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Abs t r a c t .  Examples of exact expressions for the moments (mainly of the 
mean) of functions of sample moments are given. These provide checks on 
alternative developments such as asymptotic series for n --+ oc, and simulation 
processes. Exact expressions are given for the mean of the square of the sam- 
ple coefficient of variation, particularly in uniform sampling; Frullani integrals 
studied by G. H. Hardy arise. It should be kept in mind that exact results 
for (joint) moment generating functions (mgfs) are of interest as they produce 
a means of obtaining exact results for (cross) moments--including moments 
with negative indices. Thus an exact expression for the joint mgf of the 1st two 
noncentral moments can be used to obtain the mean of the (c.v.) u (but not for 
the mean of the c.v.). A general expression is given for the moment generating 
function of the sample variance. The limitations of Fisher's symbolic formula 
for the characteristic function of sample moments (or more general statistics) 
are noted. 

Key words and phrases: Coefficient of variation, Frullani integrals, monmnt 
series, sample variance, symbolic characteristic function. 

I .  Introduction 

We may consider the three classes of moments  of sample moments.  
(i) Moments  of positive powers of non-central  and central sample moments  

(m'  s, m~ for a sample of size n) are finite polynomials in n - I :  the higher the 
power and sample moment  order s the greater  the complication, except for rare 
special cases such as moments  relating to a normal density, or ,~2 for example. 
If there is interest in the algebraic s tructure,  then a computer  approach would 
apply (REDUCE,  MAPLE,  etc.): recursive schemes are available for numerical 
approaches and loss of accuracy has to be kept in mind. 

* This research was sponsored by the Applied Mathematical Sciences Research program, 
Office of Energy Research, U. S. Department of Energy under contract DE-AC0584OR21400 
with the Martin Marietta Energy Systems. Inc. 
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(ii) As soon as we consider fractional powers of moments (such as the sample 
standard deviation), the series in rz -1 becomes infinite and convergence problems 
emerge; here "convergence" covers the behavior of summation processes and other 
convergence acceleration devices. 

(iii) If we continue to structure a hierarchy of difficulty for sample moments 
then our next candidate would relate to ratios of moments. Common examples 
are the sample skewness, sample kurtosis, and coefficient of variation. Unless 

m " a/2 m4/rn.~ under there is independence of some sort for ratios such as a/rn 2 , 
normality, or m2/m'l 2, malta'1 a for exponential families, then exact closed forms 
are few. From a mathematical point of view, some very interesting results for 
characteristic functions of functions have been given by Good (1968a, 1968b). 

Why should there be interest in this problem? First, if for a statistic t, there 
is the infinite series 

E(~) ~ ro + r l / ,  + . . . ,  

no approach has been found (in the general case) to allow the investigation of prop- 
erties of the general coefficients ;i in terms of a given set of parameters and an 
arbitrary underlying distribution. Suppose then we can determine r20, T21 . . . . .  %0 
using a computer. Apart from simulation with increased precision, with other 
safeguards to check the program, etc., we are devoid of scientific checks. Thus the 
more examples for different statistics and different underlying distributions we can 
construct providing numerical assessments for rl, r2 , . . . ,  and usable closed forms, 
the better. The analysis brings together statistical theory, elementary mathe- 
matical analysis, and computerized implementation. It is a field in which there 
is some satisfaction in seeing numerical consistency at work. An alternative ap- 
proach to the present problem is to use computer algebra; for example, REDUCE, 
MACSYMA, and MAPLE. References maybe made, for example, to Draper and 
Tierney (1973), Niki and Konishi (1986) and Niki (1987, 1989). However there 
are two points to consider. First the expressions may become extremely cumber- 
some and involve large coefficients (usually produced in exact rational fi'action 
form), so that insights are blurred. Second, if the expressions are converted to 
numerical form, there m w  be a convergence problem in the sense that successive 
approximants do not stabilize. 

We give several new examples of moments of ratios of sample moments under 
uniform sampling and touch on symbolic approaches, including one due to R. A. 
Fisher. There is also an example giving the mean of the sample standard deviation 
when the population is a modified normal density. 

2. A fundamental formulae 

For sampling from the uniform density U(0, 1) we have the moment generating 
function 

' ' ' -o~'-x3.~aV. = ~n E ( e - ~ m ~ - , 3 ~ )  = e( dx (a. 3)- 

' and ' By differentiation with for the first two non-central sample moments m I m 2. , 
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respect to ~ and an integration with respect to a, we have 

, ' d~(c~,  3 )  ~=o E ( m ~ e - ~ " ~ )  = rt(I)n-1 (ct' fl) d~--~- 

:{n(l_~ o~,,))'~ 1{~ ~ o ~ o ~  
~-- -  t,-jr 

+ ~ - +  

(n = 1,2, . . . )  

so that, using 

we have for n = 2, 3 , . . . ,  

~00 ~ 
' i / "  z s + l  ~ S e - m l c ~ d o  ~ 

= S : l m  I , 

(2.1) E ( m ~ -  n ~ L ~ ( 1 - e - X )  ~ - l { 2 - e - x ( x  z + 2 x + 2 ) }  
\ r o t  s ) (s--  1)! x x4_S dx,  

( n > s - 2 ;  s = l , 2 , . . . )  

whereas for n = 1, expectation and integral take the values 1/2 for s = 1, 1 for 
s = 2 and oc for s > 2. 

