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A b s t r a c t .  This paper discusses the topic of model selection for finite- 
dimensional normal regression models. We compare model selection criteria 
according to prediction errors based upon prediction with refitting, and pre- 
diction without refitting. We provide a new lower bound for prediction with- 
out refitting, while a lower bound for prediction with refitting was given by 
Rissanen. Moreover, we specify a set of sufficient conditions for a model se- 
lection criterion to achieve these bounds. Then the achievability of the two 
bounds by the following selection rules are addressed: Rissanen's accumulated 
prediction error criterion (APE), his stochastic complexity criterion, AIC, BIC 
and the FPE criteria. In particular, we provide upper bounds on overfitting 
and underfitting probabilities needed for the achievability. Finally, we offer a 
brief discussion on the issue of finite-dimensional vs. infinite-dimensional model 
assumptions. 

Key words and phrases: Model selection, prediction lower bound, accumulated 
prediction error (APE), AIC, BIC, FPE, stochastic complexity, overfit and 
underfit probability. 

I .  Introduction 

This paper  discusses the topic of model selection for predict ion in regression 
analysis. We compare  model  selection criteria according to the quali ty of the pre- 
dictions they  give. Two types of predict ion errors, predict ion with and wi thout  
refitting, will be considered. A lower bound on the former type  of error was given 
by Rissanen (1986a), and in this paper  (Section 2) we provide a lower bound for 
the latter.  Moreover, also in Section 2 we specify a set of sufficient conditions for 
a model  selection criterion to achieve these bounds.  Roughly speaking, to achieve 
these bounds,  a model  selection criterion has to be consistent and satisfy some 
underf i t t ing and overfitt ing probabi l i ty  constraints.  Section 3 concerns the follow- 
ing model selection criteria: Rissanan's  predictive "minimum descript ion length" 
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(accumulated prediction error, or predictive least squares), stochastic complex- 
ity, AIC, BIC and FPE. We consider bounds on their overfitting and underfitting 
probabilities, and therefore their achievability of the prediction lower bounds. In 
particular, the selection rule based on the accumulated prediction error and BIC 
achieve the two prediction lower bounds, but AIC does not unless the largest model 
considered is the true model. 

Detailed proofs are relegated to the last section 5. All of our results are 
obtained under the assumption that  a finite dimensional normal model generates 
the data under discussion. This contrasts greatly with most previous discussions, 
notably Shibata (1983a, 1983b) and Breiman and Preedman (1983), where the 
"true" model is infinite-dimensional. More discussion on finite-dimensional models 
vs. infinite-dimensional models can be found in Section 4. 

2. Model selection and prediction in regression 

In order to compare model selection procedures a number of choices need to 
be made; these can be critical. Two objectives of regression analysis are data 
description and prediction. The focus will be on the second, prediction. 

Write y = (Yl, . . . ,  Y~)~ for the n-dimensional column vector of observations, 
and X = (xij) for the n × K matrix of covariates or regressors. Inner products 
and squared norms are denoted by (y, z} = ~ ytzt and ]y]2 = (y, y}, respectively. 
For 1 < t < n, 1 < k < K, denote by y(t) and Xk(t) that  t x 1 and t x k subvector 
and submatrix of y and X respectively, consisting of the first t rows and, in the 
case of X, of the first k columns. The subscript k or the parenthetical t will be 
omitted when they are clear from the context, or when k = K or t = n. The t-th 
row of X is denoted by x~ and the j - th  column by ~j, whilst x~(k) denotes the 
t-th row of Xk, with an analogous convention regarding the dropping of t or k. 
Parameter vectors are denoted by ~ = (~1,... ,/3k) ~, written/3(k) when necessary. 

The class of models to be discussed will be denoted by {Mk : 1 _< k _< K}, 
where Mk is the model prescribing that y is N(Xk~, o-2I) for some /3 E R k and 
~r 2 > 0. The number K of models is supposed known, and for the present discussion 
is held fixed as the sample size n ~ ec. 

One framework for prediction involving regression is the following: (yl,Xl), 
(Y2, x2),. .  •, (Yt, xt) are given. The object is to predict Yt+l from xt+l. An obvious 
approach is to select a model on the basis of the data available at time t, and predict 
Yt+l from this model with t + 1 replacing t. The response Yt at time t is known 
before predicting yt+l, so this framework is called prediction with repeated refitting 
because it allows model selection at each time. 

A quite different framework assumes the existence of an initial data set 
{(Yl, Xl) ,- .- ,  (Yn, xn)}, often called a training sample, and the regressors : ~ 1 , -  - -  , 

5:,~ associated with a number of other units, the requirement being to predict the 
corresponding responses Yl,-.-,Y,~- A familiar variant on this would be when 
the "prediction" is in fact the allocation of units into predetermined groups. The 
standard solution to this problem is to select a model on the basis of the initial 
data set, and then predict or allocate using the model selected. This framework 
will be called prediction without refitting. 
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In this section, the above two frameworks for prediction will be discussed in 
detail: lower bounds are given in each case, and sufficient conditions for a model 
selection procedure to achieve them are obtained. However, we leave to Section 3 
the achievability of these lower bounds by common selection procedures. 

2.1 Prediction with repeated refitting 
A natural measure of the quality of a sequence of predictions in the repeated 

refitting framework is the sum 

?Z 

(2.1) APEs = E ( Y t  -- ~)t[t--1) 2 
t= l  

where Ytlt-1 denotes a predictor of Yt made on the basis of data up to and including 
time t - 1 ,  and any covariates available at time t. Model selection is thus permitted 
at every stage. The predictors which we consider below are ~)tlt-1 = x~/~t-l(kt-1), 

where /~t-l(kt-1) is the least squares estimator based on model M£~_I at time 

t, and we will compare selection procedures leading to different k~ according to 
the average size of APE which is achieved for large n. For the purposes of our 
asymptotic analysis, it is not necessary to specify how we define kt for t _< K. In 
practice a number of reasonable approaches exist. 

