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A b s t r a c t .  Reliability of many stochastic systems depends on uncertain stress 
and strength patterns that are time dependent. In this paper, we consider the 
problem of estimating the reliability of a system when both X(t) and Y(t) 
are assumed to be independent Brownian motion processes, where X(t) is the 
system stress, and Y(t) is the system strength, at time t. 
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1. Introduction 

The  t radi t ional  approach to es t imat ion of the reliability of a stochastic sys- 
t em in the context  of uncertain stress and s t rength pa t te rns  may  be described 
as follows. Let  X and I /  be two independent  random variables with cumulat ive 
dis tr ibut ion functions F and G respectively. Suppose Y is the s t rength  of a sys tem 
tha t  is subjected to a stress X.  Then  the reliability, R, of the system is defined as 

R = P ( z  > x )  = : ~ ) d f ( ~ ) ,  

where O(z)  = 1 - G(z). Assuming the paramete r  R is unknown, n identical sys- 
tems are put  on test,  the  t ime to failures T1,. • •, T~ are observed, and appropr ia te  
inference procedures  are derived based on this data.  For a bibliography of available 
results, see Ebrahimi  (1982) and Johnson (1988). 

We believe that ,  in many  impor tan t  applications involving catas t rophic  sit- 
uations at the t ime of system failure, it is most prudent  tha t  we est imate  the 
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reliability of the system without necessarily waiting to observe the system fail- 
ure. Such estimation may be achieved by monitoring the behavior of stress and 
strength over time. Motivated by this, Basu and Ebrahimi (1983) introduced a 
dynamic approach to modeling system reliability in the presence of processes X(t)  
and Y(t), respectively denoting the stress that the system is experiencing at time 
t and strength of the system at time t. They defined the random life-time, T, of 
the system as 

(1.1) T : inf{t : t >_ O,Z(t) << 0}, 

where Z(t) = Y(t) - X(t).  
Frequently, engineers are interested in the reliability of the system over a 

specific time period, say (0,t0]. It follows from (1.1) that the reliability of the 
system is given by R(to) where, for to > 0, 

(1.2) 
/ \ 

R(to) = P(T  > to) = P | inf Z(t) > 0~ . 
\0<t_<% / 

Since the strength of the system changes very little over small time intervals 
and since, for a given t, the Brownian motion process is normally distributed we 
believe that in many practical situations {Y(t) : t _ 0} can be assumed to be 
a Brownian motion. Also, there are situations in which X(t)  can be assumed to 
be a Markov process with continuous sample paths such as a diffusion processes. 
For example, the earthquake after-shocks can be modeled by a Markov process 
(see Vere-Jones (1970)). Since every diffusion process can be transferred to a 
Brownian motion using appropriate transformations (see Cinlar (1979)), X(t)  can 
be assumed to be a Brownian motion (at least approximately). One context in 
which such modeling is reasonable is when X(t)  (Y(t)) represents tensile stress 
(strength). For more details and further examples, see Whitmore (1990). Conse- 
quently, throughout this paper, we will assume that X(t) and Y(t) are independent 
Brownian motions so that Z(t) is also a Brownian motion. 

In Section 2, we derive distributional properties of the hitting time T in (1.1). 
Two different schemes to sample data from Z(t) process are distinguished in that 
section. For one of the schemes, maximum likelihood estimation of R(to) in (1.2) 
is treated in Section 3. In Section 4, we show that the likelihood-based inference 
in the other scheme can be done using estimation of parameters of the inverse- 
Gaussian distribution. 

2. The structure of Brownian stress-strength models 

We shall now delineate two situations in which inference questions concerning 
properties of T will be dealt with. At the outset, we should note that, once the 
system fails, Z(t) < O, it stays inoperative thereafter, Z(s) <_ O, for s >_ t. Thus, 
data pertaining to the stress and strength patterns of the system may be collected 
as follows: 
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Situation A. The stopped processes X ( t  A T), Y ( t  A T) and Z(t  A T) can be 
measured over time, where, for any process A(t), with t A T = min(t,  T), we let 

(2.1) A(t A T) = ~" A(t) if t < r 
[ A ( T )  if t > T .  

