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Abs t r ac t .  A state-space model to perform discrete thin plate smoothing for 
data on a two-dimensional rectangular lattice is proposed with the use of the 
Kalman filter. The use of the Kalman filter reduces computational difficulties 
in the maximum likelihood estimation of a smoothing parameter. A procedure 
to reduce computational difficulties in the estimation of trend is given also. 
Numerical illustration is provided using two sets of artificial data. 
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1. Introduction 

Let Y~t be an observation at the (s , t ) - th  site on a two-dimensional rectan- 
gular lattice, where s , t  = 1 , . . . , n .  We consider to est imate the t rend x = 
( x l l , . . . , X ~ l , X 1 2 , . . . , X n n )  ~ from the da ta  y = ( Y l l , . . . , Y ~ l , Y 1 2 , . . . , Y ~ ) '  by the 
discrete thin plate smoothing method (DTPSM). In the DTPSM, the trend is 
provided by minimizing the following cost with respect to xst's. 

(1.1) 
n 7b 

s=l t=l 
n-1 n-1 

"4-/~ E E ( n x s t - -  X s - l , t - - X s + l , t - -  Xs, t- l  -- Zs,t+l) 2 
s=2 t=2 

+ b(z~t's) 

where /~ (> 0) is a smoothing parameter  and b(x~'s) is a function to impose 
additional constraints on x~t's. The name of the method,  DTPSM, is due to the 
fact tha t  the form of the difference constraint in the second term of (1.1) is derived 
by discretizing the potential  energy function in thin plate bending. Difference 
constraints have been employed for smoothing by many authors, especially in 
the analysis of time-series da ta  (e.g., Whi t taker  (1923), Shiller (1973), Ki tagawa 
(1987), Kashiwagi and Yanagimoto (1992)). 
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22 N O B U H I S A  K A S H I W A G I  

In the DTPSM, when A is known, our task is only to minimize the cost. 
However, A is generally unknown, and the estimated trend is greatly influenced by 
A. The selection of A is an essential problem in the DTPSM. One solution to the 
problem is to use likelihood. The likelihood function for selecting A is derived by 
assuming a statistical model which corresponds to the cost function. To explain 
this, we specify b(xst's) as 

b(xs t ' s[ /~)  : / ~  E ( 4 x s t  - Z s - l , t  - Z s + l , t  - x s , t - 1  - X s , t + l ) 2  

(s,t)COB 

where OB = { ( s , t ) l l  < S < n, t = 1 ,n  or s = 1, n, 1 < t < n} and it is assumed 
tha t  the first difference along the external  normal at a point  on the boundary  is 

equal to zero, tha t  is, Xot = Xlt, X n + l , t  = Xnt, XsO --~ Xsl and xs,n+l = ash. In this 
case, the cost function can be wri t ten  as 

n n n 

(1.2) E E (ySt - xst)2 + A E E (4x~t - x~-l,t - x~+l,t - 2gs,t-1- Xs,t+l) 2. 
s = l  t = l  s = l  t = l  

The  corresponding statist ical  model  is given in the density form as 

{1 } 
p(y[x, G 2) o( G -n2 exp - ~ 2 ( Y  - x)'(y - x) , 

P(XIA, G2) OC o--(n2-1)A(n2-1)/2 exp { - - 2 - ~ ( D x ) ' D x }  , 

where D is the n 2 × n 2 mat r ix  of rank n 2 - 1 such tha t  the components  of D x  
are the linear combinations appearing in the second te rm of (1.2). Actually, the 
cost function (1.2) can be derived from this model as the function to obtain the 
posterior  mean of x. The  posterior  density of x is given by 

p(xly, p(ylx, 

[ 1 A(Dx) ,Dx}l  × e x p  L-5-g 2 {(y - x)'(y - x) + I 

The  likelihood function for selecting A is derived by using Akaike's integral form 
(Akaike (1980)) as 

LB(A, G2Iy) = [ P(Ylx,o-e)P(xlA,,~e)dx 
JR (x) 

O( a - ( ~ : - l ) A  (n:-1)/2 I In2 + AD~D 1-1/2 

[ 1 &),(y A(D~)'D~}] × exp /-~-~G2 {(y -- - 5) + 

where R(x) is the support  of x, In2 is the n 2 x n 2 identi ty mat r ix  and 5~ is the 
posterior  mean of x given A. The  maximum likelihood est imate  of cr 2 can be wri t ten  
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as 6-2(,~) = (n 2 - 1 ) - l { (y  - 5 ) ' (y  - 5) + ,k(D5) 'DS}. Therefore, the maximum 
likelihood estimate of ,k can be obtained by maximizing LB(,k, a2(,k)ly ). 