Our comparison is based upon a general inequality derived by Rissanen 
((1986a), p. 1087). As in Sections 3 and 4 we denote by k* the dimension associ- 
ated with the true model, and ~]tlt-1 is any predictor of Yt which is a measurable 
function of Yl, . . .  ,Yt-1, and Xl , . . . ,  xt. Although all our discussions so far have 
supposed that  the error variance a2 is known and equal to unity, we will state 
the inequality for an arbitrary unknown 0_2. It asserts that  for all k* there is a 
Lebesgue null subset A(k*) of R k* such that  for/3" ~ A(k*): 

(2.2) 
E * f ~ - ' , T ~ [  

(2.2) l i m i n f  /3 ~2..~1 lYt  - ~)tlt-1) 2 - ?~cr2} > 0_2. 
k* log n n---+ ~ 

We say- that the lower bound (2.2) is achieved by a model selection criterion if it 
is achieved by the corresponding predictor Ytlt-1. 

We need some assumptions before we can state our results on the achievability 
of the prediction lower bound (2.2). 

Assume (el. Lai et al. (1979)) that  there exists a positive definite K × K matrix 
C = CK such that  

M ÷ N  

(2.3) lim N -1 E ' = C  N ~ o c  X tX t  
t = M + l  

uniformly in M _> 0. If M = 0, the left-hand side is just limN N - 1 X ( N ) ' X ( N ) .  A 
further specialization gives limN N-1Xk(N) 'Xk (N)  = Ck, where Ck denotes the 
principal k x k submatrix of C. Assume also that  

(2.4) Mk. C_ MK is the smallest true model, and/3(k*) the true parameter. 
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With  this background we can now state the following result, proved in Section 
5 below. 

THEOREM 2.1. Suppose that (2.3) and (2.4) hold and that kn, the dimension 
defined by a model selection procedure, satisfies: 

(i) pr(k~ < k*) = O(n-2( logn)  -c) as n ~ oo, for some c > 1, and 
(ii) pr(k~ > k*) _< O(( logn)  -~ )  as n ~ 0% for some c~ > 2. 

Then the predictor f]tlt-1 = x ~ t - l  ( kt-1) achieves the lower bound (2.2). 

2.2 Prediction without refitting 
Now let us suppose that  we have observed (Yl, x O , . . . ,  (yn,Zn) and are re- 

quired to predict the responses ~)1,..., ~),~ corresponding to units with covariate 
vectors 2 1 , . . . ,  2~ .  In most  discussions of this aspect  of model selection, see e.g. 
Nishi (1984) and Shibata  (1986a), m = n and xi = 2i, 1 < i < n. Our framework 
is more realistic and although the general conclusions do not seem to be different 
from Shibata's,  this was not obvious a priori. 

Our predictors will all be of the form ~/~(/)) ,  u = 1 , . . . ,  m where/c corresponds 

to a model selected on the basis of {(y t ,x t )  : t -- 1 , . . .  ,n}. Given that  k -- k, a 
natural  measure of the quality of our set of m predictions is given by the prediction 
e?"For 

PE(k)  = E( I  ~ - )(k~(k)l 2 l Y} = rn~r2 + ]f2k.fl(k*) - 2k~(k ) l  2, 

which averages over the new observations and conditions on the initial data.  Fol- 
lowing this line of thought,  an equally natural  measure of the effectiveness of the 
model selection procedure leading to k is E{PE(~:) - mere}, where this t ime the 
expectat ion is over the possible initial da ta  sets. Wha t  we now do is give some 
results on the behaviour of this quant i ty  under a range of assumptions about  )( .  

Our results are asymptot ic  in both  n, the size of the initial sample, and m, 
the number  of predictions being made. For this reason we need to supplement  
assumption (2.3) with an analogous, but  weaker hypothesis  concerning Jf  namely: 
that  there exists a K x K positive definite 0 = OK such that  

M 

(2.5) lim M -1E-x~x~- '  = C. 
M--+oc 

u = l  

In the theorems which follow, /) = {~:~} is the index resulting from a procedure 
selecting from the models {Mk : 1 < k < K}.  

The components  of condition (B) below are defined by the part i t ioning 

Ck 
Ck+l = Dk,k+l 

where Ck, k _< K is defined following (2.3). 

Dk'k÷l ] 
Ek,k+l ' 

THEOREM 2.2. Assume conditions (2.3), (2.4) and (2.5). Then under any of 
the following conditions: 
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(A) lim~-~oo pr(kn < k*) > O; 
(B) C[1Dk,k+l = O k l b k , k + l ,  k* < /g < K; 

(C) ~ = ~FPE~ for a sequence a = (a~) with n-lan ---+ 0 where FPE~ is the 
Final Prediction Error criterion defined in Section 3, we may conclude 

(2.6) lira nrn- l  E { P E ( k n )  - m a  2} >>_ tr{C~-.15k*}a 2. 
Train---+ ~ 

The proof will be given in Section 5. It can be seen from the proof of this 
theorem that there will be other "symmetric" selection rules other than FPE~ for 
which the conclusion holds. 

The next question of interest is the following: what kinds of selection rules 
attain the lower bound (2.6)? 

THEOREM 2.3. The lower bound (2.6) is attained for any consistent selection 

rule whose underfitting probability pr(/% < k*) is o(n -2) as n ~ co. 

3. APE, stochastic complexity, and FPE 

In this section, we consider the achievability of the two lower bounds in Section 
2 of some commonly-used model selection criteria. We derive upper bounds on the 
underfitting and overfitting probabilities of these criteria and then use Theorem 
2.1 or Theorem 2.3. 

First, we consider the criterion based upon accumulated (one-step) prediction 
errors (APE) (or predictive least squares). This criterion is the predictive MDL 
criterion introduced in Rissanen (1984, 1986b). Many authors have discussed this 
criterion as detailed in the remark after Theorem 3.1. 

We now introduce the definition of APE. Only ordinary least squares estimates 
will be used. For l < k < K , k + l < s < n ,  write 

(k) = ( s ) ' y ( s )  

and /~(k) = /~(k).  All of the matrices Xk( t )  will be assumed to have rank k 
when t > k. The recursive residuals, also called one-step prediction errors, based 
on M~ are et(k) = Yt - x t ( k ) ' ~ t - l ( k ) .  The ordinary residuals are rt,n(k) = Yt - 

z t ( k ) ' ~ ( k ) .  The parenthetical k will be dropped if its value is clear from the 
context. 

