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A b s t r a c t .  When there is a complete sufficient statistic for the nuisance pa- 
rameter which depends on the parameter of interest then there are locally op- 
timal unbiased estimating functions, but generally there is no globally optimal 
estimating function. We consider conditioning on the minimal sufficient statis- 
tic for the nuisance parameter and find the conditional linear optimal unbiased 
estimating function. Since the nuisance parameter is totally eliminated in the 
conditional model there is no intrinsic problem in setting up conditional tests of 
significance and confidence intervals. A compromise between conditional and 
unconditional optimum estimating functions is suggested. The techniques are 
illustrated on three examples including the well known common means prob- 
lem. The proposed hypothesis testing and confidence interval procedures work 
reasonably well for the examples considered. 
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i .  Introduction 

A long standing and impor tan t  problem in statistics is the est imat ion of an 
interesting parameter  when there are nuisance parameters  present, especially when 
the number  of nuisance parameters  is large. A classic reference is Neyman and 
Scott  (1948). 

The  general approach taken in this paper  is tha t  of est imating functions. Oth- 
ers approaching the problem with these tools are Godambe  (1976, 1980, 1984), 
Lindsay (1982) and Kumon  and Amari  (1984). 

Godambe  (1984) in t roduced an extended concept of Fisher information in 
the presence of nuisance parameters .  This definition was mot iva ted  as an upper  
bound on the information (1.2) of any regular unbiased est imating function g C G 
(1.1). In Section 2 we prove for a wide class of problems the local opt imal i ty  of an 

55 



56 H. J .  MANTEL AND V. P. GODAMBE 

estimating function for which the upper bound on the information is attained at 
a fixed value of the nuisance parameter. 

In Section 3 we introduce the stratified model which is the primary focus of this 
paper. In Section 4 conditioning is used to eliminate the nuisance parameter from 
the model. Two conditionally unbiased estimating functions are proposed, both 
motivated to some extent by the results of Section 2. The principal advantage of 
conditioning here is that, since the conditional model does not involve a nuisance 
parameter, exact significance tests for the parameter of interest are available. 

We now introduce some basic definitions and concepts. 
Let X be a sample space with a fixed measure p. We consider a model 

consisting of a family of probability densities p(x; O) on (X, p) where 0 = (01,02), 
01 E ftl, 02 c t22 and ft = ftl x f~2 is the parameter space. 01 is the parameter of 
interest and ftl is supposed to be a real interval. 

A real function g on X x ftl is a regular unbiased estimating function if 
Eo(g) = 0 and Eo(g 2) < e~, 0 E ft, and g satisfies appropriate regularity conditions 
(Godambe and Thompson (1974)). Let 

(1.1) G = {9 : g is a regular unbiased estimating function}. 

The information of a 9 E G, given by 

(1.2) I(g; O) = E2(Og/OO1)/Eo(g2), 0 E ~, 

is a measure of how well 9 may be used to estimate 01. Note that  it is a function 
of 0. 

DEFINITION 1.1. An estimating function g* E G is said to be locally optimal 

at 02o if 

(1.3) I(g*; 0) ~ /(g;  0), g E G, 01 E ~'~1, 02 = 020. 

DEFINITION 1.2. An estimating function g* E G is said to be optimal in G 
if the inequality (1.3) holds for all 020 E ft2. 

This optimality criterion is often interpreted as minimizing an asymptotic 
variance, but the criterion can also be applied to finite samples. We emphasize 
that  asymptotics do not play a central role in our development here. 

2. Fisher information and optimal estimation 

The concept of Fisher information I(p; 01) in the distribution p(x; O) about 01 
ignoring 02, referred to in Section 1 is as follows. Let 

(2.1) u = 0):  E0(ug) = 0, E0(  2) < 0 e a, g e a } .  

Then we define 

(2.2) I(p; 01) = inf Eo{(Ologp/O01) - u} 2. 
u E U  
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Godambe (1984) showed tha t  I(p; 01) is an upper bound on the information (1.2) 
of any g E G. 