However, the estimation of A by LB(A, c72(,k)ly) is not always feasible because 
of the computational difficulties. For example, if we take n = 1000, the order 
of E (= I ~  + ,kD'D) becomes 106 (in image engineering, n = 1000 is frequently 
employed, as recent ordinary graphic terminals have about 1000 x 1000 resolution). 
This suggests that the number of elements in E is equal to 1012. Fortunately, E is 
a band matrix, and therefore, the number of the elements which need to be stored 
is reduced to const, x 109 (= const, x ha). However, even this size exceeds the 
limit of what can be solved at a reasonable cost. 

The purpose of this paper is to propose a state-space model to perform discrete 
thin plate smoothing, and to show that, if we use the Kalman filter (Kalman 
(1960) and Schweppe (1965)), the maximum likelihood estimation procedure for 

can be constructed with the computer memory size of O(n2). The reduction of 
the required memory size is also possible by using an appropriate iterative method 
to calculate 5, by using an appropriate orthogonalization method to calculate [El 
and by considering a computer program. However, the number of operations in 
this method is greater than that in the Kalman filter. 

Wahba (1979) discussed thin plate smoothing by using splines and suggested to 
use Generalized Cross-Validation (GCV) instead of likelihood to select the smooth- 
ing parameter. However, the likelihood approach enables us to solve various prob- 
lems including non-Gaussian smoothing and even a test problem by natural exten- 
sion of the method. In addition, when the size of data is large, the computational 
difficulties also arise in the calculation of GCV. 

In Section 2, a state-space model for the DTPSM is proposed. In Section 3, the 
maximum likelihood estimation procedure for A is presented, and it is shown that 
the required computer memory size is given by O(n2). A procedure to estimate 
the trend is also presented. Finally, numerical examples are shown in Section 4. 

2. Model 

In this section, we propose a state-space model for the DTPSM, which is 
derived by regarding only one suffix among (s, t) as a time-suffix. Here, t is assumed 
as a time-suffix, and the additional trend components as,-1 and xs,0 (s = 1 , . . . ,  n) 
are introduced to use the Kalman filter. This derives an irregular b(x~t's), which 
is shown in the last part of this section. 

Let Yt = (Ylt , . . .  ,Ynt)', ~ = ( X l t , . . .  ,ant)' and #t = (x:,X~-l) I. The pro- 
posed model is 

Yt = F # t  + vt, 

/.it = G/.tt_ 1 + wt, 

t = l , . . . , n ,  

go N(a, 

Vt, ~'~ N ( O n ,  cr2In), 

w t ~ N  0 2 n , ~ - H  , 
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F = [±n, O], C = 

3 -i 0 

-i 4 -I 

-i 4 -i 

0 - 1  3 

-In 

0 

where On is the n × 1 zero vector, O is the n × n zero matrix, c~ is the 2n × 1 vector 
(c~,. . . ,  ~)/, and c~ and ,~ are unknown parameters.  The selection of a and /3  will 
be discussed in the last section. 

The above model can be wri t ten in the density form as 

P(Yt'#t,(7 2) o( (7-nexp { - 2 - ~ ( y t -  F # t ) ' ( y t -  F#t) } , 

P(#t[#t-1, A, ~2) (x ~-nA n/2 exp I - 2 @ 7 ( # t -  G#t -1) ' (# t -  Gl-tt-1)I' 

{ 1  } 
;(#o) c< fl-nexp -~-~(#o  - a ) ' (#o  - a)  . 

