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Abstract. Reliability of many stochastic systems depends on uncertain stress
and strength patterns that are time dependent. In this paper, we consider the
problem of estimating the reliability of a system when both X (¢) and Y ()
are assumed to be independent Brownian motion processes, where X (t) is the
system stress, and Y'(¢) is the system strength, at time ¢.
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1. Introduction

The traditional approach to estimation of the reliability of a stochastic sys-
tem in the context of uncertain stress and strength patterns may be described
as follows. Let X and Y be two independent random variables with cumulative
distribution functions F and G respectively. Suppose Y is the strength of a system
that is subjected to a stress X. Then the reliability, R, of the system is defined as

R=PY >X)= /oo G(z)dF(z),
0

where G(z) = 1 — G(z). Assuming the parameter R is unknown, n identical sys-
tems are put on test, the time to failures 71, ..., T}, are observed, and appropriate
inference procedures are derived based on this data. For a bibliography of available
results, see Ebrahimi (1982) and Johnson (1988).

We believe that, in many important applications involving catastrophic sit-
uations at the time of system failure, it is most prudent that we estimate the

* This research was partially supported by the Air-Force Office of Scientific Research Grants
AFOSR-89-0402 and AFOSR-90-0402.
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reliability of the system without necessarily waiting to observe the system fail-
ure. Such estimation may be achieved by monitoring the behavior of stress and
strength over time. Motivated by this, Basu and Ebrahimi (1983) introduced a
dynamic approach to modeling system reliability in the presence of processes X (t)
and Y (), respectively denoting the stress that the system is experiencing at time
t and strength of the system at time ¢. They defined the random life-time, T', of
the system as

(1.1) T =inf{t:t>0,Z(t) <0},

where Z(t) =Y (t) — X(t).

Frequently, engineers are interested in the reliability of the system over a
specific time period, say (0,%p]. It follows from (1.1) that the reliability of the
system is given by R(to) where, for tg > 0,

(12) R(to) = P(T > to) =P (0 inf Z(t) > O> .

<t<ig

Since the strength of the system changes very little over small time intervals
and since, for a given ¢, the Brownian motion process is normally distributed we
believe that in many practical situations {Y(¢) : ¢ > 0} can be assumed to be
a Brownian motion. Also, there are situations in which X (t) can be assumed to
be a Markov process with continuous sample paths such as a diffusion processes.
For example, the earthquake after-shocks can be modeled by a Markov process
(see Vere-Jones (1970)). Since every diffusion process can be transferred to a
Brownian motion using appropriate transformations (see Cinlar (1979)), X (¢) can
be assumed to be a Brownian motion (at least approximately). One context in
which such modeling is reasonable is when X(t) (Y(t)) represents tensile stress
(strength). For more details and further examples, see Whitmore (1990). Conse-
quently, throughout this paper, we will assume that X (¢) and Y (¢) are independent
Brownian motions so that Z(¢) is also a Brownian motion.

In Section 2, we derive distributional properties of the hitting time T in (1.1).
Two different schemes to sample data from Z(t) process are distinguished in that
section. For one of the schemes, maximum likelihood estimation of R(to) in (1.2)
is treated in Section 3. In Section 4, we show that the likelihood-based inference
in the other scheme can be done using estimation of parameters of the inverse-
Gaussian distribution.

2. The structure of Brownian stress-strength models

‘We shall now delineate two situations in which inference questions concerning
properties of T will be dealt with. At the outset, we should note that, once the
system fails, Z(¢) < 0, it stays inoperative thereafter, Z(s) < 0, for s > ¢. Thus,
data pertaining to the stress and strength patterns of the system may be collected
as follows:
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Situation A. The stopped processes X(¢t AT), Y(t AT) and Z(t AT) can be
measured over time, where, for any process A(t), with t AT = min(¢,T), we let

) sean) = {40 HIST

Situation B. Often, we can observe not the actual stress and strength of the
system over time but only whether or not the system is operating. Equivalently,
we can only detect whether the strength of the system is more than the stress
or not. Thus we observe the stopped process U(t A T'), where U(t) is the binary
performance process given by

(1 #20)>0
U<t)“{o it Z(t) < 0.