Higher moments are, though more complicated, readily set up; for example, 
the variance would be derived from the integral form E(m~2e - ~ m l  ) followed by an 
adjustment for the square of the mean (see Appendix). 

3. The coefficient of variation (c.v.) 

3.1 Exac t  f o rmu la  
For the (c.v.) 2 we have for the mean 

E(m2/m~2) / /2 = E ( m J m  I ) - 1, 

and from (2.1) 

t m7) 

Now 

Hence 

(3.1) 

= n 2 ~ 1 _:ce 2 - e -  X ( x 2x 2 + 2 x + 2 )  dx.  

dx  x x 2 

e - X ( x  + 1) - 1 

x 2 

) {d( 
// _ ~ 2  e - x  _ dx  

x // (1 
-= 2 n  - -  n 2 e - x  - -  dx. 

x 
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But 

fO °C 
e_x(1-c--")"-~ 

- -  dJ t "  
.F 

1 e_x( 1 _ e_~)n_ld 1 
7~- 2 :r ~-2 

1 foo °c D~{e-x(1-e_-~)"-~}d x 
12 - -  2 3": n -  2 

1 l i ~  D~-2{e-x(1 _ e - x  n - 1  ) }dx 
(n 2)! ,  

(n > 2) 

(n 2 2). 

Now from Hardy (1901) there is the Frullani integral 

(3.2a) L ~ E Ae-"~x dx = - E A In a 

where y~ A = 0, and the real parts of the a's are positive (see also Bromwich 
(1926)). Using (3.2a) we finally find the exact formula 

n -  1 
, ( m [ ' ~  ( - l ) n , ,  2 ( 1 )  (s + 1),~_2 ln(s + 1) 

(3.2b) v,, = E k, m~ 2 ~/ = 2n + ~-~-- ~.T E ( -  1)~ n -s 
s = 0  

(~ = 2 .3  . . . .  ) 

- -  4/3 ( n - ~  ~ ) .  

n----2; 

n = 3; 

' n = 4 :  

n = 5; 

T~----7: 

v 2 = 4 - 4 1 n 2 = 1 . 2 2 7 4 ,  

,* = 6 + 9(4 In 2 - 3 in 3) = 1.2908. l 3 

~4'* = 8 -  8 ( 1 2 1 n 2 -  271n3 + 161n4) = 1.3124, 

c,,~ = 10 + 6 ( 3 2 1 n 2 -  1621n3 + 2 5 6 1 n 4 -  1251n5) = 1.3214. 

v 7 = 1.3281, n = 10: v~0 = 1.3310, n = 15; v~,~ = 1.3324. 

In passing we note tha t  there appears to be no simple approach to the exact 
moments of the c.v. itself, which involves v/-~-~. 

3.2 E(m'2/'m'l) 
Other values of s in (2.1) can be evaluated. A general approach is indicated 

for the case .s = 1, for which 

(3.3) E 

o ~ (1-e-X)'~-lg(X)dx (9(x) =2-e -~(x2+2x+2);  

n f ~  {D~+1(1 e-x  .,-1 .x.~ _ - "  ) 9 t  ) ~ d x  
( .  + 1)! Jo x 

~_>2)  
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n 

(n + 1)! 

x fo ~ {D~+le-X(1 - e - x ) n - l ( g ( X ) x -  2) -t- 2 D n + l ( 1  - e - x ) n - 1 } d  x 

n 
- - - ( - J , ~  + Hn), say. 

( n +  1)! 

The integral in (3.3) is readily seen to equal 1/2 when n = 1. Now for the time 
being ignoring a potential singularity of the integrand at z = 0, we have 

~0 ~c n+ l  -x  j~  = D~: e ( 1 - e - ~ : ) ' - l ( x 2  + 2x + 2) d x 
x 

°c{  n+l  - x  = ( x 2 + 2 x + 2 ) D x  ¢ (1 -- e - x )  n-1  

+ ( n +  1)(2x + 2)D~e-~(1 - e-X) ~-1 

( ) n + l  2D~ e ( 1 -  )~-1 
+ 2 

= xD~+le-~C(1 _ e - ~ ) ~ - l d x  

+ f ~  ( 2 x + 2 ) D ~ { e - X ( 1  - e-~) '~-1 + ( n -  1)e-x(1 - e - x ) n - 2 } d  x 
Jo X 

~o 
oc n - 1  - x 

+ ( n + l ) n  D~ e ( 1 - e - ~ )  " - l d x  
x 

and 

j £ o o  2D~+i(1 _ e_X),~_l 
H,~ = dx. 