Situation B. Often, we can observe not the actual stress and strength of the 
system over t ime but  only whether or not the system is operating. Equivalently, 
we can only detect whether the strength of the system is more than  the stress 
or not. Thus we observe the stopped process U(t A T), where U(t) is the binary 
performance process given by 

1 if Z(t) > 0 
U(t) = 0 if Z(t) <_ O. 

We now introduce some notations tha t  will hence-forth be used. For simplicity, 
we let Z*(t) = Z(t  A T) and, in view of (1.1) and (2.1), 

1 if Z * ( t ) > 0  
(2.2) U * ( t ) = U ( t A T ) =  0 if Z*( t )=O.  

We shall assume tha t  the system is s tar ted at known strength and stress levels so 
that ,  unless s ta ted otherwise, for a fixed but otherwise arbi t rary x > 0, P(Z(O) =- 
x) = 1. Throughout  this paper, depending on the need to emphasize the effect of 
x on probabilities and expectations, we write P~ and E~ respectively. From the 
well-known facts about  the moments  of the Brownian motions X(t) ,  Y(t) ,  Z(t),  
we obtain, for some constants #1, #2, a~, o.~ tha t  are presumed to be unknown, 
E(X( t ) )  = #it,  E(Y( t ) )  = p2t, E(Z(t ) )  = #t, Var(X(t))  -- o.~t, Var(V(t)) = o.~t, 
Var(Z(t))  = a2t, where # = #2 - ~1 and o .2 = o-~ + o-2 are respectively called the 
drift and variance coefficients of the Z(t) process. 

For all s < t, we let 

(2.3a) Px(s, t) = Px(U*(t) = 1 

(2.3b) Qx(s, t) = 1 - Px(s, t), 

(2.ac) q~(s, t) - oQ~(s, b) 
Ob tb=t 

U*(s) = 1), 

For any a > O, t ~ O, and the parameters u -- (#, a)1, let 

where ~(u) -- f~ ¢(y)dy is the cumulative distribution function of the standard 
normal density ¢(y). Also, for t ~ O, a > O, b > O, let 

[( ) 1 - b + a + p t  - ¢  exp . (2.3e) ~,(a,b;u)=~-~ ¢ ~fi ~ -  \ W J ]  
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Before we state our first result, we record two simple facts tha t  readily follow 
from the pa th  cont inui ty  of Z(t) and the proper ty  tha t  the interval ( - oo ,  0] is an 
absorbing barrier of the Z(t) process. 

(2.4a) 
(2.4b) 

P=(Z*(t) > o I z*(s . )  = o) = o, w < t 

P ~ ( u * ( t )  = 1 E u * ( s )  = o)  = o, v s  < t. 

THEOREM 2.1. (i) {Z*( t ) , t  > 0} is a time-homogeneous Markov process with 
a transition kernel whose discrete and continuous parts are defined as follows: For 
a > 0 ,  z > 0 ,  t_>0,  

// (2.5) P(Z*(t)  > z I Z*(O) = a) = ¢t(a,b)db, 

(2.6) P(Z*(t)  = 0 I Z*(0) = a) = 1 - Ha(t)  

where ~t(a, b) and Ha(t) are given by (2.3e)  and (2 .3b)  respectively. 
(ii) For a > O, O < t < oc, let 

(2.7) h a ( t ) -  a { ( a + # t )  2 }  
crt3/2v~ ~ exp - 2t~2 . 

Then, for p > O, T in (1.1) is a defective randon variable with pdf hx(t) given by 
(2.7) in the sense that 

oxp( ) 
However, for p <_ O, T has the inverse-Gaussian density function h~(t). 

PROOF. Equat ions  (1) and  (2) of Harrison (1985, p. 46) easily yield par t  (i). 
Now, let t ing a = x in (2.6), we note tha t  (2.6) can be rewri t ten as 

(2.8) Px(T _< t) = P x ( Z * ( t )  = 0) = 1 - Hx(t). 

