Ann. Inst. Statist. Math.
Vol. 45, No. 1, 113-127 (1993)

A GENERAL RATIO ESTIMATOR AND ITS APPLICATION
IN MODEL BASED INFERENCE

Z. OUYANG!, J. N. SRIvASTAVAZ* AND H. T. SCHREUDER!

1240 W. Prospect St., Rocky Mountain Forest Exzperiment Station,
Fort Collins, CO 80521, U.S.A.
2Depafr*tvmznt of Statistics, Colorado State University,
Fort Collins, CO 80523, U.S.A.

(Received October 29, 1990; revised April 16, 1992)

Abstract. A general ratio estimator of a population total is proposed as an
approximation to the estimator introduced by Srivastava (1985, Bull. Internat.
Statist. Inst., 51(10.3), 1-16). This estimator incorporates additional infor-
mation gathered during the survey in a new way. Statistical properties of the
general ratio estimator are given and its relationship to the estimator proposed
by Srivastava is explored. A special kind of general ratio estimator is suggested
and it turns out to be very efficient in a simulation study when compared to
several other commonly used estimators.
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1. Introduction

Assume a finite population U with index set {1,...,N}. An unknown, but
observable, variable y is defined on U with value y; at unit ¢. Let Y be the
population total of y and y = (y1,...,yn). A sample w of U is defined as a
non-empty subset of U, which has probability p(w) of being drawn.

Consider an estimator Yy of the population total proposed by Srivastava
(1985) which is given by

(1.1) Yo = r(w) Y i/ 7o),

where

(1.2) (i) = 3_p(w)r(w),
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and ), , denotes the sum over all ¢ in sample w, ). . denotes the sum over all w
containing the unit 4. The r(-) is called the “sample weight function” defined on
all nonempty w, which is independent of the actually drawn sample, and may be
chosen at will by the statistician. During a survey, the values y; (for i belonging
to a sample w) are collected. Usually, extraneous information about the nature
of the population is also available. For instance, it is well known in forestry that
volumes of trees in a forest fit an exponential distribution quite well. With the
help of previous information, an experienced cruiser in a forest survey might be
able to give a quite good guess to the parameters of the exponential distribution.
This kind of information should be utilized in the estimation stage. The function
r(-) was introduced for the purpose of utilizing such information. If 7;, the inclu-
sion probability of unit %, is positive for all ¢, Krl is an unbiased estimator of Y
(Srivastava (1985)). Suppose the extraneous information is formally introduced as
a vector y* which represents a guess of y, such that y* is independent of the drawn
sample. When the parameter space is Rf ={(y1,-..,yn) 1y 2 0,i=1,...,N},
a necessary and sufficient condition for }A’;rl to have zero variance at y* € Rf is
that

(1.3) Z 1/ri =1/r(w), for all w such that p(w) > 0,
and
(1.4) VY =), =1, N,

where 7; = r({i}) > 0 and Y* is the total of y7. For a sample weight func-
tion which satisfies equation (1.3), the corresponding Ya1 is admissible among
all homogeneous linear unbiased estimators of ¥ and its variance is given by the
following:

(1.5) Var(Yie) = Z

1<J

(1) () — my2 (6, ) (y _ il )2,

TiT; m(i)  me(d)

where

(1.6) 2 (i ) = Y p(w)[rw)];

wij

and ) .. denotes the sum over all w containing the units ¢ and j. Details of the
result listed above were given in Srivastava and Ouyang (1992).

The most important concept underlying estimator (1.1) is the sample weight
function. This function relies on the availability of extraneous information about
the nature of the population other than the information given by a sample. Such
information does exist, for example, in social surveys. Srivastava and Ouyang
(1992) give an example to demonstrate how to collect this information in social
surveys. Indeed, questionnaires collected by a sample s provide much more in-
formation than the information given by {v;,7 € s}. Without doubt, we should
use as much information as we can in the estimation stage. A technique given in
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Srivastava and Ouyang (1992) uses such information and provides a better result
in the example used. Encouraged by this result, Ouyang and Schreuder (1992)
tried to use this technique in forest survey. An important step in this technique is
to “match” the g’s in a sample to the y*’s in the guessed population. Thus, the
sample weight function obtained was based on the “match” from the sample. This
can improve estimation as shown but makes estimation of precision more difficult.
We need to either refine this technique or develop other theories to incorporate
sample related “extraneous” information. In this paper we only demonstrate that
if we have a model of the population, this model can provide improved estimation
for the population. We do this by incorporating this additional information into
estimator Ya efficiently and simply as shown below.