We now introduce some notations that will hence-forth be used. For simplicity,
we let Z*(t) = Z(t AT) and, in view of (1.1) and (2.1),

frn 1 if Z*(t) >0
(2.2) U(t)=UGANT) = {O it Z*() = 0.
We shall assume that the system is started at known strength and stress levels so
that, unless stated otherwise, for a fixed but otherwise arbitrary z > 0, P(Z(0) =
z) = 1. Throughout this paper, depending on the need to emphasize the effect of
x on probabilities and expectations, we write P, and E, respectively. From the
well-known facts about the moments of the Brownian motions X (¢), Y'(¢), Z(¢),
we obtain, for some constants ui, i, o7, o3 that are presumed to be unknown,
B(X(8)) = pit, E(Y (1)) = pot, BZ(1)) = ut, Var(X (1)) = o3¢, Var(Y (8)) = o3t,
Var(Z(t)) = 0%, where u = pp — p1 and 0% = 02 + o7 are respectively called the
drift and variance coefficients of the Z(t) process.

For all s < t, we let

(2.3a) Py(s,t) = Pp(U™(t) = 1| U"(s) = 1),
(2.3b) Qz(s,t) =1 — Pr(s,t),
(230 wls,t) =200 ),

For any a > 0, t > 0, and the parameters v = (u, o), let

(23d)  Ha(t) = Ho(t;v) = (%’;ﬂ) - {@ (‘Z\J;Z“t) exp G%’?)} ,

where ®(u) = [*__ #(y)dy is the cumulative distribution function of the standard
normal density ¢(y). Also, for t > 0, a > 0, b > 0, let

9 = (2 257) o (2552) ()]
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Before we state our first result, we record two simple facts that readily follow
from the path continuity of Z(¢) and the property that the interval (—oo,0] is an
absorbing barrier of the Z(t) process.

(2.4a) Po(Z*(t) > 0| Z(s) =0) =0, Vs<t
(2.4b) Py(U*(t)=1|U*(s)=0)=0, Vs<t.

THEOREM 2.1. (i) {Z*(¢),t > 0} is a time-homogeneous Markov process with
a transition kernel whose discrete and continuous parts are defined as follows: For
a>0,22>20,t>0,

(2.5) P(Z () > 2| 2°(0) = / e
(2.6) P(Z*(t) = 0] Z*(0) = a) = 1 — Ha(t)

where ¥i(a,b) and Hy(t) are given by (2.3e) and (2.3b) respectively.
(il) Fora>0,0<t< o0, let

2.7) ha(t) = M} .

a
ot3/2\/ 27 P {— 202

Then, for u >0, T in (1.1) is a defective randon variable with pdf h;(t) given by
(2.7) in the sense that

2ux
P,(T < 00) = exp (~?2——> .

However, for p <0, T has the inverse-Gaussian density function hy(t).

PRrROOF. Equations (1) and (2) of Harrison (1985, p. 46) easily yield part (i).
Now, letting a = z in (2.6), we note that (2.6) can be rewritten as

(2.8) P (T <t)=P,(Z"(t)=0)=1- H.(t).
Since hy(t) = —(9/0t)H,(t), part (ii) now follows from equation (2.8).

THEOREM 2.2. The process {U*(t),t > 0} is a continuous-time non-
stationary Markov process with state space {0,1} and transition probability ma-
trix

0 1
0 1 0 ], Vs<t,
1 Qz(s,t) Py(s,t)

where Py(s,t) is given by (2.9) below and (2.3b) provides Q4 (s,t).

PRrROOF. In view of (2.4b), U*(t) is a binary process with zero as an absorb-
ing state. It is now easy to show that such a process has the Markov property.
Furthermore, it follows from (2.3a), (2.2) and (2.8)

(2.9) Py(5,t) = Py(Z*(t) > 0)/Po(Z*(s) > 0) = Hy(t)/ Hy(s).
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Remark 1. The conditional density of the time to failure of the system, given
that Z*(s) = a, for any positive number a, is given by h,(t) in (2.7). However,
given only the information that the system was operating at time s, that is Z*(s) >
0, the conditional density of the time to failure of the system is given by

(2.10) qw(37t) = hx(t)/Hﬂc(s)
where g, (s,t) was defined in (2.3c).
3. Reliability estimation in Situation A

In this section, we give the maximum likelihood estimation of the vector pa-
rameter ¥ = (u,0) with the assumption that the stopped process Z*(t) can be
measured over time independently for each of n systems. It should be noted
here that a number of fine works, including Kutoyants (1984), address maximum
likelihood estimation of the parameters of a diffusion process. However, our sam-
pling designs to collect data from the underlying process are different from the
ones contained in these works. In order to facilitate our proof, later in this sec-
tion, of the uniqueness of the maximum likelihood estimator (m.l.e), we shall now
reparametrize v as 8 = (61, 0), where

1
(3.1) g=" and G ==,
g (o2

In view of (2.3d) and (3.1), once an estimate 8 of 8 is obtained, we can estimate
the reliability

(3.2) R, (t0;0) = P.(Z*(tp) > 0) = H, <to; Z—l, %)
2 U2

as Ry (to;0).