Since hx(t) = -(O/Ot)Hx(t),  par t  (ii) now follows from equat ion (2.8). 

THEOREM 2.2. The process {U*(t),t  > 0} is a continuous-time non- 
stationary Markov process with state space {0, 1} and transition probability ma- 
trix 

0 1 

1 Q~(s,t) Px(s,t) 

where Px(s,t) is given by (2.9)  below and (2 .3b)  provides Q~(s,t). 

PROOF. In view of (2.4b), U*(t) is a binary process with zero as an absorb- 
ing state. It is now easy to show tha t  such a process has the  Markov property.  
Fur thermore ,  it follows from (2.3a), (2.2) and  (2.8) 

(2.9) Px(s,t) = Px(Z*(t) > O)/P~(Z*(s) > O) = Hx(t)/H~(s).  
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R e m a r k  1. The conditional density of the time to failure of the system, given 
that Z * ( s )  = a, for any positive number a, is given by ha(t )  in (2.7). However, 
given only the information that the system was operating at time s, that is Z* (s) > 
0, the conditional density of the time to failure of the system is given by 

(2.10) qx(s,  t) = h ~ ( t ) / H ~ ( s )  

where qx(s,  t) was defined in (2.3c). 

3. Reliability estimation in Situation A 

In this section, we give the maximum likelihood estimation of the vector pa- 
rameter v = (#, or) with the assumption that the stopped process Z*( t )  can be 
measured over time independently for each of n systems. It should be noted 
here that a number of fine works, including Kutoyants (1984), address maximum 
likelihood estimation of the parameters of a diffusion process. However, our sam- 
pling designs to collect data from the underlying process are different from the 
ones contained in these works. In order to facilitate our proof, later in this sec- 
tion, of the uniqueness of the maximum likelihood estimator (m.l.e), we shall now 
reparametrize u as 0 = (01, 02), where 

1 
(3.1) 01 = p and 02 = - .  

cr G 

In view of (2.3d) and (3.1), once an estimate 0 of 0 is obtained, we can estimate 
the reliability 

(3.2) 
01 1 ) 

Rx(t0;0) = P x ( Z * ( t o )  > O) = Hx t0; ~22'~ 

as Rx(t0; 0). 
We let subscript i = 1 , . . . ,  n refer to the label of the system and subscript 

j = 0 , . . . ,  Mi denote the label of the proposed observations of Z*(t) over time for 
the i-th system. For the i-th system, let tij  be the time from the initial observation 
(rio = 0) and Z~(t i j )  be the observation at time tij, i = 1 , . . .  ,n; j = 0 , . . .  ,Mi .  
Furthermore, for some known x > 0, let Z*(t io)  - x, i = 1, 2 , . . . ,  n. It is important 
to note that, if Z*(t i j  ) ) O, the system is operating at time t i j .  However, if 
Z*(ti j-1) > 0 and Z [ ( t i j )  = 0, then we stop gathering data from the i-th system 
and record the actual time to failure of the i-th system, Ti, where t i j -1  < Ti <_ tij .  
In addition, we relabel j as mi and the corresponding proposed observation time, 
ti ,~, is relabeled as Ti. It should be noted that Z [ ( t i k )  = O, k = m i , . . . , M i .  
Thus, for i = 1 , . . . , n ,  we observe Z[ ( t i k ) ,  k = O, 1 , . . . , M i ,  and Vi = Ti AtiM~. In 
order to write the likelihood function of this data set in the light of (2.4a), (2.5) 
and (2.6), we introduce the function 

(3.3) 
{ ~bt(a, b) 

g,(a,  b) = ho(t) 
1 

if a > 0  and b > 0 ,  
if a > 0  and b = 0 ,  
if a = 0  and b = 0 ,  
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where ~Q(a, b) and h~(t) are given by (2.3e) and (2.7) respectively. We can now 
write the log-likelihood of the data from the n systems as 