For fixed 0 the space of functions of x with finite second moment  is an inner 
product  space with the inner product  of two functions being the expectat ion of 
their  product.  Let V be the orthogonal complement of U in tha t  space. 

DEFINITION 2.1. Let u* be the projection of (Ologp/O01) into U and v* = 
(Ologp/O0t) - u *  be the projection of (Ologp/c301) into V. We emphasize tha t  
u* and v* may depend on 02, as well as on 01 and x. 

Now for any u E U we have 

E o { ( O l o g p / O 0 1 )  - u}  2 = Eo{v*  + u* - u }  2 

= Eo(v*)  2 + Eo(u* - ~)2 >_ E o ( v , ) 2  

so tha t  the infimum in (2.2) is given by 

(2.3) Eo(v*) 2 = Eo{(Ologp/O01) - u*} 2 = I(p; 01). 

2.1 Properties of u* and v* 
Since u - 1 C U and U and V are orthogonal we have 

(2.4) E0(v*) = 0. 

Differentiating both  sides of (2.4) with respect to 01, and assuming tha t  dif- 
ferentiation and integration can be interchanged, we obtain 

E0 {Ov*/001 } = -Eo {v* (O log p/001 ) } = -Eo (v*)2 

because of the orthogonali ty of U and V. 
For any g C G, differentiating Eo(g) = 0 with respect to 01 we get 

Eo { 09/001 } : - Eo {9 ((9 log RIO01 )} = - E o  {gv* } 

whence (1.2) may be rewritten as 

I(g;0) = E ~ { S } / E 0 { g 2 } ,  0 e ~. 

Tha t  is, 1(9; O) is proportional to the square of the correlation of g with v*. 
Now if go E G at tains the upper bound I(p; 01) on I(g; O) then  from (2.3) it follows 
tha t  

2 * 2 Eo{go~ } / E 0 { ~ 0 }  = E0(v*)  2 

whence go = k(0)v* for some real function k(O). If there is no function k(O) 
such tha t  k(O)v* E G then no g C G at tains the upper bound I(p;O1) on the 
information; however, this does not preclude the existence of an optimal unbiased 
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estimating function. Note that if v*(020) E G then v*(02o) is locally optimal 
(Definition 1.1) at 02 = 02o. 

Suppose we were interested not in 01, but in a smooth one-to-one transforma- 
tion, ~- = ~-(0i). Since (Ologp/OT) = (Ologp/OO1)(OOi/OT) it is easily seen from 
(2.2) that 

I(p; z-) = I(p; Oi)(OOi/OT) 2 

and in Definition 2.1, u* and v* would both be multiplied by (OO1/OT). 
Suppose that the parameterization for 02 were changed to ~ = ~(0i, 02). Let 

p2(x; 01; ~) = p(cc; 01,02(01,~)). Letting g E G be arbitrary and differentiating 
f g ( p - p 2 ) d #  with respect to 01 we find that {(Ologp/OO1)- (Ologp2/O01)} E g .  
Now since 

(0 togp2/OOi) = (0 logp/OOi) - {(0 logp/O01) - (0 logp2/O01)} 

it is clear from (2.2) and Definition 2.1 that the information (2.2) and v* do not 
depend on the parameterization of the nuisance parameter, a result to be expected. 

2.2 A special case 
The following theorem is important since it may be used to find v* in a wide 

class of problems. 
Let S(01) be the minimal sufficient statistic for 02 when 01 is given and let 

(2.5) ~/)(X; 01, 02) • (Ologp/O01) -- EO{(Ologp/O01) I S ( 0 1 ) }  

where 0 =  (01,02). 

THEOREM 2.1. I f  Eo{(Ologp/O01) I S(01)} E U in (2.1) then in Definition 
2.1, v* = w from (2.5). 

PROOF. Since S(Oi) is sufficient for 02 we have that w(z; 01,020) E G and 
since G is orthogonal to U it follows that w(x; 01,02) E V.  Now if Eo{(Ologp/ 
001) ] S(01)} E U then w in (2.5) is the projection of (Ologp/O01) into V and 
the result follows immediately from Definition 2.1. 