For any fixed k < K, consider the accumulated squared prediction error 
APEn(k) = }-~tn=k+l et(h) 2. Obviously, APEn(k) is the same as the prediction 
error with refitting (2.2) when the model Mk is fixed through time t. 

Expression APEn(k) will lead us to a model selection criterion: choose that k 
which minimizes APE~(k) over all k < K. 

For the remainder of this section cr 2 is supposed known and so, for simplicity, 
is taken to be 1. This is possible because, unlike many model selection criteria, the 
one based on APE does not require knowledge or an estimate of ~r 2. The numbers 
{bk } which appear in the following theorem are normalized limiting (squared) bias 
terms defined by 

bk : tr{(Ek,k. - D'k , k .C[ lDk ,k . ) ( ( k )¢ (k )  '} 
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where for k < k* the principal submatrices Ck and Ck* of C are written 

Ck Dk,k* ] 
Ck* = Dk,k* Ek,k* ' 

and/3(k*) = (3(k)' I ((k) ' ) '  is the corresponding partitioning of ~(k*). It is shown 
in Section 5 (Lemma 5.3) that bl _> b2 _> . . .  _> bk*-i > 0. 

THEOREM 3.1. Under assumptions (2.3) and (2.4), as n --, oc, let kn de- 
note the dimension selected by minimizing APEn(k). Then we have the following 
bounds: 

(i) pr(kn < k*) < O(exp(-bn))  as n ~ oo, for b = min(bk._l/3,  b~._1/18). 

(ii) pr(kn > k*)_<O(n -1/6) a s n ~ o c .  

Remark. The upper bound in (i) shows the interplay between the bias term bk 
and the sample size n; the product of them determines the underfitting probability, 
not the sample size n alone. 

COROLLARY 3.1. The lower bounds (2.2) and (2.6) are attained for the APE 
selection rule. 

PROOF. Straightforward from Theorems 2.1, 2.2 and 3.1. 

Remark. (a) Convergence in probability of the APE selection rule was estab- 
lished by Rissanen (1986b) under essentially the same conditions as we have used 
here. Other writers who have suggested the use of APE or a related criterion to 
select regression models include Hjorth (1982) and Dawid (1984, 1992). The latter 
describes a generalization of the use of APE as the prequential approach to sta- 
tistical analysis. (b) There is no doubt that our assumptions could be weakened, 
but the derivations of the same results are expected to be much more involved. In 
the context of time series, Wax (1988) derived the weak consistency of an anal- 
ogous estimator of the order of an autoregressive process without the Gaussian 
assumption, and Hemerly and Davis (1989) strengthened it to the a.s. consistency. 
Moreover, Wei (1992) obtained the a.s. consistency and asymptotic expansions of 
APE under stochastic regression models. 

Now we turn to selection rules based on the residual sum of squares, which 
is RSS~(k) = E ~  rt,n(k) 2 where the ordinary residuals rt,~,(k) are defined above. 
When cr 2 = 1 in the regression models Mk the final prediction error (FPE) criterion 
is FPE~.  (k) = RSS~(k) + auk where (an) is a sequence of positive numbers. For 
AIC, an -- 2. For BIC (Schwartz (1978)), ctn = logn. When cr 2 is not known, 
we may replace it by its usual estimate from the largest model MK. Our results 
should still hold in that case. 

Rissanen (1986a) introduced stochastic complexity (SC) of a set of data rela- 
tire to a model as variant of his MDL and PMDL expressions, and in many cases 
it is asymptotically equivalent to the latter, whilst being easier to calculate. We 
refer to his paper for definitions of these quantities. For our regression models 
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with error variance equal to unity, SC takes a particularly simple form if the prior 
distribution for the parameter fl(k) is taken to be N(0, ~-Ik) where ~- > 0 is a scale 
parameter, k = 1 , . . . ,  K. A simple calculation yields the expression 

(3.1) sen(k)  = 1 1 1 " I  , -1 ~nlog27r + ff logdet(In + 7-XkX~) + fly ( ~ + z-XkXk)  y. 

From Lemma 5.5 in Section 5 we see that as n ~ ec, 

1 
sen(k)  - ~n log2~ = k logn  + aSSn(k) + 0(1) a .s .  

and so any discussion of model selection based upon stochastic complexity is sub- 
sumed under that of BIC. 

The FPE criterion has been discussed by Akaike (1970, 1974), Bhansali and 
Downham (1977), Atkinson (1980), and Shibata (1976, 1986a) amongst others. 
Geweke and Meese (1981) discuss the problem quite generally, but with random 
regressors, whilst Kohn (1983) considers selection in general parametric models. 
Shibata (1984) may be consulted for further details on some cases of FPE. The con- 
sistency of FPE's, with c~n's satisfying l i m n - l a ~  = 0 and lim(2 log logn)-lc~n > 1, 
was established in a time-series context by Hannah and Quinn (1979). Moreover, 
the equivalence of BIC and APE has been shown by Hannah et el. (1989) for the 
finite-dimensional autoregressive models and by Wei (1992) for finite-dimensional 
stochastic regression models. 

THEOREM 3.2. Let kn denote the dimension selected by FPE~ n for some 
sequence c~n such that n - l  c~n ~ 0 as n ~ oc. Then 

(i) kn overfits with probability approaching unity as n ~ ~ .  More precisely, 

for any constant 0 < b < bk.-1/4, pr(kn < k*) _< O ( e x p ( - b n ) )  as n ~ oc. 

(ii) I f  k* < K ,  and liminf(21oglogn)-lc~n > 2, we have, for some 7 > 2, 

pr(/~n > k*) _< O((logn) -'y) as n -~ cx~. 

We omit the proof of this theorem in this paper because Woodroofe (1982) 
and Haughton (1989) contain smilar bounds for BIC under more general models. 
Moreover, a lower bound, instead of an upper one, on the overfit probability (ii) 
is given in the Appendix II of Merhav et al. (1989) for BIC. Their result suggests 
that the overfit probability of BIC tends to zero slower than exponentially as n 
tends to infinity. 