(3.4) 

n Mi 

l(0) = Z 
i=1 j=l  

w h e r e  / k i j  : t i j  - t i j - 1 .  
For simplicity, we shall assume, during the remainder of this section, that 

M1 = M2 . . . . .  Mn = M, say, and that the data are equally spaced, that is 
Aij = A > 0, for i = 1 , 2 , . . . , n  a n d j  = 1 , 2 , . . . , M .  A similar approach can 
be used if the observations are not taken according to this simplified scheme. To 
maximize the log-likelihood, we consider two equations given by l(O) = 0, where 
"l(O) = Ol(O)/O0 is the vector of partial derivatives. This score vector and the 
2 × 2 matrix of second-order partial derivatives, i'(0), can be computed using (3.4) 
and the partial derivatives of the function gt(a, b) in (3.3) that  are provided in 

the Appendix. The roots of the likelihood equations will be denoted by 0A = 

(0 A, 02A). 
An iterative scheme such as the Newton-Raphson may be employed here to 

obtain 0A. The initializing values of 01 and 02 in such a scheme may be obtained 
by pretending that the portion of our observables, Z~(Qj),  j = 1, 2 , . . . ,  M, i = 
1, 2 , . . . ,  n are values of the original process Z(t ) .  From the well-known transition 
function of the Markov process Z(t) (see Karlin and Taylor (1975), p. 356), we 
can write the joint likelihood of the data under this pretension as 

(3.5) 

= *(t~,k-1), k = 1,2, ,M,  i = 1,2, . .  n and N = n M  where Yik z* (Qk) - zi . . . .  , 
is the total number of proposed snapshots from the n stopped processes Z[(t) ,  
i = 1, 2 , . . . ,  n that are available for inference. Maximizing (3.5) with respect to 

# and G we obtain the initial values of 01 and 02 as 01o =/20/#0 and 020 = 1/#0, 
where 

n M n M 

i=1  k = l  i =1  k = l  

We now discuss the asymptotic properties of the m.l.e. 0A. 

THEOREM 3.1. I f  n ~ co, then we have (a) OA c o n v e r g e s  in probability to O, 

that is O A pr --* 0. (b) V/~(OA --O) converges weakly to a bivariate normal distribution 
with mean vector 0 and covarianee-matrix FA(0) given in (3.10) below, that is 

V (0A - e) A N(0, rA(0)). 

PROOF. It is clear that the likelihood in (3.4) is based on n i.i.d copies, 
Wt, W2, . . . ,  Wn,  of W, where W = ( Z * ( A ) , . . . , Z * ( M A ) , V ) .  Furthermore, 
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with the function g defined in (3.3), the log-density of W is seen to be 

(3.6) 
M 

log f ( w ;  O) = E loggA(Z*( ( j  - 1)A), Z*(jA)).  
j= l  

We first argue that, as a function of 01 and 02, the log-likelihood l(O) in (3.4) 
provides a unique maximum likelihood estimate. We shall do so by verifying the 
following sufficient conditions (see the remarks above Theorem 2.6 in Makelainen 
et al. (1981)). 

(i) Limo_~ool(O) = -oc ,  where 00  is the boundary of the parameter space 
O = {(01 ,02)  : --OO < 01 < OO, 02 > 0}, and 

(ii) The Hessian matrix, i'(0), of second partial derivatives of l(0) is negative 
definite at every point 0 ~ @. 

n Starting with (i), we let r = r~ = Y~-~=I I(Vi < MA) denote the count of those 
systems that fail during our proposed observation scheme. When the Binomial 
random variable r > 0, there are contributions to l(0), due to the r failures, which 
we shall denote as log ha~ (si), i = 1, 2 , . . . ,  r. Letting 

7" 

(3.7) $1(0)  = E[ai02 + siO112/2s{, 
i : 1  

we obtain 

(3.8) (02) 
i = l  

where ~ means that the left-side is proportional to the right-side. It is easy to 
show that, if r -- 1, or si = cai, i = 1, 2 , . . . , n ,  for some constant c, then the 
right-side of (3.8) gets unbounded as 0 --~ 00  and that, outside of these events, 
$1(0) in (3.7) is a positive definite quadratic form in 0. However, as n --+ ee, the 
probabilities of these events tend to zero, so that such cases will not matter  in the 
large-sample properties of 0A. We conclude from (3.8) that terms in I(0) of the 
type logha(t) collectively tend to - c e ,  as 6 --* 00.  