When Theorem 2.1 applies, w(x; 01,020) is the locally optimum estimating 
function at 02 = 02o according to Definition 1.1. For the case when S(01) is com- 
plete and independent of 01, the optimality (Definition 1.2) of w was established 
by Godambe (1976). 

An important case where the conditions of the theorem are met is when the 
distributions of S(O1) for fixed 01, 02 E ~2, are complete. Then for all g E G, 
Eo{g i S(0i)} = 0 whence Eo{gEo{(Ologp/O01) I S(01)}} = 0. Lindsay (1982) 
established the local optimality (Definition 1.1) of w in (2.5) for this special case. 
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3. The stratified model 

We now restrict to a stratified model. The term stratified here means sim- 
ply that the nuisance parameter may vary from stratum to stratum. Let x = 
( x l , x 2 , . . . ,  x,~) where the xi are independent, xi having density pi(xi; 01,02i), 
02i E ~2i and ~2 = ft21 x ~t22 x -.. x ft2,,. 

For fixed 01 let Si(01) be the minimal sufficient statistic for 02i in the model 
pi(xi; 01,02i). Following (2.5) we define 

(3.1) we = (Ologp~/00z) - Eo{(Ologp~/Oex) l &(Ox)} 

and let 

(3.2) w = E wi. 
i 

Note that the sufficient statistic 

(3.3) S(01)  : ( S 1 ( 0 1 ) , . . . , S m ( 0 1 ) )  

is complete if and only if Si(01) is complete for each i = 1 , . . . ,  m (Lehmann and 
Sheff~ (1955)). In the case that S(01) is complete w given in (2.5) is equal to w 
given in (3.2) and both are equal to v* of Definition 2.1. We assume now that 
S(01) is complete. In many practical examples this would be the case. 

Now in (3.2) w(02o) is locally optimal (Definition 1.1) at 02 = 020. If w~ 
depends on 02i then no optimal estimating function (Definition 1.2) exists. One 
possibility is to try to estimate w at the true value of 02 by estimating 02. Let 
02 = 02(01,S(01)). As noted by Lindsay (1982), by the sufficiency of S(01), 
Eo{(Ologp(x;]l ,  02)/001) ] S(01)} does not depend on the true value of 02 and 
hence ~5 -- w(02) is unbiased. For example, 02 could be taken to be the maximum 
likelihood estimate 02(01). Our approach in this paper is different. Rather than 
replacing 02 in w by an estimate we define conditional optimality and look for 
a conditionally optimal estimating function in a "linear" class of functions. The 
details are given in Section 4. 

Other people have also considered this stratified model or variations of it in 
the literature. An important early reference is Neyman and Scott (1948). Lindsay 
(1982) considers restricting to a class of functions which he calls information un- 
biased and then finding an optimum estimating function in that restricted class. 
Kumon and Amari (1984) consider restricting to a class of functions which they 
call information uniform. In the examples of Section 5 we will compare the results 
of our approach, to be developed in Section 4, to those obtained in these papers. 

4. Conditional inference in the stratified model 

4.1 The conditional model 
We want to consider estimation for 01 based only on the conditional distribu- 

tion of x given the minimal sufficient statistic S(01) in (3.3). To emphasize that 
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the inferences are based only on the conditional distribution we imagine that if 81 
is the true value and S(81) ~ S(8~o) then we do not need to know the distribution 
of the data conditional on S(81o). Because we make no assumptions about the 
distribution of S(S1) we might expect the procedures we obtain to enjoy a type of 
robustness; that is, the validity of the inferences will depend only on the validity 
of the conditional part of the model. In this conditional model there is no nuisance 
parameter, but the sample space may depend on 81. 

Note that for the construction of the locally optimum estimating function w 
in (2.5) we need a more detailed model than just the conditional model formulated 
above. 

4.2 Conditional estimating functions 
We now restrict to estimating functions that are conditionally unbiased; that 

is, if 01 is the true value then E{g(x; 81) I S(81)} = 0. The conditional information 
of a function in this class is defined, analogous to (1.2)~ as 

I(g, 81 [ s(81)> : E2{(Og/O81) lS(81>}/E{g 2 I S(81)}. 