COROLLARY 3.2. (i) The selection rules defined by BIC and SC all lead to 
predictors which achieve the lower bounds (2.2) and (2.6); 

(ii) I f  lim(21oglogn)-lc~n < 1, the selection rules defined by FPE~ n do not 
achieve the lower bounds (2.2) and (2.6) unless k* = K; in particular, AIC does 
not achieve the lower bounds unless k* = K .  
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4. Discussion 

The results presented seem to suggest that if prediction is part of the objec- 
tive of a regression analysis, then model selection carried out using APE, BIC, 
SC or an equivalent procedure has some desirable properties. Of course there is 
a qualification: in deriving these theorems we have assumed that the model gen- 
crating our data is (i) fixed throughout the asymptotics; (ii) finite-dimensional; 
and (iii) belongs to the class of models being examined. Before commenting on 
these assumptions, let us see that our theorems are at least in general agreement 
with a number of analyses and simulations in the literature. The first paper to 
point out clearly that consistent model selection gives better predictions seems to 
be Shibata (1984), although he does not emphasize this conclusion. Atkinson's 
(1980) results also suggest the conclusion we have reached, but again this is not 
emphasized. The simulation results of Clayton et al. (1986) led them to conclude 
"that if the 'true' or 'approximately true' model is included among the alternatives 
considered, all reasonable model selection procedures will possess rather similar 
predictive capabilities". We feel that this conclusion is more a reflection of the 
limited scope of the simulations conducted rather than the true state of affairs. 
Indeed a close examination of the sample sizes and models these authors studied 
suggests that there was little opportunity for the procedures (not the models) to 
be distinguished, as far as the squared prediction error of the resulting choices 
is concerned. More recently, Rissanen (1989) reported clear differences between 
cross validation and SC, and to the extent that cross-validation and AIC perform 
similarly, Stone (1977), this is explained by Corollary 3.2. 

Shibata (1981, 1983a, 1983b, 1984, 1986a, 1986b) presents a number of theo- 
reins demonstrating the optimality of AIC or other forms of F P E ~  with bounded 
sequences (an), as well as arguments rebutting the criticisms that such procedures 
are unsatisfactory by virtue of their inconsistency under assumptions (i), (ii) and 
(iii). Shibata (1981), and Breiman and Freedman (1983) using random regressors, 
suppose the true model to be infinite-dimensional rather than finite-dimensional. 
Shibata (1981) also offers an optimality result for AIC valid under a "moving 
truth" assumption. 

Clearly, the prediction optimality of BIC and its analogues like APE depend 
on the assumption that the true model is finite-dimensional, i.e., the bias term 
bk ---- 0 for k > k*. When the true model is assumed to be infinite-dimensional, 
i.e., bk > 0 for all k, Breiman and Freedman (1983) showed that AIC's equivalent 
is optimal in terms of one-step further prediction. We now show by the following 
three simple examples that the decay rate of the bias term plays a determining 
role in the battle of AIC vs. BIC. 

For simplicity, let us take the framework of Breiman and Freedman (1983) 
where an infinite-dimensional model with Gaussan N(0, 1) independent regressors 
is assumed with the error variance o -2 = 1. Then the one-step ahead prediction 
error for the (n + 1)-st observation based on model Mk is roughly PE(k) = bk ÷ 
kn -1. Moreover, AIC approximately minimizes bk + kn -1, while BIC minimizes 
bk + kn -1 log n. By the result of Breiman and Freedman (1983), asymptotically, 
PE(~:mc)/PE(kAIc) _> 1, where ~:a~c is the model selected by AIC, and similarly 
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for ~BIC. 

Example 1. A s s u m e  bk = k - %  S t r a igh t fo rward  ca lcu la t ion  shows tha t ,  as 

Example 2. A s s u m e  bk = e -k .  T h e n  as n -~ oc, P E ( k B I c ) / P E ( k A I C )  --* 2. 

Example 3. A s s u m e  bk -- e -ek.  T h e n  as n --+ oo, P E ( k m c ) / P E ( / ~ A I C )  -~ 1. 

To summarize, as the decay rate of the bias term increases, the prediction 
performance of BIC catches up with that of AIC. And, as we have seen, BIC 
out-performs AIC when bk = 0 for k > k*, i.e. when the model is finite. 

Finally, all three of APE, BIC and SC derive from general approaches to the 
model selection problem and have extensions to situations where one or more of (i), 
(ii) and (iii) are dropped, see Sawa (1978) for some remarks about this situation. 

When something is known about these extensions, it will be of interest to compare 
them with AIC or, more generally FPEc~,~. 

5. Proofs 

Most of the arguments given below are straightforward. We have tried to be 
explicit wherever possible, and have included some proofs which may be found 
elsewhere in order to keep this paper self-contained. 

The proofs are presented in the following order: Theorem 3.1, Corollaries 3.1 
and 3.2, Theorem 2.2, Theorem 2.3 and Theorem 2.1. We continue to use the 
notation introduced in Section 2 above. It is straightforward to show 

LEMMA 5.1. 

~'y(~)) = 0. 
FOr ]~ < 8 < t ~ 71, a n d  c C ~(Xk(~;)) , w e  h a v e  cov(es+l(~), 

It follows from the lemma that 

COROLLARY 5.1. (a) For all k < ~ < t <_ n, we have c o v ( e s ( k ) , ~ ( k ) )  = 0. 
(b) For  all k < t _< ~, and ~ e R ( X k ) ,  cov(~,(k),  ~'y) = 0. 

Let  us wri te  At(k) = E { e t ( k ) }  and  # t (k )  = Var{et(k)}  - 1, et = Yt - E { y t }  
and  g n  (k) -- Xn (k) (Xn (k) 'Xn ( k ) ) - l x  n (k)', and  define the  following quant i t ies :  

n 

vn(k)= Z ,t(k), 8n(k)= Z A'(k) 2, 
t=k+l t=k+l 

L , , ( k )  + 1 t=k+l 

S~(k) = 2 ~ (e~(k) - A,(k))A~(k). 
t=k+l 

Nn(k)  = IHn(k)~l 2, 
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It is clear from the proof of the result we state shortly tha t  V is a variance term, 
B is a bias term, and N is a noise term, whilst N t  is a second noise term and B t 
a part-noise part-bias term. 