By  Bayes'  theorem, the joint posterior density of #n, . . . ,  #o is obtained as 

P ( # n , . . . ,  #oIY, A, a2) 
n n 

H p(y~l#t, (72) n ;(#tl#~-~, ~, (7~) ; (#o)  
t = l  t = l  [1 

o( (7-2~2An~/2/3-n exp --~-~2 (y - F#t) ' (y - F#t) 

+ a Z ( # ~  - a # ~ _ l ) / ( # t  - a#~_~)  + ~ - ( # o  - ~ ) ' (#o  - ~) 
t = l  

We est imate the t rend by using the posterior means of # ~ , . . .  ,#o, which can be 
obtained by minimizing the cost 

n n 

E(y- f#t)l(y- Y # t  ) -t-/~ E ( # t -  a # t _ l ) ' ( #  t - a # t _ l )  
t = l  t = l  

(72 
+ - S ( # 0  - ~ ) ' (#o  - ~).  

This cost function can be wri t ten as 
n n n - 1  

(2.1) E(Y~t  - xst) 2 + A E E (4x~t - xs-l,t - x~+l,t - x~,t-1 - x~,t+l) 2 
s = l  t = l  s = l  t=0 

(72 
Z (x~  - ~)~ 

-~- ~ -  s = l  t= - - I  
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with the condition, xot = xlt and x~+l,t = x~t. Therefore, our b(x~t's) is 

b(x~'sl ~ , ~ )  = ~ Z ( 4 ~ t -  ~_~,~  = X~+l,~ - ~ , ~ - ~  - ~,~+~)~ 
(s,t)~os 

2 n 0 
+ x ~ t  - a )  2 

w h e r e O s = { ( s , t ) l l < s < n ,  ~ = 0 , 1  or s =  1,n, 2 < t < n - 1 } .  

3. Procedure 

3.1 The Kalman filter 
In this section, we review the Kalman filter, and show that the maximum like- 

lihood estimation procedure for A can be constructed with the computer memory 
size of O(n2). We refer to Anderson and Moore (1979) and Kitagawa (1987). 

Let Yt = (Y~,.. . ,  Y{)'. To clearly explain the derivation of the likelihood 
defined in the Kalman filter, we first present the prediction and filtering formulas 
in the state-space approach, which are given, respectively, as 

P(#tlYt-I 'A'(Tz) = /R P(l'ttlltt-l'A'cr2)P(#~-llYt-l'A'cr2)d#t-l' 
(m-l) 

where p(yt I Y~-I, A, ~2) = fR(m)P(Yt [#t, ~2)p(#t [ Yt-1, A, ~2)d#t. The time suffix t 

runs from 1 to n with the initial condition P(#0} Y0, A, ~2) = P(#o). The likelihood 
of the model is defined by 

Ls(A, a2[y) = I-[p(yt[Yt_x,A,~72). 
t = l  

The above formulas can be rewritten by using the conditional means and 
covariances of #t's, since the conditional distributions of #t's are Gaussian in our 
case. Let ~j/k and O'2~'~j/k be the conditional mean and covariance matrix of #j 
given Yk, A and ~2, respectively. Then, the prediction formula can be written as 

1 
f-tt/t_ 1 =-- G f - t t _ l / t _ l ,  ~ t t / t_  1 =- ~ H  + G f ~ t _ l / t _ l  Gt 

and the filtering formula can be written as 

u~/~ = ut/~_~ + f h / ~ _ Y ( F ~ / ~ _ I F '  + I~)-1(y~ - F#t/~_l), 

~'~t/t = ~"~t/t--1 -- ~ t / t - l F t ( f f ~ t t / t - 1 F l  + I n ) - l F f ' t t / t - 1  • 

Following this, the log likelihood of the model can be written as 

- 2  log Ls(A, 52(A)]y) = n 2 log ~2(A) + ~ log IFf~t/t_lF' + I~[ + const. 
t = l  
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where ~2(A) = n -2 Y~t_l(Yt - Ff- t t / t -1) ' (Ft2t / t - lF '  + I~ ) - l (Y t  - FY~t/t-1). These 
formulas agree with those in the Kalman filter. The maximum likelihood estimate 
of A can be obtained by maximizing log Ls  (A, (r 2 ()~)]y). 

The matrices which need to be stored at a time in the Kalman filter are the 
two matrices, f t t / t -1 and ~'~t/t" Each of them is a 2n x 2n matrix. Therefore, the 
required computer memory size is given by O(n2). 