We let subscript ¢ = 1,...,n refer to the label of the system and subscript
Jj =0,..., M; denote the label of the proposed observations of Z*(t) over time for
the i-th system. For the i-th system, let ¢;; be the time from the initial observation
(tio = 0) and Z;(t;;) be the observation at time t;;, i =1,...,m; 5 = 0,..., M.
Furthermore, for some known = > 0, let Z*(¢;0) = z,7=1,2,...,n. It is important
to note that, if Z*(¢;;) > 0, the system is operating at time t¢;;. However, if
Z#(tij—1) > 0 and ZF(t;;) = 0, then we stop gathering data from the i-th system
and record the actual time to failure of the i-th system, T;, where t;;_1 < T; < t;.
In addition, we relabel j as m; and the corresponding proposed observation time,
tim,, is relabeled as T;. It should be noted that Z!(t;x) = 0, k = m;,..., M;.
Thus, for i = 1,...,n, we observe Z} (t;x), k =0,1,...,M;, and V; = T; At;p,- In
order to write the likelihood function of this data set in the light of (2.4a), (2.5)
and (2.6), we introduce the function

Yi(a, b) if >0 and &> 0,
(3.3) ge(a,b) = ¢ hy(t) if a>0 and b=0,
1 if a=0 and b =0,
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where 9;(a,b) and h,(t) are given by (2.3e) and (2.7) respectively. We can now
write the log-likelihood of the data from the n systems as

M;

(3.4) 108) = > “logga, (27 (tij—1), 25 (tij));

i=1j=1

where Aij - tij — tij—1~
For simplicity, we shall assume, during the remainder of this section, that
=My, =--- = M, = M, say, and that the data are equally spaced, that is
A,J =A >0, for i=12,...,nand j = 1,2,...,M. A similar approach can
be used if the observations are not taken according to this simplified scheme. To
maximize the log-likelihood, we consider two equations given by l (8) = 0, where
1(8) = 01(8)/00 is the vector of partial derivatives. This score vector and the
2 x 2 matrix of second-order partial derivatives, [(6), can be computed using (3.4)
and the partial derivatives of the function g:(a,b) in (3.3) that are provided in
the Appendlx The roots of the likelihood equations will be denoted by 0 A =
(614,024).

An iterative scheme such as the Newton-Raphson may be employed here to
obtain 8 4. The initializing values of 8; and 6, in such a scheme may be obtained
by pretending that the portion of our observables, Z7(t;;), j = 1,2,...,M, i =
1,2,...,n are values of the original process Z(t). From the well-known transition
function of the Markov process Z(t) (see Karlin and Taylor (1975), p. 356), we
can write the joint likelihood of the data under this pretension as

1 N n M A 2A
(3.5) (m) { ;kz::l yir — pA)? /20 }

where yir, = 2f(tix) — 2} (big=1), bk = 1,2,...,.M, i =1,2,...,nand N = nM
is the total number of proposed snapshots from the n stopped processes Z}(t),
i =1,2,...,n that are available for inference. Maximizing (3.5) with respect to
p and ¢ we obtain the initial values of #; and 6; as b10 = fig/60 and o = 1 /60,

where
n

M n M
=3 ya/NA, 83 =D D (v — Aod)?/NA.

i=1 k=1 i=1 k=1
We now discuss the asymptotic properties of the m.l.e. 6 A
THEOREM 3.1. Ifn — oo, then we have (a) 8,4 converges in probability to ,

that is 64 25 8. (b) V(64 —8) converges weakly to a bivariate normal distribution
with mean vector 0 and covariance-matriz T 4(0) given in (3.10) below, that is

S —6) 5 N(0,T4(8)).

ProorF. It is clear that the likelihood in (3.4) is based on n i.i.d copies,
Wy, Wa,..., W,, of W, where W = (Z*(A),...,Z*(MA),V). Furthermore,
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with the function g defined in (3.3), the log-density of W is seen to be

(3.6) log f(w;0) =Y logga(Z*((j — 1)A), Z°(jA)).