LEMMA 5.2. With the above notation 

(5.1) 
n 

e,(k) ~ - ~ 4 = Vn(k) + Bn(k) - Xn(k) + B~(k) + X~(k). 
t = k + l  t = l  

PROOF. It follows from Corollary 5.1 tha t  {ek+~(k) , . . . ,  en(k)} are pairwise 
uncorrelated, and uncorrelated with d y  for all c E R(Xk) .  Thus we can make an 
orthogonal t ransformation and obtain 

n 

(5.2) lel2 = IH(k)cI2 + E let(k) - E{et (k)}]  2 
t=k+l Var{et(k)} 

The lemma then follows from this equation and the comparing two sides of (5.1). [] 

In the lemmas which follow, (2.1) and (2.2) will be assumed without  comment.  
Moreover, to state our next result we need a little further notation. For k < k*, 
write the principal k x k submatr ix Ck of C given by (2.4) in the form 

[ Ck Dk,k* ] 
Ck* = D~k,k. Ek,k* 

and we write/3(k*) = (/3(k)' l ~(k)')' and X k . ( n )  = [Xk(n) l Zk(n)]. 

LEMMA 5.3. n - l B n ( k )  ~ bk as n ~ ec, where 

bk = tr{(Ek,k* -- D;,k.  C[1Dk,k *)4(k)C(k)'} 

satisfies bl >_ b2 >_ "'" > bk*-I > O. 

PROOF. We begin by observing tha t  for k < k*, At(k) = Ak(t) '~(k) ,  where 

Ak(t) '  = zt(k) '  - x t ( k ) ' (Xk ( t  - 1)'Xk(t - 1 ) ) - lXk( t  - 1) 'Zk(t  - 1). 

It follows tha t  ,~t(k) 2 = t r{Ak( t )Ak( t ) '~(k)~(k) ' }  and so 

/ 
t = k + l  t = k + l  

Using (2.4) and the notat ion introduced above, t - l X k ( t ) ' X ~ ( t )  -+ Ck, t - l x k ( t )  ' '  
Zk(t)  ---, Dk,k*, and t - l Z k ( t ) ' Z k ( t )  -~ Ek,k* as t ~ ec, and so it follows tha t  

n -1 ~ Ak( t )Ak( t ) '  ~ Ek,k* -- Dk,k*C[1Dk,k * 
t : k + l  
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as n ~ oc, giving the expression for bk stated. The monotonicity of bk can then 
be checked using the partial order of positive definite matrices. [] 

For the next lemma we need some notation paralleling that used in Lemma 
5.2 above. Write Xt(k) = E{r t (k)}  and /)~(k) = ~ t ( k )  2. Furthermore, put 

~ ~t(k)ct. By variants of the proofs of Lemmas 5.2 and 5.3 and by 
the law of iterative algorithm, we obtain 

L E M M A  5.4.  

(5.3) r , (k)  2 - 4 
1 1 

= B . ( k )  - Xn(k)  + D (k) 

where fork  < k*, n - l B , ( k )  ~ bk, andB~(k) = O((nloglogn)U2) a.s. asn ~ co. 

LEMMA 5.5. In the notation introduced prior to equation (3.1) 

log det (I~ + rXk (n)Xk (n)') + y(n)' (In + TXk (n)Xk (n) ')-  ly(n) 

= k l o g n +  ~ r t ( k ) 2  +O(1)  a.s. n ~ o c .  
1 

PROOF. Straightforward from assumption (2.3) and Rao ((1973), p. 33). [] 

In the following lemmas we use the notation Pk = ~ k + l  --  XkTk,  Pk = ~ k + l  --  
t --1 t J£kT~ and ~k = Xk(XIkXk)-lXtkPk, where 7k = (XkXk)  Xk~k+ 1. It is evident 

that 7k is the regression coefficient of the (k + 1)-st variable on the previous k, 
and so Pk and/Sk are essentially residuals when the current model is Mk, whereas 
r]k is part residual and part fitted value. 

L E M M A  5.6 .  

~ t --1 --2 Xk+l(Xk_+_lXk_}_l) Xk+l  ~ 2 k  t --1 = (XkXk) X k c +  ]pkf (Pk, e)Dk. 

PROOF. This is a straightforward consequence of the formula for the inverse 
of a partitioned matrix, see e.g. Rao ((1973), p. 33). [] 

If we write N,~,~(k) = 12k(X;X )-lX;cI 2 by analogy with the noise term 
introduced just before Lemma 5.2, then we have 

C O R O L L A R Y  5.2 .  

N~,~(k + 1) = Nm,~(k) + 21pkJ-2<~]k, e><pk, c> -4- Ipkl-4l~kl2<pk, ~>2. 

Now let us write J£k* [Xk I 2k] and -Rk 2k - ' -1 , = = - X k ( X k X k  ) XkZk.  Fur- 
thermore, for k > k*, write 

Ck Dk,k+l ] 
Ck+l = Dk,k+l Ek,k+l 
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and similarly for 6'k+1. Finally, denote by Ak,k+l and Ak, the differences 6'k -1 - 

/)k,k+l -- CklDk,k+l  and c~-l/7)k,k. -- C~lDk,k . ,  respectively. 
The following formulae bear a close resemblance to ones obtained in a similar 

context by Box and Draper (1959, 1963). There, however, the emphasis is on 
design: the choice of x vectors. It should be clear from the context whether or not 
k < k* is required to give a non-trivial result. 

LEMMA 5.7". 
(i) 

(ii) 

(iii) 

(iv) 

(v) 

A s  m ,  n -~ oc w e  have 

m - l X ~ R k  ~ CkAk .  
r Y t - l R l k R k  E k  -1  - - 1  - A l k d k l A k  -+ - Dk ,k .C k Dk,k* + 
m-ll~ki2 ~ak,k4_l ~1 - - 1  ~ ! - 1  --+ -- Dk,k+lC k Dk,k+l + Ak,k+lC k /kk,k+l. 