2. An approximation to }A’;rl

*

Suppose a guess of y, y*, is available such that y* € R_,Af after a sample is
drawn by using a sampling design, which may or may not depend on a covariate of
the population. An iterative procedure to solve equations (1.3) and (1.4) is given
in Srivastava and Ouyang (1992). For a set of given =,.(i), say m, (we might let
7, = m;), the iterative procedure consists of using

(a) 7(G) == (i=1,...,N),
(b) ri* =m0/ /Y") (=1,...,N),

(2.1) © rmw):[zj(rr)-l] ,
@ @)=Y P wpw)  (i=1,...,N)

wi

where iteration starts with m = 1. A numerical example given in Ouyang and
Schreuder (1992) shows that the iterative procedure works well (for one, five, and
hundred iterations). But it is not easy to express the estimator obtained analyti-
cally. This fact leads to the consideration of the following eatimator obtained by
using a “half” step iteration procedure.

Suppose s(-) is a sample weight function with s(w) > 0 for all w such that s(-)
is an approximate solution to equations (1.3) and (1.4). Let 7} = m,(i) in (2.1).
Then (2.1) (b) and (c) provide a sample weight function

(2.2) t(w):{Z[yf/ws(i)}} Y*, forall w.

w

Obviously t(w) > 0 for all w. This “half” step iteration gives an estimator

23)  V=tw) Y w/m) =Y {Zyi/ws@)} / {Zy:/wsa)} ,

which will be called the “general ratio estimator” in this study.
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3. Statistical properties of ¥

To study Y it is natural to consider the “model” based on the y*:

(3.1) vi=@ /Y)Y +ea=0Y+a, i=1..N,
where
(32) Y e=0, > =1, and y;=6;Y", foralli.

THEOREM 3.1. Let m:(i) be defined by (1.2) with r(-) replaced by t(-). Then
(Z |5i|> :

Usually, Y is a biased estimator of Y. But when (i) is an exact solution of
equations (1.3) and (1.4) or ¢; = 0 for all ¢, Y is unbiased. The following gives a
useful formula for the bias.

(3.3) |IE(Y)-Y]|< max

i (6) — ms(4)
7s(2)

PrOOF. Straightforward.

THEOREM 3.2. Let v =v(w) = s(w) >, 0:/7:(3), then
(3.4) E(Y) =Y — Cov(Y,7).
PROOF. Similar to the proof of Theorem 5.1 in Raj (1972).

THEOREM 3.3. Let

(3.5) (i, §) = Y plw)[tw))?.

wtj

Then

MSE(Y) _ Zﬂ”s(i)ﬂ's(j) - Wt(Z);ss(é));E;t)(J)ﬂs(l) + m2(4, )

2
w x ) Yi Y;
YUY\ s T x(

PROOF. Let asp = 1ifi € wand a;, = 0if i ¢ w. So ¥V = t(w) > Giwli/
7s(1). Straightforward calculation gives

E{[t(w)]*aiaje/[ms(1)ms ()]} = me2 (4, )/ [ (D)7a(5)],
E{t(w)aio/ms (1)} = mi (1) /ms(3),
E{lt(w)ai/ms(i) — 1][t{w)aju /7s(5) — 1]}

= [ms()7s(J) — me(i)mws(5) — me(F)ms (i) + 72 (3, )]/ (s (i) 75 (5)) -

(3.6)

i<y
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When y; = 6;Y* for all 4, since y; = 6,Y*, then

(3.7) y=Y*

Z 0; /ws(i)] [Z 0; /s (3)

hence MSE(Y) =0 at y*. Then apply Rao’s theorem on the mean square error of
estimators that possess the ratio estimator property (Rao (1979)) to obtain (3.6).

When s(w) = t(w), (3.6) becomes the variance of Ys;1. An unbiased estimator
of MSE(Y") based on (3.6) can be easily proposed if 7;; is known. Now since

(38) Y = tw) ) (6:Y)/me(i) +t(w) ) ei/ms(i)

=Y +tw) Y e/mli),
another expression for MSE(Y) can be obtained by the following equation
2
(3.9) MSE(Y) = E (t(w) > e /ws(z’)) .

tw

THEOREM 3.4. The MSE(Y) is given by

(3.10) MSE(?) _ Z It_g_(i[)ﬂ—ws&_ n Z 72 (%, 7) 1_)77:3((;;7? (j)eiej.
i s i#j 8

Proor. Use the argument to obtain Var(f’srl) given in Srivastava (1985) in
(3.9) to obtain (3.10).