23 

The contributing components for J~ are: 

/0 (i) xDn+le-X(1  - e-X) '~- ldx  = (n - 1)!, 

(ii) 2 D 2 e - ~ ( 1  - ~ - x ) ~ - l d x  = - 2 ( n  - 1)!, 

/? (i i i)  2 ( n  - 1) D 2 e - ~ ( 1  - e-x)~-2dz = r t (n -  1 ) ( n  - 1)!,  

~0 ~c n-1 ~-x e -x )n -1  (iv) ( n + l ) n  D x e ( 1 -  ~ dx, 
x 

2[~ D N e - x ( 1  _ ~-x) ,~- i  + (~ _ 1)~-~(1 _ ~-x),~_.~} dx. 
(v) 

J0 x 

As for the singularity at the origin we have for the numerators of the integrand 
in Jn - H,~, when x ~ 0, the contributions 

n ! [ - ( n  + 1) + { ( n -  1) 2 + (n 2 - 3n + 2 ) ( 3 n -  5)/12} 

+ ( n  + 1) - (n z - 1)(3n - 2)/12] = O. 
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Using these and Hn along with (3.2a), we finally find 

(3.4) 
E(rn'2"~ = ( n 2 - n - 1 )  

\ , q )  ~ + t  

÷ (-1)n+lnn-1 ( ) 
E ( _ I ) ~  n - -  1 

(~ + 1)! ~:o s 

x (n 2 + n -  2 s -  2)(s + 1) n - l l n ( s  + 1) 

For example, 

n = l ;  

r t = 2 ;  

n =  3; 

n = 4; 

n = 5 ;  

2/3 (n ~ oo). 

, ! E(m2/rnl) = 1/2 = 0.5, 

E(m~/ml) = (41n2 - 1)/3 = 0.5909, 
! ! E(rn2/ml) = ( - 5  - 321n2 + 271n3)/4 = 0.6205, 

(n = 1 ,2 , . . . )  

E(rn'2/m'l) = ( -11  + 641n2 - 1891n3 + 1281n4)/5 = 0.6339, 
? I E(m2/rn~) -- ( -114  - 4161n2 + 29161n 3 - 5632 ln4 + 31251n 5)/36. 

3.3 Elm ' /rn rs~ 2 /  1 ] ,  s=3, s=4 
Without  going into details we have by similar methods  

(3.5) E (  mi ~ -(-1)nna ( n  

n--1 

s=O 

x (n 2 - 3n + 2s + 4)(s + 1) '~-a ln(s + 1 ) /  

(r~ = 2 , 3  . . . .  

(3.6) 

8 / 3  ( n  --~ ~o ) .  

g ( lyt~ ~ rt  4 ~ 1 

- L-56~'3 \ m ~  4 ] 3 ! ( n -  2)! 
n - 1  

+(-l/n 
8=0 

x (n 2 - 5n + 4s + 10)(s + 1) ~-'i ln(s + 1)} 

(n = 3 ,4 , . . . )  

16/3 (n ~ ~c,). 

Here 5n,  r is the kronecker delta function. Formulas (3.3), (3.4), (3.5) and (3.6) are 
useful for small to modera te  values of n. We next consider the case n large, and 
develop series in descending powers of n. 
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4. c.v. for large n in uniform sampling 

From (3.1) 

L ~ 1 d ( 1 -  e-Z) ~ = 2n - n X n - 1  

= 2 n - n ( n - 1 )  1 ._ dx. x 
In particular consider 

(4.1) J ~ = L ~ ( 1 - - x e - - ~ ) ~ d x  

Now from the g.f. for Bernoulli numbers 

(n = 2,3, . . . ) .  

B l x  B2x 2 
x -- 1 + + + " "  (B2s+l = O) 

-77-. 
with B1 = -1 /2 ,  B2 = 1/6, B4 = -1/30,  etc., we have formally 

L~z ( 2 nb2x2 nb4x4 ) 
J ~ =  e x p - - - +  -~. + ~ + . . .  dx ( 5 ~ = B ~ / s )  

L ° ° (  g2t2K4t4 ) 
2 exp - t + ~ + - ~ ,  + dt 

where 
K ~ = 2 ~ b s / n  s-1 (n = 2 ,3 , . . . ;  s - -  2 ,3 , . . . ) .  