! --1 
n- l lpk l  2 --+ Ek,k+l - Dk,k+lC k Dk,k+l. 
n m - 2 l r l k l 2  , - - 1  - - - -+  Ak,lc+lCkC k CkAk,k+i • 

PROOFS. These are all straightforward consequences of the relevant defini- 
tions. [] 

Next we extend some earlier notation, writing Bm,~(k) = t r{R~Rk~(k)~(k) ' } ,  
and Sm,~(k) = 2(/~k~(k), f 2k (X~Xk) - lX~e} .  Clearly the first term is the analogue 
of the bias term introduced prior to Lemma 5.2, and reduces to it if m = n and 
J~ = X. For the definition of PE(k) ,  see Section 2 above. 

LEMMA 5.8. In the notation just introduced, we have 

PE(k) - m a  2 = Bm,n(k) + N,~,n(k) - Sm,n(]g). 

PROOF. PE(k)  - ~ 2  = 12~*Z(k*) - 2klg(k) l  ~, w h e r e  we  may write  

2 k * Z ( k * )  - 2 k 3 ( k )  = 2 ~ . 9 ( k * )  - 2~(X'~Xk)-lX'k(X~.9(k *) + ~) 

= ( &  - 2k(X'kXk)-lX'kZ~)¢(k) -- 2k(X'kX~)-lX'k~. 

The result now follows upon taking the squared norm of this vector. [] 

LEMMA 5.9. 

(i) 

(ii) 
(iii) 
(iv) 
(v) 

As  m ,  n ~ ~ w e  have 

m--1]~m,n(]~) ~ t r { ( / ~  k - -  Dk,k.-' O~-l/)k,k. + A~0~-lAk)¢(k)¢(k) '} .  

m - l n E { N ~ , , ( k ) }  ~ tr(OkC~-l). 
.~- lnN~,n(k)  = O(loglogn) a.s. 
m - l n S m , ~ ( k )  ~ 0 a.s. if Ak  = O. 
m - l & ~ , n ( k )  = O ( ( n  -1 loglogn) 1/2) a.s. i f  A k  ¢ O. 

PROOF. (i) is an immediate consequence of Lemma 5.7(iv); (ii) and (iii) 
are straightforward calculations; (iv) follows from the definitions, whilst (v) is a 
now-familiar form of the law of the i terated logarithm. [] 
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PROOF OF THEOREM 3.1. (i) We begin by obtaining some probabil i ty  in- 
equalities concerning the terms in APE~(k) ,  cf. Lemma 5.2. Since Nn(k) = 
IH,~(k)el 2 is a chi-squared r.v., 

pr (Nn(k )  > 9~) < O ( e x p ( - 9 ~ ) )  as ~ -~ ~ .  

Similarly, B~(k) is a sum of independent  zero mean normal r.v.'s whose variance 
is O(n), and so pr(lB~t (k)[ > %) _< O(~glnx/2 exp(-~/2n)). 

Finally, Wn (k) = V~ (k) +< (k) is a sum of n- k independent squared normals, 
the t-th of which is scaled by fit(k), and so 

pr(Wn(k)  > 6n) _< exp ( -6~)  1-I(1 - 2#t(k)) -U2 <_ exp --6n + #t(k) 
k--1 k+l  

= ex p { -6 n  + k l o g n  + o(log n)} 

_< n k+l exp( -6~) ,  as n --+ oc. 

We now put  these inequalities together,  select (/3~), (~/~) and (6~), and obtain 
(i). For simplicity, we drop subscripts n where no confusion will result. If k < k*, 

pr(k = k) _< pr{APE(k)  < APE(k*)}  

= pr{B(k)  - N(k) + W(k) + Bt(k) 

< B(k*) - N(k*) + W(k*) + Bt(k*)}  

_< pr{W(k*)  _> B(k) + B*(k) - N(k)}  

since W(k) > 0 and N(k*) > O, 
< pr{W(k*) > ~b~ + o(~) - ~ - B~} 

+ P{N(k)  > B~} + P{IB*(/~)I > % }  

< n ~+1 exp ( -nbk  + o(n) + % +/3n) 

+ O ( e x p ( - Z n ) )  + O(Tnln U2 exp(---'&2/2n)). 

We now see that  if fin = bkn/3 and % = bkn/3, the desired conclusion follows 
since bk decreases as k increases to k* - 1. 

(ii) For the overfitting probability, we est imate pr(k = k) for k > k*, noting 
that  in this case APE(k)  = V(k) - N(k) + Nt(k ) ,  i.e. the bias terms disappear.  
In this proof  we bound -N*(k)  and N*(k*) from below by the same quantity,/3n 
say, and calculate the tail probabil i ty as in the first par t  of the proof. We find 
that  

pr(N*(k)  < -/3~) = p r ( - N * ( k )  >/3~) 
n 

<_ exp(-/3~) I I { ( 1  + 2#t(k)) -1/2 exppt(k)} 
k+l  

_< O ( e x p ( - ; ~ ) ) .  

Similarly we have pr(N*(k*) > 73n) _< O(exp(- /3n)) ,  and since N(k) - N(k*) is a 
chi-squared r.v. on k - k* degrees of freedom, 

p r (N(k)  - N(k*) > "y~) <_ O("yn l+(k-k*)/2 exp(-~/n/2)) .  
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Thus if k > k*, 

pr(k = k) = pr{APE(k) < APE(k*)} 

= pr{V(k) - X(k) + X*(k) < V(k*) - X(k*) + Xt(k*)} 

< pr{V(k) - / 3 n  - (N (k )  - N(k*) )  < V(k*)  +/3n} 

+ pr{Nt(k) < -/3n} + pr{N*(k) >/3n} 

_< O(7# 1+(k-k*)/2 exp(- 'yn/2)) + 20(exp(-/3n)), 

where 7~ = (k - k* ) logn  + o(logn) - 2/3~, since V(k)  = k l o g n  + o(logn),  and 
similarly for V(k*). If we take fin = f l l ogn  for fl = 6 -1, say, then we deduce that  
pr(k > k) _< O ( n - 1 / 6 ) .  [] 

Corollary 3.2 can be shown by an argument  similar to Theorems 2.1 and 2.3. 
Note that  when the selection rule is not consistent, the inequality is sharp since the 
prediction error based on Mk for some k > k* is strictly larger than the one based 
on Mk*, and underfit t ing does not cause any problem since all F P E ' s  underfit  with 
a probabil i ty vanishing exponentially fast (Theorem 3.1 (i)). 