Jj=1

We first argue that, as a function of 6; and 65, the log-likelihood (@) in (3.4)
provides a unique maximum likelihood estimate. We shall do so by verifying the
following sufficient conditions (see the remarks above Theorem 2.6 in Makelainen
et al. (1981)).

(i) Limg_pel(d) = —oo, where 00O is the boundary of the parameter space
© = {(0:1,03) : —00 < 0; < 0,03 > 0}, and

(ii) The Hessian matrix, [(6), of second partial derivatives of I(#) is negative
definite at every point § € ©.

Starting with (i), we let r = r, = 3., I(V; < M A) denote the count of those
systems that fail during our proposed observation scheme. When the Binomial
random variable r > 0, there are contributions to 1(#), due to the r failures, which
we shall denote as log hg,(s;), 1 =1,2,...,r. Letting

r

(3.7) $1(6) = laib + sit1]?/2s:,
i=1
we obtain
(3.8) [ 7ai(si) = (62)" exp{=51(6)},
i=1

where o~ means that the left-side is proportional to the right-side. It is easy to
show that, if r = 1, or ; = ca;, i = 1,2,...,n, for some constant c, then the
right-side of (3.8) gets unbounded as § — 90 and that, outside of these events,
Si(8) in (3.7) is a positive definite quadratic form in 8. However, as n — oo, the
probabilities of these events tend to zero, so that such cases will not matter in the
large-sample properties of 84. We conclude from (3.8) that terms in [(f) of the
type log h,(t) collectively tend to —oo, as § — 9O.

Letting S2(8) = [A260? + (a — b)202 + 26162 (a — b)]/2A and S3(8) = [A262 +
(a+b)263+26102A(a—b)]/2A, we obtain from equation (A.1) of the Appendix that
Ya(a,b) ~ Oglexp{—S2(0)} —exp{—S53(8)}]. Consequently, as § — 80, ¥a(a,b) —
0 and any term of the type log¥a(a,b) in I(f) tends to —oo. We have therefore
verified that condition (i) above holds.

To show (ii), we first note that it is sufficient to argue that, as functions of 8,
loga(a,b) and log h,(t) have Hessian matrices that are negative definite (see, for
e.g., p. 152 of Apostol (1973) for conditions guaranteeing negative definiteness).
From equations (A.4) to (A.6) of the Appendix, it readily follows that

8% log¥a(a,b)

862 <0,
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and that
39) (82 log ¥ (a, b)) (aﬂogma, b)) _ <a2 logwm,b))Q
' 06% 062 86100,
::[g§]4~2amsgL
2

where, letting y = (ab/A)03, Sy = 1 + [2y/(sinh(y))?] — ctnh(y). In view of the
inequality 1 —e™¥ <y, y > 0, we obtain S; > 0 so that the right-hand side of
(3.9) is positive.

Also, equations (A.9) to (A.11) of the Appendix yield

0% log hq(t)
062

82loghqa(t)\ [ 02 logha(t) 82log ha(t)\’
() (For) - () =o

We have therefore shown that condition (ii) above also holds. It follows that there
is a unique maximum likelihood estimate 84, provided by ! (6) in (3.4), unless our
data belong to certain events whose probabilities tend to zero as n — co.

Since the regularity conditions of Theorem 4.1 on p. 429 of Lehmann (1983)
can be easily verified, we conclude that 6 4 is globally consistent for 8. Defining
the matrix T'4(8) by

<0,

and

o mao =[G o)

where, using (3.6),

1s(6) = - | 2 log F(W.0)]

2
12(6) = ~E | 55055z 108 F(W.0)
and
ua(0) =~ | 2log F(W.0)

we obtain part (b) of the theorem.

Remark 2. Since the expectations in (3.10) are difficult to obtain in closed-
form, usual approximations to the Fisher-information matrix I'4(8), including
those that use the observed information matrix, may, in practice, be used.

CoROLLARY 3.1. If n — oo, then the following hold for the reliability esti-
mate Ry (to; 0A), which is defined through (3.2), where B4 is the m.Le.
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(i) Ralto;04) % Ry(to; 6).

(i) V(Ro(to:6a) — Re(to;6)) = N(0,73), where 75 = (1)La6)(n), 0 =
(Hg(:)l)(to),Héez)(to)) being the vector of partial derivatives given by equations
(A.12) and (A.13) of the Appendiz.