A function g* in a class of functions is 
I(g, 01 I S(8~)) for all 8~ and S(01). 

We now restrict to a certain linear 
be motivated and explained. Suppose 

called conditionally optimal if it maximizes 

class of functions. This restriction will soon 
the functions hi(xi, 01) are such that 

(4.1) E{hi I S{(81)} = O, i = 1 , 2 , . . . , m .  

We consider finding the optimum in the class ~ i  aihi where the ai are allowed 
to be functions of Si(81) and 01. By allowing the ai to depend on 01 we mean 
that if two values 810 and 011 lead to the same conditional sample space then 
it may be that ai(81o, Si(81o)) ¢ ai(811, Si(811)). However, if 810 and 011 lead 
to different conditional sample spaces then a~(81o, Si(811)) would not be defined. 
Now a slight modification of Theorem 1 of Godambe (1985) gives us that the 
conditional optimum in this class is given by 

(4.2) a~ = E{(Ohi/OO1) lSi(O1)}/E{h 2 I Si(81)}, i = 1 , . . . ,  m. 

It should be noted that by (Oai/O01) we mean Oai(01, Si(01o))/001 evaluated at 
010 = 01. Now for a given set of functions hi, we let 

(4.3) g~ = ~ a~hi. 
i 

There still remains the problem of choosing the functions hi in the first place. 
In the examples we will consider there is a natural choice. For these examples, w 
of (3.2) is of the form }-~i b~(01,02i)vi(x~, 01) with E{vi I Si(01)} = 0. It is then 
natural to take hi = vi, since vi is the globally optimal estimating function for 01 
based on only x~. 
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4.3 A compromise 
The original model was not conditional. Conditioning was motivated by a 

desire to eliminate the nuisance parameters. Let 

(4.4) g(c) = E cia~hi. 
i 

As a compromise between conditional and unconditional optimality we want to 
choose c = ( c l , . . . ,  c,~) in (4.4), if possible, to minimize 

(4.5) E{g(c) - w} 2 

where w is as in (3.2). In minimizing (4.5) we do not allow ci to depend on the 
data for the following two reasons: (I) Any dependence of ci on Si(01) would tend 
to negate the effect of a T on g and hence render conditional optimality ineffective. 
(II) Any dependence of ci on the other part of the data would tend to negate our 
initial choice of the functions hi. Hence the ci are allowed to be functions of 01 
only. Assuming (4.5) is minimized for c = c* we denote 

(4.6) g~ =g(c*).  

In some cases the above compromise may not be available. An alternative is 
to use, in place of w in (4.5), the unconditional optimum in the class Y2i bi(O)hi 
which is given by bi = b* = E{cghi/OO1}/E{h~}. In the examples we will consider 
this linear unconditional optimum is in fact equal to w. 

4.4 Hypothesis testing 
Significance tests for particular values of 01 may be obtained by examining 

the distribution of 9~ in (4.3) conditional on S(01). If m is large this distribution 
may be difficult to obtain. Since g~ is a sum of independent components a normal 
approximation may be reasonable. We have 

(4.7) = 

is approximately N(0, 1) conditional on S(01). Similarly, from (4.6) we have 

(4.8) g2s = g~ / [E{ (g2 )  2 / S(01)}] 1/2 

is approximately N(0, 1) conditional on S(01). 
The approximate pivotals in (4.7) and (4.8) may also be used to construct 

approximate significance intervals for 01 which would also be approximate con- 
fidence intervals. A question of interest is whether tests based on g~ or g~ are 
preferable in the sense of being more powerful against false alternatives or in the 
sense of having actual significance levels nearer to nominal significance levels. This 
question is discussed in more detail in Sections 5 and 6. 

The idea of basing confidence intervals for a parameter on the distribution of a 
function of the data and the parameter is not new. See, for example, Boos (1980). 
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5. Examples 

In this section the procedures discussed in Section 4 will be investigated via 
some examples. 