Let {Hi : j = 1 , . . . , n }  be a set of pairwise orthogonal rank 1 projectors  
k summing to the identity, such that  for all k = 1 , . . . ,  K we have }-~,p=l Hp = H(k) ,  

where R ( H ( k ) )  = R(Xk(n) ) .  Let e = (ei) be an n-tuple of iid N(0,  1) random 
variables, F any function of IH~el 2 for a fixed i E { 1 , . . . ,  n}, and ~, r/fixed vectors. 

LEMMA 5.10. E{(xi ,Hie>F(IH~el2)}  = O. 

PROOF. The lemma is an immediate  consequence of the symmet ry  of the 
normal distribution. [] 

COROLLARY 5.3. Let f be a function oflHle]2, .. . , [Hkel 2. Then if1 <_ i , j  < 
k, we have 

E{<~, Hic ) f ( lH le l2 , . . . ,  IHke[2)} = 0, 

E{<~, Hie>% Hj~>f(IHI~I2,..., IHk~12)} = 0. 

PROOF. The identities follow from the lemma by a suitable conditioning. [] 

In the lemma which follows we use the expressions p~ and r]k defined prior to 
Lemma 5.6 above. 

LEMMA 5.11. Let Ic~ denote the dimension selected by FPE~,~ 
that l > k > k*. Then we have 

(5.4) lim m - l n l p k  I -2E{  <Pk, e)<~?k, c)l{~=z} } = 0. 
T/%I~ 

and suppose 

PROOF. We begin by replacing kn by ~:n, tha t  k which minimizes FPE(k)  over 
the range {k*, k* + 1 , . . . ,  K}.  From Theorem 3.2 we know that  pr(kn ¢ k~) -+ 0 
as n---+ oQ. 
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Now recall the definition of FPE(k )  and note tha t  if k < l, FPE(k )  E FPE(I )  
l if and only if Ek+I IHpet 2 <- (1 - k)c~. Thus the event {k = l} is the intersection 

1 h 
of the two events: {Ep=h+l ]Hpe[ 2 >- (l - h)a;  k* < h < l} and {Ep=/+l ]Hpe] 2 
(h - 1)c~, 1 < h _< K}  whose indicators we denote by fl and gl respectively. Our  
aim is to show that  

(5.5) 

and then deduce the conclusion of the lemma. 
Since rlk E R(Xk) ,  we may write (rlk ~} k , = }-~=1 (z]k, Hie). Similarly, Pk e 

n R(Xk )  ± and so (pk,e) = ~ j = k + l ( P k ,  Hje) .  Thus our interim object ive will be 
achieved if we can prove that  for all i, j ,  1 < i < k, k + 1 _< j _< n, we have 

(5.6) E {  (~?k, Hie} (pk, Hje} flgl } = O. 

Note that  fl is a function of {IHpe[ 2 : k* < p <_ l} whilst gl is a function of 
{IHpel 2 : l < p _< K } ,  and so if i _< k* or j > k, (5.6) is trivially zero. If we 
take the case k* _< i, j <_ l, we can split off gt by independence and use Corollary 
5.3 to get the conclusion. Similarly if k* < i < I and l < j _< K,  we can again 
use independence this t ime splitting off (~k, Hie}fz, and again gett ing zero by the 
same corollary. Thus (5.6) and hence (5.5) are established. 

The proof  is completed by noting that  lim,~,~ m- ln lpk]  -2E l  (rlk, e} (Pk, e}[ is 

finite, and so we can combine the result pr(k~ i¢ k~) ~ 0 as n --+ oc with (5.5) to 
obtain (5.4). [] 

PROOF OF THEOREM 2.2. We obtain (2.6) under each of the three conditions 
in turn; in all cases making use of Lemmas 5.8 and 5.9. Then by Lemma 5.8, the 
left-hand side of (2.6) will be O(n) as m, n ~ oc, since the bias terms nBm,n(k)  
for k < k* are not all eliminated, and these are O(n) as m, n -~ oe, and cannot 
be canceled by either of the noise terms. Thus (2.6) is trivially true. Now let us 
assume (B). By  virtue of the result jus t  established, we may also suppose that  

pr(k~ < k*) --+ 0 as n --+ oc. Otherwise we make no assumptions concerning the 

selection procedure k. On the set {k > k*}, Bm,n(k) = Srn ,n (k )  --~ O, and so 

Our proof begins by observing that  

lim nrn -1 E llpk I-2 (wk, (pk, l 

< l imnm- l lPk l -2{E(r l k ,  e}2E(pk, e}2} 1/2 
?Tz~n 

= l imnm-l lpk]-2{Ir lk  2lpkl2}1/2 , 
777, ~7% 

and this limit is zero by Lemma 5.7 and (B) 
Repea ted  application of this result and Corollary 5.2 give a series of inequali- 

ties, which imply that  for k > k*: 

l i m n m - l E { N . ~  ~ ( k ) l ~  k~ } > l imnm- lE{N.~ ,~ (k*) l {~=k}} ,  
m , ? ~  ' "[- = ) - -  m , n  
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whence lim,~,~ nm-lE{Xm,,~(k)l{~>_k.}} >_ limm,n rtm-lE{.[Vrn,n(k*)l{[c>_k.}}. 

Since pr(/)n _> k*) --. 1 as n --+ co, and Nn,m(k*) >_ O, lim~,n n m - l E { N ~ , ~ ( k * ) }  
= tr{dk.C~-}} implies (2.6) in case (B). 