From (3.10), MSE(Y") looks very similar to Var(e), where

(3.11) e=e(w)=s(w) Y e/ms(i)

iw

in an “estimate” of 0 = €; +--- + en. The following theorem shows that in fact
Var(e) is an approximation to MSE(Y).

THEOREM 3.5. Suppose E{|y(w) — 1|} < 1. Then
(3.12) MSE(Y) 2 Var(e).
PrOOF. Given in the Appendix.

Since y(w) is an unbiased estimator of the total of §;, i.e., 1, |y(w) — 1| should
be small, in fact, usually much smaller than 1 (the total of ;). Hence it is not too
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hard to satisfy the condition given in Theorem 3.5. Finally, we compare Y and
}/;rl-

THEOREM 3.6. As estimators of Y, the statistics Y and Y1 are related as
follows:
(1) If the s(-) is the ezact solution of equations (1.3) and (1.4), then Var(Yer1)
= MSE(Y).
(ii) If the s(-) is not the exact solutions of equations (1.3) and (1.4) but y; =
0.Y for all i, then Var(Ysrl) > MSE(Y) =0.
(iil) Suppose the condition in Theorem 3.5 holds and

(3.13) 20e;| < 86;Y, i=1,..., N,

for 6 = Var(y(w))/[1 + Var(y(w))]. Then Var(Ye) is larger than MSE(Y') to the
first order of approximation.

Var(Yar1) > MSE(Y).
Proor. Given in the Appendix.

Thus, based on Theorem 3.6, if we have only an approximate solution to
equation (2 4), YV should be preferred over Var1.

4. A special case of the general ratio estimator

A special case of Vart proposed by Srivastava (1985) is the Horvitz-Thompson
estimator Yyt = Zw yi/m;. Let Yj be the “Horvitz-Thompson estimator” of Y*
as if the y’s are unknown. A special case of ¥ is:

(Zwm) / (Soim)

An obvious result of the estimator given by (4.1) is

1) V= (Far /Y)Y =

THEOREM 4.1. If Yur and f’ﬁ‘T converge to Y and Y™ in probability respec-
tively, Y1 converges to Y in probability.

Under some mild conditions, Yt and ?ﬁT do converge to Y and Y* in proba-
bility respectively. A summary of these results are given in Ouyang et al. (1991a).
Note that ¥ converges to Y in probability implies Y is asymptotically unbiased.
The form of Y looks similar to the ratio estimator given in Héjek (1981), but
there is a conceptual difference between them since the y) in V; can be decided
using extraneous information. The estimator Y has a special application in the
following situation.

Consider the Horvitz-Thompson estimator under fixed size sampling design.
Suppose the 7; are proportional to the yf. By replacing the r; and 7, (¢) in (1.4)
by n and m;, we obtain an equation ny}/Y™* = m;. We state this result as a lemma.
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LEMMA 4.1. Suppose for a sampling design with fized sample size n, the ;
are proportional to the yf. Then r(w) = 1 and r; = n constitute a solution to
equations (1.3) and (1.4).

Consider the following case. Suppose at the beginning of a sampling survey,
guesses of y;, say x;, such that x; > 0 for all ¢, are available. A sampling design is
used such that the m; are proportional to the x;. Suppose after drawing a sample,
new guess y; of y;, such that y*/Y* = 6; which is close to z;/X, are obtained,
where X is the population total of z;. (This situation happens, for example,
when the z;’s are good estimates of the y;’s.) By Lemma 4.1, since 7(w) = 1 and
r; = 1/n are a solution to equations (1.3) and (1.4) when y; = z; for all i, it
follows that if (yi/Y™,...,yy/Y™) is “slightly” different from (z1/X,...,2n/X),
r(w) = 1 is an “approximate” solution of equations (1.3) and (1.4). Hence it is
natural to consider estimator ¥; in this case. Note that all the results given in
Section 3 apply to the estimator Yi.