3.2 Smoothing 
Once the maximum likelihood estimates of A and 0.2 are obtained, the trend 

can be estimated by minimizing (2.1). However, the trend also can be estimated 
by using the smoothing formula in the state-space approach. In this section, we 
review the smoothing formula, and present a procedure to reduce the computer 
memory size required in smoothing. 

The smoothing formula is given by 

= fR 2 (#t+l) p( tt-t-1 [Y t, 02) 0. ) p( tt+l °2)d tt÷l 

The time suffix t runs from n -  1 to 1 with the initial condition P(#nlY, A, ~2) = 
P(#nl Yn, A, ~2). Since the conditional distributions of #t 's are Gaussian in our 
case, this formula can be rewritten as 

[~t/~ = [~t/t + At(Y~t+l/n - ht+l/t) ,  

f~t/n = ~t / t  -} -At(~t+l /n  - ~t+l/ t)Aft  

I - - J .  ^ , 

where At = ~ t / tG  ~t+l/t" The trend can be estimated by using #t/n s, since 

P(#tIY, )~, 0.2) can be regarded as the marginal posterior density induced from the 
joint posterior density P (#n , . . . ,  #01Y, A, a2). 

To calculate every ftt/~ by the above formula, it is necessary that all of the 
quantities ftt/t, ftt+l/~ and At are known. They can be obtained only after com- 
pleting the Kalman filter. The number of the matrices At is n, and each At is 
a 2n × 2n matrix. Therefore, the memory size required in smoothing is given by 
O(n3). However, it is possible to practically reduce this size. Let m be the number 
of At's which can be stored at a time. The flow of the procedure to reduce the 
required memory size is as follows: 

O. Set K ~ n -  l and J ~ K - m .  

1. The Kalman filter 

1.0 (initial prediction) Calculate ~1/o and ftl/0 and set t *-- 1. 

1.1 (filtering) Calculate ~tt/t and f~t/t. 

1.2 (prediction) Calculate [_it+l~ t and ~t+l/t" 

1.3 If t > J,  then calculate At and store it with ~tt/t a n d  ~t+l/t  for smoothing. 



KALMAN FILTER FOR SPATIAL SMOOTHING 27 

1.4 If t < K ,  then set t ~-- t + 1 and return to Step 1.1. 

2. Smoothing 

2.0 If K = n - 1, then calculate ~n/~. 

2.1 Calculate ~t/n for t = K , . . . ,  J + 1. 

3. If J > 0, then set K ~ J and J ~- m a x ( J  - m, 0) and return to Step 1.0 

We call this procedure the split algorithm. The split algori thm reduces the 
required memory size by repeating the Kalman filter in Steps 1.0 ~ 1.2. Therefore, 
the amount  of computat ion increases. Roughly speaking, if we take n = 1001 and 
m -- 100, the amount  of computat ion for the Kalman filter increases by a factor 
{(n - 1 ) /m  + 1}/2 = 5.5, while the memory size required for At decreases by a 
factor m / ( n - 1 )  = 0.1. (The factor of increase of the total  amount  of computa t ion  
is about  half of the above factor, as the amount  of computat ion for smoothing does 
not increase.) However, if m is large enough, this increment is allowable, since the 
Kalman filter is a fast method.  

4. Numerical examples 

In this section, we show the results of application of the proposed method  to 
two sets of artificial data. The size of each da ta  set is 129 × 129, tha t  is, n = 129. 
In the estimation, a line search method was used to maximize log Ls(A, c~2(A)ly), 
and the split algori thm was employed with m = 64. The values of c~ and /5  were 
assumed as c~ = (sample mean of Y~t) and /~ --- (sample variance of Y~t). There 
are several different ways of selecting a and t3. For example, one is to assume a 
large value for ~ with an appropriate value of c~ to decrease the effects of these 
parameters,  and another is to select them using likelihood. However, the above 
assumption has the merit  tha t  suppresses an oscillation of the est imated t rend 
near t -- 1, and it can be calculated easily. Consequently, we employed it. 