Finally we consider case (C). The proof goes as for case (B), and in particular 
the selection rules k based on FPE~,~ for a~ such that n - l a ~  ~ 0 as n ~ oc, 
overfit with probability approaching unity by Theorem 3.2. The chain of inequal- 
ities leading to the final conclusion is also true, but this time the individual steps 
are justified by Theorem 3.1, and the proof is completed exactly as it was in case 
(B). Any other selection rule for which the same symmetry argument is valid also 
has the lower bound. [] 

PROOF OF THEOREM 2.3. (i) We begin by proving that the underfitting 
contribution to the left-hand side of (2.6) is asymptotically negligible. This follows 
from the readily checked fact that when k < k*, n m - l E { ( P E ( k )  - rncr2)} _< O(n) 
as m, n --* oc. Thus for all k < k*, 

n m - l  E{  (PE(k) - mG2)l{~=k}} _< O(n) Ipr (kn  : k) --~ 0 

as m , n  ~ oc, and so nrn-lE{PE(]c) - ma2)l{~<k.}} -+ 0 as n , m  --~ ao .  

Turning now to the overfitting contribution, we begin by proving that in the 
chain of inequalities used to prove the lower bound in cases (B) and (C), the terms 
dropped-- the  second and third terms of the right-hand side of Corollary 5.2--all 
have absolute expectations which are O(mn-1) .  The argument at the beginning 
of the proof of case (B) of Theorem 2.2 shows this for the second term, for even 
without the hypothesis (B) we get a constant at that stage by Lemma 5.7@). 
Similarly for the third terms, 

limnm-lE{Ipkl-4E~k]2(pk, e> 2} = O(1) 
77%~n 

by Lemma 5.7. Thus we may use the consistency hypothesis and get 

lim nm -1 E{ (PE(k) - mG2)l{~>k. } } 

K 

= E  
k = k * + l  

K 

- -E  
k : k * + l  

l !  m _ } 

lim n m - l  E{  (PE(k *) - rnG2)l{~=ki} 

: l i m n m - l E ( P E ( k  *) - m a  2) = tr{Ck.CL1}, 
~ i r t  

the second last step following from our assumption that pr(]c~ = k) --+ 0 as n ~ oo 
for all k > k*. This completes the proof of (i). 

(ii) Now we suppose that ;c is obtained by minimizing F P E ~  for a sequence 
c~ < 21oglogn. We know from Theorem 3.2 that pr(k < k*) = o(n -1) and so 
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need only consider overfitting. By Shibata (1984), l iminfpr (k~  = k* + 1) > 0. 
We next simplify limm,n n m - l E { ( P E ( k )  - m~r2)} in the now familiar way, noting 
tha t  (as in the proof of Theorem 2.2) it coincides with 

lim n m  - 1  E{ (PE(k) - ma2)  l{~>k. } } 

_> tr{Ck. Ck-. 1} + lim nm- lE{]pk .  [-4[/3k. [2(pk., e)21(~=k.+l}}. 
m , n  

Now the second te rm above is zero only if Pk* = 0, which implies k* = K,  since 
we have assumed all design matrices to be of full rank. Thus the inequality (2.6) 
is strict for selection rules based on FPE~ n with l i m i n f ( 2 1 o g l o g n ) - l a ~  < 1. [] 

PROOF OF THEOREM 2.1. Since et is independent  of kt-1 and/3 t -1  for all 
t > l ,  

E 
I n 

- -  X t ~ t _  1 

1 
} ( ~ t _ 1 ) ) 2  = ncr2 + E(x,e~. _ x,?a ,~ ,,2 t P t - l L  t - l } )  • 

1 

Write n 
v n  = E ( ( x ' , 9 * -  ' ^  ^ Xt~t- 1 (/~t--l)) l { ~ t _ l < k * }  }, 

1 
n 

vn Z - '^  = X t / ~ t _ l ( k t _ l ) ) 2 1 < y % _ l = k . } } ,  

1 

: E( (x',9*- ' ^  xt/3t-1 (~:*- 1))21 {~,_1 >k. } }. 
1 

We deal with each of these three components  in turn.  Let us temporar i ly  denote 
x~(Xk(t - 1)'Xk(t - 1 ) ) - l X k ( t  - 1)'e(t - 1) by d'e. Then 

k* --I n 

Xt/~t- -  1 ( ]~t-- 1 = - )) l{~,_,=k}} 
k = l  t = l  

k * - I  n 

= E EE{(At(k)-d'e)21{~t_~=k}} 
k----1 t = l  

k* --i n 

< 2 E E [At(k)2pr(~'-I = k) + 2E{(d'e)21{~_l=k}}]. 
k = l  t = l  

n Now for k < k*, ~ 1  At(k) 2 -- bkn + o(1) as n --+ ~ ,  whilst pr(kt-1 -- k) < 
O(t-2(logt) -c) as n -+ ~ ,  c > 1. Summing by parts  we thus conclude tha t  

k * - - i  n 

E E/k t (k )2pr(~ t -1  = k) = O(1) 
k = l  t = l  

as n--+ oo. 
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Furthermore ,  E{(d'e~) 4} = 3E{(d' e)2}, and since E(d' e) 2 = Idl2a 2 = #t(k)cr 2, 

k * - I  n k * - i  n 

E E E{(d'e)21{~t-~=k}} <- E E v/3°-2#t(k){Pr(~t-1 = k ) } 1 / 2  

k = l  t = l  k = l  t = l  

= O(1) as n --+ co, 

as argued above, but  this t ime using •1  St(k) = klogn(l+o(1))  as n --~ oo. Thus  
U ~  = O ( 1 )  a s  n - ~  o c .  

Turning now to the overfitting t e rm V~, we find only the quadrat ic  form (d~e) 2, 
as the bias t e rm vanishes. Thus  we can argue as above, giving 

K 

W~ = E f iE{ (d ' e )21{£~- l :k} }  
k = k * + l  t = l  

<  t(k){pr(kt-1 = k)}  1/2 = O(1) ,  
k = k * + l  t = l  

s i n c e  p r ( ] c t - 1  = k) < O( log t  -~)  as t --+ oc, where a > 2. 
Finally, we examine the t e rm corresponding to get t ing the model correct.  Since 

pr(kt -1  # k*) < A(t-2(logt) -c) + B(log t )  -~  for large t, 

Vn f iE{(x ' t /3*  ' ^  ;k*~21 ~ _=_ -- Xt/~t_lk / /  {kt_l=k*} J 
t = l  

n 

t = l  t = l  

= k* logn(1 + o(1)) + O(1) as n --~ oc. [] 
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