Letting $2(0) = [A202 + (a - b)20~ + 20~02A(a - b)]/2A and Sa(0) = [A202 + 
(a+b)20~ +20102A(a-  b)]/2A, we obtain from equation (A. 1) of the Appendix that 
CA (a, b) -~ 02 [exp{- $2 (0) } - exp{-  $3 (0) }]. Consequently, as 0 --* 00,  CA (a, b) -~ 
0 and any term of the type logCA(a, b) in l(O) tends to -oc .  We have therefore 
verified that condition (i) above holds. 

To show (ii), we first note that it is sufficient to argue that, as functions of 0, 
log ~A (a, b) and log ha (t) have Hessian matrices that are negative definite (see, for 
e.g., p. 152 of Apostol (1973) for conditions guaranteeing negative definiteness). 
From equations (A.4) to (A.6) of the Appendix, it readily follows that 

02 log ~A (a, b) 
< 0, 0012 
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where, letting y = (ab/A)O~, $4 = 1 + [2y/(sinh(y))  2] - ctnh(y). In view of the 
inequality 1 - e-Y < y, y > 0, we obtain $4 > 0 so that the right-hand side of 
(3.9) is positive. 

Also, equations (A.9) to (A.11) of the Appendix yield 

We have therefore shown that condition (ii) above also holds. It follows that there 
^ 

is a unique maximum likelihood estimate ~A, provided by l(~) in (3.4), unless our 
data belong to certain events whose probabilities tend to zero as n --~ ce. 

Since the regularity conditions of Theorem 4.1 on p. 429 of Lehmann (1983) 

can be easily verified, we conclude that ~A is globally consistent for 8. Defining 
the matrix FA(~) by 

we obtain part (b) of the theorem. 

Remark 2. Since the expectations in (3.10) are difficult to obtain in closed- 
form, usual approximations to the Fisher-information matrix FA(~), including 
those that use the observed information matrix, may, in practice, be used. 

COROLLARY 3.1. I f  n --~ c~, then the following hold for  the reliability esti- 
mate Rx(to; ~A), which is defined through (3.2), where OA is the m.l.e. 
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(i) Rx(t0;0A) pr Rx(to; 0). 
(ii) v/n(Rx(to;OA)-  Rx(to;O))LN(o,7-~), where T 2 = (7?')FA(0)(~/), ~ f =  

(H(x°l)(to),H(°2)(to)) being the vector of partial derivatives given by equations 
(A.12) and (A.13) of the Appendix. 

PROOF. Par t  (i) is straightforward and we obtain part  (ii) by applying the 
5-method (in view of (3.2)) to the asymptot ic  distr ibution in Theorem 3.1(b). 

4. Reliability estimation in Situation B 

In this section, we discuss the est imation of the vector parameter  u = (#, or) 
with the assumption that  the s topped process U*(t) can be measured over t ime 
independent ly  for each of n systems. We let subscript  i = 1 , . . .  ,n  refer to the 
label of the system and subscript  j = 0 , . . . ,  Mi denote the label of the proposed 
observations of U*(t) over t ime for the i-th system. For the i-th system, let U*(tij) 
be the observation at t ime tij, i = 1 , . . .  ,n; j = 0 , . . .  ,Mi. It is impor tant  to note 
that ,  if U[(t~j) = 1, the system is operat ing at t ime t~j. However, if U[(t~j_l) = 1 
and U[ (tij) = 0, then we stop gathering da ta  from the i-th system and record the 
actual  t ime to failure of the i-th system, Ti, where tij-1 < Ti <_ t~j. Furthermore,  
we relabel j as mi and the corresponding proposed observation time, t i ,~ ,  is 
relabeled as Ti. Thus, for i = 1 , . . .  ,n, we observe U[(tik), k = 0, 1 , . . .  ,Mi  and 
Vi = Ti A tiMi. 