Example 1. This example is also known as the Neyman-Scott problem. Sup- 
pose 

xij,-~ N(Ol,02i) ( j=  l , . . . ,n i ,  i =  l , . . . ,m)  

are all mutually independent. Let 

J J 

Now in (3.3) Si(01) = S/2 d - n i ( ' x i -  01) 2, and  is complete. Now wi in (3.1) is given 
by w~ = ni(2~ - 01)/02i and we will take hi = 2i - 01. Now a~ in (4.2) is given by 
a~ = n~/Si(01) and in (4.3) we have 

(5.1) g~ = En2i(xi--01)/Si(01), 
i 

that is, g{ is equal to w with 02i replaced by its maximum likelihood estimate 
Si(01)/ni. 

In (4.6) we obtain 

i 

where the sum is over all strata for which ni _> 3. If nk is 1 or 2 then (4.5) is 
infinite if ck¢  O. The estimating function g~ was also obtained by Lindsay (1982), 
Kumon and Amari (1984) and Neyman and Scott (1948). 

The actual distributions of g{ and g~ conditional on S(01) are quite compli- 
cated for this example. In (4.7) we obtain 

(5.2) g~8 = [~n~(2 i -O1) /S i (O1) l / [~n~/S i (O1) l  1/2 

and in (4.8) 

(5.3) 

It should be noted that when rn = 1 g{s in (5.2) is equal to g~s in (5.3) and 
the significance test based on their exact conditional distribution is equivalent to 
the usual t-test. 

A small simulation study was conducted to estimate the probabilities of reject- 
ing various values of 01 at the .05 and .10 significance levels based on a standard 
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normal approximation to the distributions of (5.2) and (5.3) for various values of 
m, ni and 82. The agreement between the actual and the nominal significance 
levels seems quite good, especially at the nominal .10 level, except in some exam- 
ples where the total number of observations, Y~-i ni, is small, say less than 30. It 
does not seem possible to draw any general conclusions regarding the superiority 
of (5.2) or (5.3), but note that as the ni increase the difference between (5.2) and 
(5.3) decreases. 

Example 2. Suppose xi are gamma variates with shape parameter c~i and 
rate parameter 0102i while yi are gamma with shape/3i and rate 02~ (i = 1 , . . . ,  m). 
Here c~i and/3/ are assumed to be known. The situation here is what we would 
have after a reduction by sufficiency if we had samples of ai and ~i observations 
from exponential distributions with rates 0102i and 02i respectively. Now Si(01) = 
Yi + 01x~ is complete sufficient for 02i given 81 and wi in (3.1) is given by 

wi = (aiyi - 01/3~xi)02i/01 (ai +/3i). 

Taking hi = c~iyi - 01/3~xi we find in (4.3) 

1 E (  Ogi -{-/~i q- 1)(o!iYi -- 01/~iXi)/{(O~i "~-/~i)01Si(01)} 
i 

and in (4.6) 

< = - 019 xi)/{Ol&(01)}. 
i 

Note that g~ is equal to w with 02i replaced by its maximum likelihood estimate 
+ 3 0 / & ( o l ) .  

Lindsay (1982) also obtains the estimating function g~, as do Kumon and 
Amari (1984) for the special case a~ =/3i. 

Note that yi/&(el) = (hi +/3i&(O1))/{(oei +/3i)&(el)} has a standard beta 
distribution with parameters (/3~, a~) conditional on Si(01). For approximate sig- 
nificance tests we obtain in (4.7) 

(5.4) 9~s = [~i (ozi4- /3i-k l)hi/{(ai d-/3i)01Si(01)}l / 

+ + + 

and in (4.8) 

(5.5) g~s = [ ~  hi/{01Si(01)}l / [~i Cti/3i/{O2(°!i + /3i d-1)}l 1/2. 

As in Example 1, a small simulation study was conducted. In this example 
the actual and nominal significance levels agreed very well, even when the total 
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number of observations, }-~.i(c~i + 3i), was as small as 16. In none of the cases 
considered were the differences in the performances of (5.4) and (5.5) large enough 
to be of practical importance and they did not definitively favour one estimating 
function over the other. 