2 Example 1. The first da ta  set was generated as follows. Let ¢(s, tl~s,~t,o-~, 
ch2,p) be the probability density function of the bivariate normal distribution, 

2 and crt2 are the means and the variances of s and t, respectively, where ~ ,  ~t, cT~ 
and p is the correlation coefficient. We first generated the true image x~t by 

x~t = - 10000 × ¢(s, t141 , 41, 162, 162, 0.3) + 10000 × ¢(s, t141 , 89, 162, 162, 0.5) 

+ 7500 × ¢(s, tl89 , 41, 162, 162, -0 .5)  + 5000 × ¢(s, tl89 , 89, 162, 162, 0). 

Then we generated the artificial da ta  Y~t by 

Yst = xst + cst, est ~ i.i .d.N(O, 1). 

The contour map and the stereogram of the true image are shown in Figs. 1 and 
2, and those of the artificial da ta  are shown in Figs. 3 and 4. 
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Fig. 1. 

S - - - - 4  

A contour map of the true image in Example 1. 

Fig. 2. A stereogram of the true image in Example 1. 

The  obta ined  m a x i m u m  likelihood es t imate  of A was 33.28, suggest ing t ha t  the  
variance of the observat ion noise is abou t  33 t imes as large as t ha t  of the  sys tem 
noise. The  contour  m a p  and the s te reogram of the  es t imated  t rend  are shown 
in Figs. 5 and 6. Al though the  es t imated  t rend oscillates near  the boundary ,  
especially at  t = 129, the  main  shape  of the t rue  image seems to be  recons t ruc ted  
well. The  oscillation near  the bounda ry  may  be acceptable ,  since our p r ima ry  
a t t en t ion  is usually paid  to the inside of the domain.  The  oscillation at  t = 129 
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S 

Fig. 3. A contour map of the artifical data in Example 1. 

Fig. 4. A stereogram of the artifical data in Example I. 

is m a i n l y  c a u s e d  b y  t h e  fac t  t h a t  no b o u n d a r y  c o n d i t i o n  is a s s u m e d  for x s t ' s  at 
t = 129. 

E x a m p l e  2. T h e  s econd  d a t a  set  was  g e n e r a t e d  b y  

Yst -= Xst ~- Cst, Cst ~ i . i . d . N ( O ,  1) 
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Fig. 5. 

S 

A contour map of the estimated trend in Example 1. 

Fig. 6. 

t 

A stereogram of the estimated trend in Example I. 

with the true image 

2 if ( . s -97)  2 + ( t - 3 3 )  2_<232 
x~ t=  1 if ( s - 9 7 )  2 + ( t - 3 3 )  2 >232 and ( s - 6 5 )  2 + ( t - 6 5 )  2_<462 

0 otherwise. 

The contour map and the stereogram of the true image are shown in Figs. 7 and 8, 

and those of the artificial data are shown in Figs. 9 and I0. The true image in the 

first data set was very smooth. This may be a favorable setting to the proposed 
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3 - - - - *  

Fig. 7. A contour map of the true image in Example 2. 

Fig. 8. A stereogram of the true image in Example 2. 

model. In the second da ta  set, the  t rue  image was assumed to involve stepwise 
changes, and a relatively large variance of the observation noise was employed. 
This is a quite unfavorable set t ing to the proposed model. Using this da t a  set, we 
checked the performance of the method.  

The  obta ined max imum likelihood est imate  of )~ was 42.22. The  contour  map  
and the s tereogram of the es t imated t rend are shown in Figs. 11 and 12. As 
expected,  the proposed me thod  could not t race the stepwise changes of the t rue  
image exactly. In addition, small oscillations appeared everywhere.  These are 
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T 
t 

S 

Fig. 9. A contour map of the artifical data in Example 2. 

t 

Fig. i0. A stereogram of the artifical data in Example 2. 
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Fig. 11. A contour  map of the  es t imated  t rend in Example  2. 

Fig. 12. A s tereogram of the  es t imated  t rend  in Example  2. 

caused by the assumption that A is constant. That is, the estimate of A is too large 
and too small for tracing the stepwise changes and the fiat surfaces, respectively. 
However, in spite of those insufficient results, the proposed method may be said to 
succeed in reconstructing the main shape of the true image, because the generated 
data are very dirty. We can at least interpret Figs. II and 12. To trace stepwise 
changes and fiat surfaces exactly, a modification of the method will be necessary. 
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