5. Application to sampling with a regression model

For the estimator Y1 proposed by Srivastava (1985) and Y considered in this
study, it is important that the introduced sample weight function be independent
of the drawn sample. Consider a survey on a population which has the following
linear model structure

(5.1) v, =a+0z;+e, i=1,...,N,

where €; are uncorrelated random error with mean zero and variance J2xf, and
the x is unknown but 1 < k < 2. In model (5.1), the z;’s are known, but «, 3 are
unknown parameters. Suppose in the model, it is known that o < fBz;. To use
the Y; given in (4.1), let z; be the first guess of y;. Then a pps sampling procedure
of size n (i.e., sampling with inclusion probability proportional to size) is used to
draw a sample w. If after the survey, some idea about the « and 3 say «o and 5y,
which does not depend on the sample, is available, we can simply use

(52) y::ao+/30$ia 7::]-7"',N7

as a second guess of y;.

If such information about « and (3 is not available, o and 3 have to be es-
timated by the sample. Let © = (z1,...,z5), let 1 be a N x 1 vector with 1
everywhere, then

(5.3) 1:%} = [(1, z) diag ™ (g1,...,9n)(1, z)] (1, ) diag_l(gl, S gN)Y

is a “census fit” of a and § with weight diag™*(g1,...,gn), where diag™*(g1,...,
gn) is a diagonal matrix with g;%, ..., g&l appeared as the diagonal elements in
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order. Those g1, ..., gn are decided upon by us, for instance, g; = z¥ to get BLUE

for o and . An estimator of & and § (with sample w = {1,...,n}) is
' -1 '
. 1 I 1 I 1 Iy
a . . - —
(5.4) [A] = S diag ™ (7191, ..., Tngn)
g
1 =z, 1 z, 1 =z,
Y1
' diag*l(ﬂ'lgh tee >7Tng’n)
Yn
Let
(5.5) yr=é+ Bz, i=1,...,N

as a second guess of y;. Replace them in (4.2) to get an estimator

L] /[T

But now the second guess used in ffle depends on the sample. Il’Al order to show the
unified theory developed in Section 3 can also be applied to Yi. asymptotically,
we need to show that

(5.6) Vie=Y*

(5.7) E(Yi.-Y) —E(¥;-Y)? =0,

where Yy in (5.7) is the “estimator” obtained from (5.6) with & and 3 replaced by
& and 3 in (5.5).

Notice that when we are talking the asymptotic behavior of an estimator in
sampling, we always suppose that there is a sequence of finite populations such
that the sizes of the populations go to infinity. Also a sampling design is assigned
to each population. Let 6; = §;/Y, 6F =y /Y™

THEOREM 5.1.  Under some mild conditions, 3, (8; — 0;)/m; converges to
zero in 4th mean i.e., B>, (07 — 0;)/m)* — 0.

The conditions and proof of Theorem 5.1 are given in the Appendix. Using
Theorem 5.1, we have

TuporeM 52 If B (X, i/m) /(X 07/7) (D, 03/7)] s bounded,
then under the condition of Theorem 5.1, Yie—Yi converges to zero in 2nd mean,
z'.e., E(Yle - }/1)2 — 0.
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Proor. Use Theorem 5.1 to obtain

E(Yle - }}1)2

-o{ -] (o) /[ (o) (S

1/2 4

4
> iw Yi/ i
<K E 0; — /m} E ALY — 0.
Z (i 05/m3) (S Bi/ms)

By Theorem 5.2, the results of the bias of Vi given in Section 3 can be applied
to Yle asymptotlcally Theorem 5.2 implies Yle — Y1 converges in mean. Since

E(fi. - Y)?= E(Y1 - Y)? +2E(Y, - Y)(V1 — Yie) + E(Y1 — Y1),
we have E(Y; — Y1.)2 — 0 by Theorem 5.2 and, if E(Y; — Y)? is bounded,
|E(Yi - Y)(V1 - Y1)l < [E(V — V)V [BE(Y: - Y1) ? — 0,
so we have proved the following theorem.

THEOREM 5.3. Under the conditions of Theorem 5.1 and 5.2, if E(Yl -Y)?
is bounded, then (5.7) is true.

Under the condition of Theorem 5.3, the mean square error of Y; is asymp-
totically the mean square error of Y1.. Hence, the estimator of the mean square
error of Y7 is asymptotically the estimator of the mean square error of Y.