Example  3. Suppose 

x~j ~ N(02i, 1) (j = 1 , . . . , rod  
Yij~N(O10~i,1) ( j = l , . . . , n i ,  i = l , . . . , m )  

are all mutually independent. Let xi  -- ~ j  x i j ,  Yi = }-~jYij. Then { x i , y i , i  = 
1 , . . . , m }  is minimal sufficient for (01,021, . . . ,02 ,~)  and Si(O1) = xi  + 01yi is 
complete sufficient for 02i given 01. Now wi in (3.1) is given by 

w~ -= (miy i  - 01nix i )O2i / (mi  + niO~) 

and we will take hi = miy i  - 01nixi.  Now g{ in (4.7) is just w with 02i replaced 
by its maximum likelihood estimate, S i ( 0 1 ) / ( m i  + ni021). 

g; = Z(,  yi - olnixi)Si(ol)/(.   + 
i 

For this example 9~ in (4.6) does not exist since c minimizing (4.5) depends on 02. 
Note that, conditionally on hi, 9{ has expectation equal to w. 

Kumon and Amari (1984) obtain the estimating function g{ for the special 
case mi  = hi.  

Conditionally on Si(01), hi is normal with mean 0 and variance m i n i ( m i  + 
n~0~). From this the distribution of g~ conditional on S(01) is easily calculated 
and exact conditional significance tests and confidence intervals are relatively easy 
to obtain. 

6. Conditional vs unconditional optimality 

Unlike in the examples of Section 5, when the complete sufficient statistic 
S(01) is independent of 01, S(01) = S, the conditional score provides globally 
optimum estimating function both conditionally and unconditionally (Godambe 
(1976)). Otherwise there is a basic conflict. In Section 5, for Example 1, the 
estimating function w = ~ wi which depends on 02 is unconditionally optimum 
locally at 02. "w" cannot be conditionally optimum for the conditional distribution 
is independent of 02. The estimating function g~ is also conditionally inferior to 
g~. For large samples the conditional variance of the estimate 011 where [g~(01) = 
0] :::> [011 : 01], would generally be smaller than that of 012 where [g~(Ol) = 0] 
[012 -- 01]. But the situation is just the opposite unconditionally as implied by 
Neyman and Scott (1948). These results imply that the asymptotic unconditional 
variance of the estimate 012 is smaller than that of 011. That conditionally the 
situation is otherwise, follows from the conditional superiority of the estimating 
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function g~ to g~. This apparent paradox can be attributed to the fact that  the 
conditioning statistic depends on 01. 

The derivation of the estimating function g~ depends in an important way on 
the distribution of the sufficient statistic S(01). This distribution, on the other 
hand plays no role in the derivation of the estimating function g~. For instance, if 
in Example 1 the X2 distribution of S(01) is replaced by some other distribution 
(preserving completeness) the estimating function g~ could be affected but not g~. 

Godambe (1991) provided two large sample approximations for optimal esti- 
mating functions in presence of nuisance parameters. These approximations, for a 
semi-parametric version of Example 1, coincide with the estimating functions g~ 
and g~. It is evident (see equations (14), (38), (39) of Godambe (1991)) that  the 
derivation of g~ depends more on the entire underlying distribution than that of 
g~. This is also clear from Lindsay (1982) and Kumon and Amari (1984). 

The conditionality considerations also play a very important part in the choice 
of the functions hi in (4.1). As said before, the functions hi are modifications of 
the unconditionally locally optimum estimating functions wi in (3.2); the latter 
being dependent on the nuisance parameter 02i. The modifications are based 
on the following considerations. (1) The functions hi should be independent of 
the nuisance parameter 02 and should be both conditionally and unconditionally 
unbiased. (2) The conditionally optimum combination of the functions hi, namely 
g~ in (4.3) should be approximately unconditionally optimum for large samples. 