Hence from the cumulant-moment conversion formula (Kendall and Stuart, Vol. 1 
(1958), p. 70) 

O 

J~ = -~(1 +P2 +ft4 + " ' ) ,  

where 

f~2 = 22b2/n = K2, 

h4-  3(22b2)2n~ -9 2454n---- 5- = 3K 2 ÷ K4, 

f i 6 -  15(22b2)3n3 + 15 • n426b4b2 + 26b6n5 - 15K 3 + 15K4K2 + K6, 

28 ¢ 10554 21054522 285652 + 3552 58 x 
Ds \ ~  + n---r- + •6 + ) 

= 105K¢ + 210K4K~ + 28K6K2 + 35K~ + Ks, 

21o(9455  3150545  
DlO = \ ~  + n 6 

630b6b~ + 1575b24b2 45bsb2 + 210b6b4 + + 
n 7 n8 

= 945K  + 3150K4K  + 630K6K  
+ 1575K42K~ + 45KsK2 + 210K6K4 + Klo, 

+ n 9 ]  
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and so on. The usual partition formula is readily recognized. Coefficients of powers 
of n-1 may now be collected. Nmnerically, we prefer the recursive scheme 

£ (2s - ll)K2rD2,-2r 
fi.~s = 2r 

and this leads to the series in powers of n -1 for 

(4.2) 

(fi0 = 1) 

7 J~ = 2 dx , -  1 + fi2 + ~t4 + . "  

a l  a 2 
~ 1 + - - +  + . . -  

n ~-  ' 

Table 1 gives a l ,  a2, . . . ,  a16, 

Table 1. Values of as. 

$ 

1 

3 

5 

7 

9 

11 

13 

15 

as s as 

0.3333333333333333D+00 

0.4222222222222222D+00 

0. I03174603174603 ID+01 

0.2279012345678993D+01 

-0.2118645716423543D+02 

-0.57635521488 I0995D+03 
-0.3483610577651300D+04 

0.3625193832972050D+(~ 

2 0.3333333333333333D+00 

4 0.6296296296296294D+00 

6 0.1696296296296293I>t01 

8 -0.1604938271606215D+00 

10 -0.1292597687634734D+03 

12 -0.1991344764517038D+04 

14 0.2387028998628259D+05 

16 0.3089531708503723D+07 

Series for 

( m'2 : 2n - n(n- E\mT) and E ( m-~12 ) = 2n - n(n - 1 ) J n  - 1  

are readily set up. Using the Computer Oriented Extended Taylor Series (COETS) 
algorithm (Bowman and Shenton (1989)), we give the first 31 terms in Table 2. 

In particular 

E(rn~ 4 8/45 56/135 152/189 
~ a : + 

and terms to the coefficient of rt - 3 °  a r e  available from Table 2. Several problems 
now become obvious 

(a) Are the coefficients derived from the computer oriented algorithm for mo- 
ments of sample moments (COETS) reasonably accurate? There is almost certain 
to be some loss of accuracy especially for the higher coefficients. As far as we are 
aware there is no alternate scheme to check so many terms. 
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Table 2. COETS series for (n/2) f0c~((1 - e Z)/x)ndx. 
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1 

3 
5 

7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 

as s as 

0.3333333333333334D+00 
0.4222222222222222D+00 
0.1031746031746031D+01 
0.22790123456790121)+01 

-0.2118645716423501D+O2 
-0.5763552148811218D+03 
-0.3483610577654536D+04 
0.3625193832976514D+06 
0.2053816997826113D+08 
0.2349105178666393D+(D 

-0.6357113282323224D+11 
-0.6737623308322023D+13 
-0.1480955497222340D.+15 
0.6145083428086140D+17 
0.10910182949339941:}+20 
0.4363522376894407D+21 

2 0.3333333333333334D+00 
4 0.6296296296296294D+00 
6 0. i 696296296296295 D+0 I 
8 -0.1604938271604834D+00 

10 -0.1292597687634692D+03 
12 -0.1991344764517476D+04 
14 0.2387028998629938D+05 
16 0.3089531708510458D+07 
18 0.1040457541926382D+09 
20 -0.3198213561876769D+ 10 
22 -0.74251019474969091)+12 
24 -0.4635173657612202D+ 14 
26 0.2296049254802481 D+ 16 
28 0.9335122325719160D+ 18 
30 0.9688935218900340D+20 

(b) Questions of assessing a value from the series especially if there  is apparent  
divergence, lead to the use of summat ion  procedures (usually Pad6 rat ional  fraction 
sequences in n). This approach is at its worst when there are series sequences of 
one-signed terms, as in Table 2, Direct summat ion  sometimes works well. 

! f8 (c) Assessments of the moments,  such as E ( m 2 / m  1 ) in general will depend 
on the success of (b) in the sense of stabil i ty of successive approximants  and 
comparison with other  procedures a last resort is to use simulation with some 
a t t e m p t  here at error assessment. 

(d) In a few cases we may a t t empt  to derive moment  values for modera te  size 
samples of .rz by a resort to quadra ture  in n dimensions. Note tha t  the CO ETS  
approach should improve for modera te  to large r~ whereas quadra ture  possibly 
deteriorates in this case or maybe  economically expensive. 