In view of (2.4b), (2.9) and (2.10), assuming that  all the n systems are initially 
working so that  P(U~(O) = 1) = 1, i = 1, 2 , . . . ,  n, we note tha t  the log-likelihood 
of the da ta  is given by 

(4.1) l(u) = Z[u~(t i j_l )u~(t i j ) logP~(t i , j_ l , t i j )  
i=1 j = l  

+ u*(ti,j-1)(1 -- u*(tij))logqz(ti,j-1, ti,j)]. 

However, we can simplify l(u) further using the fact tha t  the da ta  from the i- th 
system is of the type  ( 1 , 1 , . . . ,  1) or (1, 1 , . . . ,  1,0), depending on whether  V~ = 
tiM~ or V/ < tiM~ respectively. Indeed, assuming wi thout  loss of generality tha t  
the failed systems, if any, are the first r systems with failure t imes s l , . . . ,  s~, 
respectively, we can collapse (4.1) to 

[ Z l o g h z ( s i ) l  + logHz(tiM~), i f 0 < r _ < n ,  

(4.2) = 

ElogHx( t iM~) ,  if r = 0 .  
i=1 

It should be noted that  (4.2) is the log-likelihood of n i.i.d, observations from 
the distr ibution hx(t), in (2.7), tha t  are censored at the known times tiM~, i = 
1, 2 , . . . ,  n. In fact, upon suitable reparametr izat ion of u, (4.2) is a special case 
of the likelihood considered by Whi tmore  (1983). Thus, once an est imate ~ of u 
is obtained using the procedure of Whi tmore  (1983), we can est imate the system 
reliability during the period [0, to] through (2.3d) as H~(to, ~). 
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Appendix 

In the following, we have used notations for hyperbolic functions that are given 
in Peirce and Foster (1956). Letting K = ab/ t  and rewriting ~)t(a, b) in (2.3e), 
after the reparametrization (3.1), as 

(A.1) ~t(a,b;O) = 02 exp - S(O) sinh(K022), 

where S(O) is given by S(O) = t20~ + (a 2 + b2)O 2 + 2t(a - b)0102, we obtain the 
following derivatives, which can be used to write down the likelihood equations 
relating to (3.4), and compute the asymptotic variance-covariance matrix, FA(0) 
in (3.10). 

0 log ~t 
(A.2) - -  - (b - a)O2 - tO1, 

001 

0 log ~t 1 71 
0 0 ~  - 02 + ~ [t(b - a)O1 - (a 2 + b2)02] + 2KO2(ctnh(K022)), 

02 log ~t 
- - t ,  

(A.3) 

(A.4) 

(t.5) 02 log 9t b2)l = - [ ~  + 1(a2 + 

+ 2K[c tnh (KO 2) - 2KO~(csch(KO~))2], 

02 log ~t _ b - a, 
(A.6) 001002 

(A.7) Ologh~( t )  _ (aO2 + tO1), 
001 

(A.8) Ologha( t )  1 a 
002 - 02 T(a02 + tO1), 

02 log ha (t) 
(A.O) 002 - t, 

02 log ha (t) 1 a 2 
(A.10) 003 - 03 t '  

0 z log ha (t) 
(A.11) 001002 -- a. 

Finally, denoting the partial derivatives of Hx(t; 0), given by (2.3d) and (3.1), 
as H(~°d(t), i = 1, 2, and using (2.3e) we obtain 

0~ ( 01 1 )  (A.12) H(° l ) ( t )  = ~t z,0; 0-~'0-2z 



and 
(A.13) 
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+ { 2 0 2 x ~ - - x O 2 + O i v ~ ) e x p [ - - 2 O l O 2 X ] }  

H(xO:)(t)= x ( 01 1) 
E, E 

-~ {201X(~ ~--X02 -'~-01V~) exp[--2OlO2X]} 

19 
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