7. Discussion 

We have seen that for significance tests based on (4.7) and (4.8) it is not 
possible to generally recommend either of g~s or g~ over the other. However, g{s 
does have the advantage of being more generally available. 

For the Neyman-Scott problem, g~s ignores strata which have fewer than 3 
observations where g~ can use the information from strata for which the subsample 
size is 2. There is a serious problem with g~ in (5.1) if any of the ni's are equal 
to 1. If nk = 1 then the contribution to g~ from stratum k is (xkl - 01) -1 which 
approaches infinity as 01 approaches xkl. Therefore g~ should not be used in that 
case. Strata for which ni = 1 could be ignored, but that is not suggested by our 
theory and such strata do contain some information about 01. As was mentioned 
in Section 5, for the Neyman-Scott problem our procedure reduces to the t-test 
when the number of strata, m, is 1. 

We noted in Examples 1 and 3 that  g~, and in Example 2 g~, was equal to 
w with 02 replaced by its maximum likelihood estimate. We emphasize that our 
approach is not to merely replace 02 in w by an estimate. 

We have made the assumption that the minimal sufficient statistic is complete. 
This was only to ensure that w(02o) in (3.2) was the locally optimum unbiased 
estimating function (Definition 1.1) and that hi, if proportional to the wi, would 
be the globally optimal estimating function based on xi only. However, none of the 
development in Section 4 depends on this; all that is really needed are functions 
hi satisfying (4.1). 

In the examples we have considered the conditional approach has worked very 
well. The approach may be unsatisfactory when the minimal sufficient statistic for 



66 H. J. M A N T E L  AND V. P. G O D A M B E  

the nuisance parameter is too fine, that is, when the conditioning is very extreme 
and the conditional distribution is not of much use for inference. In this case the 
conditioning would have to be relaxed. Cox and Reid (1987) and Liang (1987) 
have discussed conditioning on the maximum likelihood estimate of a nuisance 
parameter which is orthogonal to the parameter of interest. For our purposes we 
would want to condition on a function T(x, 01) which is such that the conditional 
distribution of some interesting function f(x, 01) is not too heavily dependent 
on 02. Somewhat indirectly we suggest conditioning on a function T(x, 01), that 
captures the information in the data about 02. A natural starting point is to 
condition on 02(01). If desirable, we could further condition on other functions 
 r(x, Ol). 

In relation to the above discussion it should be emphasized that conditioning 
on the minimal sufficient statistic for the nuisance parameter 02, as in Godambe 
(1980), plays a dual role: (1) It provides a definition of information in the dis- 
tribution about the interesting parameter 01 in presence of 02. (2) It defines the 
optimal estimating function for 01. 

The conditioning suggested by Cox and Reid (1987), discussed above, depends 
on orthogonal parameter transformation while, as shown in Subsection 2.1, the 
definitions (1) and (2), just mentioned, are independent of any transformations. 
One possible conclusion seems to be that Cox and Reid, by implication, suggest 
replacing or approximating the present model, where the distribution conditional 
on the minimal sumcient statistic is degenerate, by a more manageable model. 
Such approximating replacement models clearly underlay the modern theory of 
"quasi-likelihood estimation" (Godambe and Heyde (1987)). It is important to 
note here that the locally optimum estimating function for 01, namely w in (2.5), 
is already orthogonal to O logp/O02, that is Eo[w(Ologp/O02)] = 0; assuming of 
course the parameter 02 to be real. Further we have Eo(Ow/O02) = 0. Hence we 
can replace in w, 02 by its maximum likelihood estimate without much affecting 
the optimality for large samples (Godambe (1991)). 

We can identify two broad approaches to the elimination of nuisance param- 
eters. First, there is the conditional approach where inference for 01 is based on 
a conditional distribution which does not depend too heavily on the nuisance pa- 
rameter. Second, there is the method of integration as in Bayesian or empirical 
Bayesian methods. Conditional methods have the advantage of depending only on 
the conditional part of the model; integration methods may use all of the data. 
The question of interest is can we identify the situations where one or the other 
approach is preferable? Of course, ideally we would like the two approaches to 
agree. 
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