(e) Since there are few cases of exact closed forms for moments of sample 
moments, it is clearly important to record a few which are non-trivial and relevant. 
To highlight some of these aspects, see the numerical comparison in Table 3. 

This is a t ru ly  amazing series, with a sign pa t te rn  of periodici ty twelve (there 
are 8 positive terms in the first cycle). Moreover, it is most gratifying to see tha t  
to 17 terms, there  is agreement to at least six significant digits with the completely 
independent  approach using the asymptot ic  development  of the integral form in 
(4.1); incidentally this does not imply tha t  there  is disagreement for higher order 
t e rms - - we  have merely not extended the formula for enough terms. 

Note also tha t  we have not proved tha t  the series continues to have a peri- 
odicity of 12, with increasing positive and negative signs; it is a conjecture from 
the calculations as they now stand. It appears  to be ext remely  difficult to settle 
the problem concerning the sign of the coefficient of n -~. One may consider, for 
example, the much simpler problem of the sign of B2s, a Bernoulli number.  
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Table  3. E(m~/rn~12): C o m p a r i s o n s  of  exac t  values ,  d i rec t  s u m  to  n - s ,  a n d  P a d 6  a p p r o x i m a n t s .  

n 

2 1.2274113 

3 1.2907667 

4 1.3124468 

5 1.3214017 

7 1.3280928 

10 1.3310471 

15 1.3324023 

Exact Direct sum Pad~ Approx. 

1.1638916 

1,2834017 

1.3113096 

1.3211787 

1.3280778 

1.3310463 

1.3324026 

1.3015984 

1.3225076 

1.3281027 

1.3310472 

1.3324026 

5. Symbolic approaches 

There appears to be no solution in general sampling to the moment problem 
(i.e. the expectation of a function of sample moments) for forms in which there 
is a ratio with m~ (s = 2, 3 . . . .  ) in the denominator. For examples, we have the 

sample skewness (v/~z = 3/2 m a / m  2 ) and kurtosis ( m 4 / m ~ ) ;  these of course can be 
treated under normality because of independence with m2. We note however one 
symbolic approach. 

Fisher (1930) stated that if M(t l ,  t2 . . . .  ) is the c.f. of the simultaneous distri- 
bution of xl, x2 . . . .  and if M!(71,7"2,...) is the c.f. of the variates ¢1, @, . . .  with 

ffl : f l ( X l , Z 2 , ' "  "), ~2 = f s (x l ,x2 , . . . ) ,  . . . ,  

then 

( 5 . 1 )  ]~I'(T1, "r2) : e~f~+r2f~+"M(tl, t2, . . . )  I t=o ,  

where fp in the index represents 

d 
fp(dl, d2,.. .) dl = -~1 'd2  = d t 2 " ' "  " 

(Note that Fisher's c.f. drops the usual i = x:Z1.) 
The result in (5.1) is not particularly useful except for structures involving 

the normal, for the succession of derivatives accumulates algebraic complications. 
However, there is an interesting application in the construction of the c.f. for a set 
of central sample moments. Whereas for non-central sample moments 

[{/ }l E(e~lmi+"2~;+'") = E e ( ~ : ~ + ~ : 2 + ) / ~ d ~ ( x )  

~(.) being a distribution function, this breaks down for E ( e ~ m i + ~ : ~ + ~ : ~ 3 + " ) ,  
i / because of the powers and products involved, such as m~ 2, ml,  m s, etc. We do 

have an answer from (4.2). Let 

¢ l 
Xl  = m I --  P l ,  

! ! / 12 
x s - - - - m  s - 2 m l # 1 + # l ,  

! ! ! ,-, ! /S 13 
x3 -= m 3 -- 3m2#1 + ,~ml#~ -- #1 
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etc., and for example 
/ 

~1 ---= ml,  
! 12 ~2 = r r / 2 - m l  = m 2 ,  
/ / / 13 

~3 = m 3  - 3rn2rn l  + 2 m l  = rn3, 
/ I r, / 12 /4 

~4 : m l  -- 4 r n 3 m l  + o m 2 r n l  - 3rn l  = m 4 .  

Then 

(5.2) 
--  eT~f~+r212+rah+r414 E ( e  t~x~+t~z~+t3xa+t4z~ ) [_t=0 

where X = x - #~, and 

f l  - - d l ,  

72 = d2 - d~, 

f3 = d3 - 3d2dl + 2d 3, 

f4 = d4 - 4d3dl + 6d2d~ - 3dal . 

