poisson sampling in forestry, Survey Methodology (submitted). 
Raj, D. (1972). Sampling Theory, McGraw-Hill, New York. 
Rao, J. N. K. (1979). On deriving mean square errors and their non-negative unbiased estimators 

in finite population sampling, J. Indian Statist. Assoc., 17, 125-136. 
S£rndal, C. E. (1980). On 7r-inverse weighting versus best linear unbiased weighting in probability 

sampling, Biometrika, 67, 639-650. 
Schreuder, H. T., Li, H. G. and Hazard, J. W. (1987). PPS and random sampling estimation 

using some regression and ratio estimators for underlying linear and curvilinear models, 
Forest Science, 33, 997-1009. 

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York. 
Srivastava, J. N. (1985). On a general theory of sampling, using experiment design, Concepts I: 

Estimation, Bull. Internat. Statist. Inst., 51(10.3), 1-16. 
Srivastava, J. N. and Ouyang, Z. (1992). Studies on the general estimator in sampling, based on 

sample weight function~ J. Statist. Plann. Inference, 31, 177-196. 
Sukhatme, P. V., Sukhatme, B. V., Sukhatme, S. and Asok, C. (1984). Sampling Theory of 

Survey with Application, Iowa State University Press, Ames. 