PRrROOF. Part (i) is straightforward and we obtain part (ii) by applying the
8-method (in view of (3.2)) to the asymptotic distribution in Theorem 3.1(b).

4. Reliability estimation in Situation B

In this section, we discuss the estimation of the vector parameter v = (u, o)
with the assumption that the stopped process U*(¢) can be measured over time
independently for each of n systems. We let subscript ¢ = 1,...,n refer to the
label of the system and subscript 7 = 0,..., M; denote the label of the proposed
observations of U*(t) over time for the i-th system. For the i-th system, let U;(¢;;)
be the observation at time ¢;;, ¢ =1,...,n; j =0,..., M;. It is important to note
that, if U} (t;;) = 1, the system is operating at time ¢;;. However, if Uf(¢;;1) =1
and U} (t;;) = 0, then we stop gathering data from the i-th system and record the
actual time to failure of the i-th system, T;, where ¢;;_1 < T; < t;;. Furthermore,
we relabel j as m; and the corresponding proposed observation time, %ip,,, is
relabeled as T;. Thus, for i = 1,...,n, we observe U} (), k = 0,1,..., M; and
‘/7; =T A tiMi-

In view of (2.4b), (2.9) and (2.10), assuming that all the n systems are initially
working so that P(U;(0) =1)=1,i=1,2,...,n, we note that the log-likelihood
of the data is given by

n M;

(4.1) ZZ z] 1 zg)lOgP (Zj*l’tij)

=1 j=1
+u; (ti,5-1)(1 = uf (i) log gu (ts 5 -1, T ).
However, we can simplify /() further using the fact that the data from the i-th
system is of the type (1,1,...,1) or (1,1,...,1,0), depending on whether V; =
ting, or Vi < t;py, respectively. Indeed, assuming without loss of generality that
the failed systems, if any, are the first r systems with failure times si,...,s,,
respectively, we can collapse (4.1) to

T n
liZloghx(si)} + Z log Hy (tim, ), if 0<r<n,
=1

42) )= i=r+1

ZlogHw(tiMi), if r=0.

It should be noted that (4.2) is the log-likelihood of n i.i.d. observations from
the distribution h.(t), in (2.7), that are censored at the known times ¢;5,, i =
1,2,...,n. In fact, upon suitable reparametrization of v, (4.2) is a special case
of the likelihood considered by Whitmore (1983). Thus, once an estimate 2 of v
is obtained using the procedure of Whitmore (1983), we can estimate the system
reliability during the period [0, o] through (2.3d) as H,(to, ).
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Appendix

In the following, we have used notations for hyperbolic functions that are given
in Peirce and Foster (1956). Letting K = ab/t and rewriting ¢:(a,b) in (2.3e),
after the reparametrization (3.1), as

(A1) Wi (a,b;8) = 02\/% exp {—%S(G)} sinh(K#63),

where S(8) is given by S() = t207 + (a2 + b%)03 + 2t(a — b)016,, we obtain the
following derivatives, which can be used to write down the likelihood equations
relating to (3.4), and compute the asymptotic variance-covariance matrix, I" 4(6)
n (3.10).

Ologyy
(A2) 891 = (b a)ez t01,
(A.3) 81;3‘ e 91 [t —a)0; — (a® + b%)02] + 2K 02 (ctnh(K03)),
2 2
02 log 1
(A-4) _‘W — —'t,
d*loghy 1 1,45
+ 2K [ctnh(K#3) — 2K 63 (csch(K62))],
2 2 2
8% log ¢y
. =b—a,
(A6) .00, ¢
log by (t
(A 7) M = —(CL92 -+ t@l),
00,
Olog hy(t 1
(A.8) 0502 (t) :9—2—%((1924—1501),
02 log h,(t) _
(A.9) T —t,
Ologha(t) 1 a2
O logha(t)

Finally, denoting the partial derivatives of H,(¢;8), given by (2.3d) and (3.1),
as Hg(,;ei>(t), 1= 1,2, and using (2.3e) we obtain

(A.12) HO (¢ ():_wt( Z;g;>
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+ {292x‘1> <_j§2 + 91\@) exp[—2919293]} ,

and

62) () = L. O 1
(A13) H:L' (t) 92 'I/Jt <$707 025 62)

-+ {2011’@ <_\j§2 + 01\/%) exp[—20192x]} ,
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