Fisher apparent ly only considered normal populations,  but  no doubt  he was 
aware of the serious limitations inherent in the general formula (5.2). For example, 
we have to find 

4 7 . 
e e l  ~f" {~(tl,  t2, t3, t4)} n 

which involves 
(a) a closed form ¢( t ) ,  

and 
(b) Fa£ di Bruno's  (1876) formula for derivatives of a function of a function. 
Note that  in (5.2) only central moments  of the populat ion are involved. As a 

part icular case, we have for the second sample moment  m2 

(5.3) E(e  "2m2) 

= 

where 

~0 ~- = I - P ~ P 2 - + -  P4 - f - ' ' ' ,  

(T2)  ~_2 
(I)1 ~ -  = 0 -1- - ~ , 3  -'~- 2!r~------~#5 + • • •, 

q'2 = #2 + 1.-~n#4 + 2.@n2 p6 + . . . ,  etc. 
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Introducing the expansion of the multinomial in (5.3), we have 

(5.4) E(e ~'~ ) 
£ (--r2)r (~l(r2/r~)) Trl (~(2~/n))  ~ (~,~(r, /n))  ~''' 

= r!r~2~ Z 1! . " "  m! 
r=0 (r) 

(2r)! 
x 7r~!Tr27:_/TW~,f,n(~ "){+0(T2/'#7.) }~"--~ rr 

the inner summat ion  being over (r) 

p l rq  + p2rr2 + . . .  +pmTr,,, = 2r (rr & p non-negative integers). 

Thus  

where 

r ~  - H ~  ~ " 
0 

(i) Ho = g2~(r2/n), 
( i i )  H 1  = { ( n  - 1)¢~q5~ -2  + ,I~2ep'~-l}/n, 

(iii) H2 = {(n - 1)(3)ffP4~ ~-4 q- 6 (n  - 1)(2)ffP2Rb2gp~-3 q- 3(n -- 1)~22q5~ -2  

Jr- 4()7 -- 1)(I)3(I)1(I)~ -2  -Jr- (I) 4 (1) ;' --1 } /~ .  3 

and so on. There  is an isomorphism with tile formulas for non-central  moments  in 
terms of cumulants.  The combinatorial  aspect of the part i t ions occurring in (5.4) 
can be solved and the scheme implemented by computer  algebra. 

6. Integration and a symbolic method 

The derivative approach hits a problem when fractional moments  are involved. 
Fisher remarked on this in considering the simultaneous distr ibution of the eumu- 

k /1"3/2 m6/ka2 . . . .  , under normality, but  was able lant ratios "7= a/~2 ,6  = k4/k~, # = 
to avoid negative indices (related to k~ a/2, k~ -2 . . . .  ) from the independence of k2 

and ?, ~ . . . . .  Even so his opera tor  contained terms such as DaDa2/2., D6D~/2. How 
these were to be interpreted he did not explain. Take a simple case. 

Now consider 

{/7 E(e-~m; +i~'~'i ) = e(t~x-c~*2)l'~da(a, 
7)C 

so that  using integration on 13 we have 

% ! 12 

-k,~ z (~  . . 4 . 3 <  )d~ : vf~-/kZ(~-""~+',/% = 2 v ' - ~ E ( ~  -'~''~ ) 

with k = 1/(4~).  
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Thus, formally, 

E(e ~m~)_ x / ~ l / ~ e - t ~ / 2 { . f ~ e ( - ~ ~ ' ~ + x t ' / ~ ) / ~ d a ( x ) }  ' ~ - ~  dt. 

Now there will be some interest in setting up an expression for the mean value of 
the standard deviation (or ~ as the definition). This will require a derivative- 
integration operator. Thus 

E(4 7 ) = E 

and 

1 /_  e_t2/2 e(_~:2+xt~-d)/,~da(x) (6.1) E(m.2e - " ' ~ )  - v~ ~ ~ 

//( ) x x2 xt e(_~x2+xtv~)/~da(x)d t 

provided the integrals converge and E ( x / ~  ) exists. 

Example. Take the standard deviation and the modified normal 

f ( x )  = x2e-a'2/'2/X/c~ 

with central moments 

( - o o  < x <  oo) 

/ 2 2 s + 1  = 0 .  

#28 = 1 • 3 • 5 . . .  ( 2s + 1). 

Formula (6.1) gives the correct answer for the normal population N(0, 1), and 
this modified normal happens to work out in closed form; the majority of cases 
investigated raise problems. 

where 

(6.2) 

Now for E ( x / ~  ) in sampling from N(0, 1), with sample size n* 

ao -t- (11//l* + (/2// /"2 -Jr--.. (7l* --~ ~2~) 

= Z(n*) say, 

ao = 1.0, 

al = -0.75, 

a2 = --0.21875, 

a3 = -0.0703125, 

a4 = 0.02880859375, 
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etc. (see Bowman and Shenton (1988), p. 38). The modified normal uses a modified 
form of this series. Omitt ing details, we find the exact result 

2 r(3n/2 + 1/2) ,~=0 \ ~ /  ~ r-(3~/2) s( ) 

where 
3(2s + 1) 2s(2s + 1) 

A s ( n )  = 3 + 
7~ 1~ 2 

Tab le  4. Series  for t h e  m o m e n t s  o f  E {  ~ } .  