6. Simulations

We compare i, and other commonly used estimators numerically. The pop-
ulations used in the numerical comparisons are forestry populations (Schreuder et
al. (1987)) which generally satisfy model (5.1) with 1 < k < 2. Let Y3, denote the
estimator given in (5.6) with g; = «}-5/x; in (5.4), hence the & and § given in (5.4)
are the ‘best linear estimators’ of & and 3 based on the drawn sample as if k = 1.5
in model (5.1). We consider the classical ratio estimator (ratio of mean, denoted
by Y, »), the Horvitz-Thompson estimator (YHT) and the ordinary linear regression
estimator (Y}T) and the best linear model unbiased estimator (Yw) in our com-
parison. The last two estimators are given in (6.24) and (6.23) of Sukhatme et
al. (1984). Another estimator to be compared is the general regression estimator,
denoted by Y., where

(6.1) ygr:Zyi/ﬂ'i—i-Néu +X31—54121/7T¢“312$i/77i,

and &; and B, are obtained from (5.4) by letting g; = 1 for all <. This estimator
was proposed by Sarndal (1980) and denoted by Tp;. Another general regression
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estimator (Tgry) has the form (6.1) except that & and 8 were obtained from (5.4)
by letting g; = x; 1.5 /7, ie., the &; and ,81 used in Ty were the ‘best linear
estimators’ of a and B with k = 1.5 in model (5.1). Among these two estimators,
Sarndal (1980) preferred Tp; (i.e., f’gr in this study).

In the comparison, mps sampling is used with estimators ?HT, YgT, Yle. For
Y;, Yir, Yur, simple random sampling without replacement (SRSWOR) is applied.
The reason for doing this is that eestimators YT, er, er are usually used under
SRSWOR, but estimators YHT, ars Yle are developed based on mps sampling.
The estimator Ygr will become Y7; when wps sampling is replaced by SRSWOR.
Real forestry data sets described in Schreuder et al. (1987) are used, selected
with the expectation that they would show strong linear, weak linear, or well
defined curvilinear relationships between the variable of interest and covariate.
The simulation biases of all estimators given in Table 1 are satisfactorily small.
Table 1 shows that Yle is more eflicient than Y and YHT in general (better than
Y in 12 cases out of 16, much better than Y in 8 cases). Yle is as efficient as Ygr
in all cases and they are close. Yle is also more efficient than f/lr in 8 cases, much
more 50 in 5 cases and is less efficient than Y}, in 8 cases but only slightly so. Yy,
is usually not as good as Vi

Y}, and ?gr can also be compared in terms of robustness. Three forestry data
sets are used here using Poisson sampling and Poisson-Poisson sampling (Ouyang
et al. (1991b)). All three tree data consist of three variables: y, net volume
of trees; x;, diameter (at breast high) squared times height of trees; and o,
ocular estimate of net volume of trees by experienced cruiser. Both z; and z»
are highly correlated with y, but x5 is more expensive to get. Some trees with
large volume have zo = 0 because it is sometimes difficult to assess the true usable
volume of a tree ocularly. Two data sets (BLM 1 and BLM2) are seriously affected
by these bad data points. They provide a good check on the robustness of the
estimators. Besides Yle, er, Ygr, we also consider the unadjusted estimator (i.e.,
Yur) and the adjusted estimator in Poisson sampling (Brewer and Hanif (1983))
and three natural generalizations of the unadjusted and adjusted estimators for
Poisson-Poisson sampling. These three estimators are denoted by YI, YH, Ym
respectively, and they are totally unadjusted, adjusted (for sample size) in both
stages and adjusted (for sample size) in the second stage only (Ouyang et al.
(19915)). For Poisson sampling, samples of expected size 30 were drawn with
inclusive probability proportional to zs (with a small positive value added to the
xo = 0 values). For Poisson-Poisson sampling, first stage Poisson sampling samples
of expected size 50 were drawn with inclusion probability proportional to 1, then
second stage Poisson sampling samples of expected size 30 were drawn from the
first stage samples with inclusion probability proportional to z2. The simulation
biases of all the estimators are acceptable except Y} has 6% bias in Poisson-Poisson
sampling for population BLM1. The numerical comparison results are given in
Table 2 respectively.