1 -5.833333333333334D-01 

2 -3.29861 II I I II I I I ID-01 

3 .4.898726851851850D-01 

4 - 1.213~9554398148D+00 

5 .4.18 I090555073300D+00 

6 -1.814983592929494D+01 

7 -9.332867566471882D+01 

8 -5.426539134798546D+02 

9 -3.408313372843368D+03 

I0 -2.169801765530414D+04 

1 ! - 1.209600165851249D+05 

12 -2.096737849023051D+05 

13 I. 156794357432186D+07 

14 3.387434700043956D+08 

15 7.397013084643852D+09 

16 1.499883569410377D+11 

17 2.9919504740~752D+12 

18 i 5.999677363970388D+ ! 3 

191 1.220027026165194D+ 15 

20 2.522838874276106D+ 16 

21 5.301427747803464D+ 17 

22 1.128267210833465D+ 19 

23 2.4165525821244341:)+20 

24! 5.153283361327697D+21 

25 1.07348728371741713o.-23 

26 2.101375438734438D+24 

27 3.488408606235305 D+25 

28 2.865335923323225D+26 

29 - 1.351239552903729D+28 

30 - 1.098182922360105D+30 

IX2 

, i. "'~' ~ 7 D - 0 1  , 

3. I ~ A A,*,~,*,*,*,U,*,*A D.01 

5.949074074074070D-01 

1.745852623456790D,*4~ 

6.623730066872426D44~ ! 

3.038145549339824D+01 

1.6153566551819001>t4Y2 

9.588825315439080D+02 

6.094033219706652D+03 

3.89087142543463 ID+04 ] 

2.134472722083956D+05 

2.581471833573875D+05 

-2.349775985396583D+07 

-6.643573948211530D+08 

-1.439209917202119D+I0 

-2.911152934686309D+I I 

-5.803688506041115D+12 

- 1.163958873755611D+14 

-2.367916t29820232D+15 

.4.899046200924357D+ 16 

- 1.029979919520193D+18 

-2.192882787821210D+ 19 

.4.697693800744645D+20 

- 1.001659317032084D+22 

-2.085119266319057D+23 

.4.073763042318933D+24 

-6.723821854703140D+25 

- 5.305788708392090D+26 

2.7384438837116361)+28 

2.1792002,8~12949D+30 

0 . ~ D + 0 0  

2.777777777777777D-02 

-5.393518518518521D-01 

- 1.640142746913579D+00 

-6.996117862654319D+00 

-3.504435673466439D+01 

- 1.980130349409097D.t02 

- 1.226949374638573D+03 

-8.052894321512260D+03 

-5.284583746696139D+04 

-2.997071512374554D+05 

-4.7896129839993421)+05 

3.095114027674524D+07 

9.057570711999676D+08 

1.99104~223529389D+10 

4.065704796359189D+ 11 

8.163206939879479D+ 12 

1.64656140802063 ID+ 14 

3.365826749091160D+15 

6.992651235806511 IN-16 

1A75581061374.459D+I8 

3.1522849788508901~19 

6.774341342269927D+20 

1.449022647166871 D+22 

3.0266870091281291)+23 

5.9388444277890931)+24 

9.876975029813245D+25 

8.101267~266283D4-26 

-3.86100651732083 ID+28 

-3.137123162914755D+30 

I& 

0J)0OOO~0~e~OOD.t~ 

8.333333333333333D-02 

3. l,?.~.d J A A,~.4 AA.~,*,u D.01 

2.236689814814814D+00 

8.798900462962957D+00 

4A 12225919495928D+01 

2.532488412530088D+02 

1.602392530820614D+03 

1.079852797502544D+04 

7,371105405524946D4~ 

4.557306557989062D+05 

1.477645165888082D+06 

-2.899293355996&f~D+07 

- 1.0252589~8948889D+09 

-2.375602046372978D+ 10 

*4.979196673139020D+ 11 

- 1.01611398M 18120D+ 13 

-2.073272328338878D+ 14 

4.275861149418266D~15 

,8.9484742765302321)+ 16 

- 1.900407130947212D+ 18 

-4.0839368745904581>4-19 

- 8.828950590706916D+20 

.1.9008091911294181)+22 

-4.002594145344365D+23 

-7.949840888974391 D+24 

- 1.356420101894680D+26 

.1.2734886136828881~27 

4.369333734170663D+28 

3.892230954257207D+30 
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Asymptotically, 

E ( v / ~ )  ~ Zo(N) {Ao(n)Bo(n) 
a l (n )B l (n )  A~(n)B2(n) + + - -  

~2 72 
• . - [, 

) 

where 

(a) Bo(n) = 1, 

(b) B~(n) - ( 2 s -  1) 2 {1 - ( s -  1)/n j Bs_ (n) 

~ a r  , 

s=0 r=0 ) 

(s = 1.2 . . . .  ). 

and a0, a l , . . . ,  are given in (6.2). 
Series for the first four moments of ~ derived by COETS, are displayed in 

Table 4. 
For the mean, for example, the modulus of successive coefficients increases 

showing moderate divergence, whereas the sign pattern exhibits unusual subsets 
of like-signs, making summation techniques fragile unless n exceeds 10 or so. For 
the variance the sign pattern appears to be indicating a periodicity of 24. This 
aspect will receive further study. 