Both f/gr and Yle are more efficient than the other estimators in almost all
cases (except Yir is better than Yy, and Yi. for the ‘good’ data BF'V in Poisson-
Poisson sampling). Y;. might be somewhat more robust than Y, for the two ‘bad’
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data sets BLM1 and BLM2. This may be due to the ratio estimator structure
of Yi.. Based on these simulations, there is little to choose one estimator over
another.

Appendix

PrOOF OF THEOREM 3.5. Let f(6) = E{[e(w)]?[1 + 0(vy(w) — 1)]72}. Since
the number of possible samples is finite, the order of £ and the differentiating
operator can be interchanged. Straightforward calculation gives

{1/} ™(0) = (=1)*(n + D E{[e()*(v(w) ~ )"}

Let 1/p = limp .o |1/[n!] £ (0)[*/™ = E{|y(w) — 1|}. Since E{|y(w) — 1|} < 1,
p > 1, the first order approximation in Taylor series expansion yields

(A.1) E{fe()?/ly(@)]*} = f(1) 2 E{[e(w)]*}.
Hence from (3.10) and (A.1),

E[Y — Y’ = E{le(w)/7(w)]’} = Ele(w)]” = Var(e(w)).

Proor orF THEOREM 3.6.

(i) In this case s(w) = t(w) for all w with p(w) > 0. So Ve =Y.

(ii) When y; = 6;Y for all i, Y =Y for all w with p(w) > 0 as shown in the
proof of Theorem 3.4. On the other hand, under the given condition, we have
Val‘(Y;;rl) > 0.

(iii) Because y; = 8;Y + ¢; for all 1,

(A.2) Var(Yer) = E(YY =Y +¢)?
= Y?Var(y) + Var(e) + 2Y E[(y — 1)e].

Now E(e) = E(s(w) >, €/ms(1)) =>",¢ =0, and

E(ve)=E {[S(W)]2 Z Hiei/[ﬂs(i)]z} +EQ[s@)? ) e/ [ms (i) ()]

Z
= Z{Hﬁﬂsz (1) /[ms ()17} + Z{Hifjw (4, 9)/[ms ())ms (5)]}-
i i

Since E[(y — 1)e] = E(ve) — E(e), from (A.2), we have

(A3)  Var(Ye1) = Y2 Var(y) + Var(e) + 2 Z{@iYemsz (@) /[7s(3)]}

+2 Z{eiYEjTrs2 (4,5)/|ms(D)ms(5)]}
]
(Replace €; by —|e;| to obtain)
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2 Y* Var(y) + Var(e) — 2 Z{9iyi6¢lﬁs2 (8)/[ms ()%}

~2) {0:Ylejlmea (6, )/ [s (8)ma (5)]}
i)
(Use (3.13) to obtain)
> Y2 Var(y) + Var(e)

-6 {Z{(&-Y)zﬂsz &)/ [ms (1))}

- SOV Yl )]}
i#j
(Use 1 + - -+ 0n =1 to obtain)
= Y2 Var(y) + Var(e)

_5{Z{wm%sz<i>/[7rs<z'>}2}

S 0¥ 0, Yns <z',j>/[ws<z‘>7rs(j>]}}
i#]
+68(01Y + -+ + 05Y)% - 5Y2

= (1 - 8)Y?Var(y) + Var(e) — 6Y2.

Using the definition of 6, (A.3) implies
(A.4) Var(Y,1) > Var(e).
Now Theorem 3.5 implies
Var(Vyr1) — MSE(Y) > Var(e) — MSE(Y) = 0.

PROOF OF THEOREM 5.1. We assume that we have Y, (8 — 6;)/m; con-
verges to O in probability. Under some mild conditions we do have this result.
Convergence in probability of the Horvitz-Thompson estimator and regression es-
timator has been studied widely in literatures. A summary and a list of references
are given by Ouyang et al. (1991a). A common condition in most of the references
is that there are two constants a and b such that

(A.5) O<a<m<b<l

holds for all the 7; under each sampling design. Now we also suppose (A.5) is
true. Then we have

(i) 3,07 —6;)/7m; goes to zero in probability,

(i) |23 (07 = 0:)/msl <132, 07 /mal + 1 25, 0/msl < 13250, 071 /a+122,, il /a

< 2/a, for all the populations and all the designs.
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By Theorem 1.3.6 in Serﬂiflg (1980), (i) and (ii) imply that ), (67 — 0:) /7
converges to zero in 4th moment.
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