7. General case 

In response to a referee we have reconsidered the general case of (2.1), namely 

I 18 E(mr/rn  1 ) = H(r, s, 77) (U(O, 1) sampling), 

r and s being positive integers. For the integral representation use the r- th deriva- 
tive of the mgf, to derive 

H(r ,s ,n )  - rin~ f ] ~  
. 

Jo 

x k dx 
-- 1 - - e  - x  

X k=0 ~ "  xr- '~+2 

( n - s + r  > 0 ;  n , s  = 1,2 . . . .  ). 

Following the approach of Subsection 3.1, we find by successive integration by 
parts 

(7.1) g(r ,  s, n) = K(r, s, n) foo x dx 
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The integrand is now seen to consist of two components (see (3.3) for example), 
the second leading to 

/ } L~c D R ~ = l - - e - X ( 1 - - e - x )  n-1 
J,~(r, s) = -K(r ,  s, n) k! - dx. 

3; 

In this expression there is a Frullani component (involving logarithmic terms) and 
a non-Frullani component; for the Frullani parts we must incorporate one term 
from (7.1), i.e. 

K(r, s, n )[~c  Dxn(1 _ e-x)n-ldx (R > 0). 
Jo x 

The non-Prullani integral arises from 

{ x r - I D R  a: r-~ ( 
' \ l )  ) 

+ xr-3 R-1 7 D~-2 

z'. x (  D~+(R '~DR-1  \ 1 /  ( R ) ) }  e_s)n_ 1 + ' " + ~  x + ' " +  e-x( 1 -  - • 
r - 1  

Here it seems simplest to expand e -x ( 1 -  c-Z) n- 1 and collect terms. Finally then, 
we have 

H(r, s, n) 
(7.2) 

h'(r ,  s. '~) 
n { ( )  

= (_1) R E ( _ 1 ) , + 1  n -  1 #R 

i )  (~) } 
A=0 

r A - l n - 1  
k # ) k  ) / ]  

+ ( - 1 ) R E E E  ( r - A + 1 )  
A=I p=O r,=0 

(R > 0, n > 0, s = 1,2 . . . .  ). 

The special cases given in (3.2b), (3.4), (3.5) and (3.6) agree with (7.2); the triple 
summatory term in certain cases may be simplified using binomial sums as 

1 ( ~ :  1)2~ 2 + (~ 1)3~ 2 + 2  . . . .  ,,~1 

I -  1 2 
(n 1 
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der ived  f rom der iva t ives  a t  x = 0 of 

X2 X3 ) n--1 

x -  -~.w + 3-- ~ . . . .  

For  r = 2, t he re  is t he  genera l  resul t  for s = 3, 4 . . . . .  

1 6n,s-1 ( - 1 ) ~ - S n  s 
+ 

2 (s - 1) ( n -  s + 2)!(s  - 1)! 

n--1 
× E ( - I ) ~ - I ( - 1 ) ~ ( n - l )  A (h + 1)'~-~A(n, s; X) ln(% + 1) 

X=0 

where  A(n, s; )~) = n 2 - (2s - 3 )n  + (s - 2) (s  + 1) + 2(s  - 2)~ (n > s - 2). 

Appendix 

Higher moments of m2/m ' 
Let  

whe re  

Define 

and a uniform distribution U(O, 1) 

H*(a, fl) = E(~ -O~"~'l--]~/Tt; ) : Hn(o~,/3) 

/o H(~, fl) = e(-~x+&c~)/'~dx. 

H ( ~ ,  0) = I ( a )  = (1 - ea/'~)n/c~, 

/01 A2~(a) = x28e-~X/ndx/n ~, 

! _ s 

where  

Moreove r  

ns+l  
A2 s - oz2s+l 

{ ,.} 
r=0 

AIi( ) = 

512(a)  = n(2) I'~-2(a)A2(a) + nI ' - l (a)A4(a) ,  

M3(a) = n(3)I~-3(a)A32(o~) + 3n(%P~-2A2(o~)A4(a) + nI~-l(c~)A6(a), 
M 4 ( a )  = n(4) I'~-a(a)A4(cO + 6n(a) I'~-3(cOA22(a)A4(c 0 

+ 4n(2)I~-2(c~)A2(a)A~(c~) + 3n(:)I~-2(c~)A2(c~) 

+ nI'~-l(a)As(cO, 

and  these  are e x a m p l e s  of  Fak  di B r u n o ' s  (1876) f o r m u l a  for the  s - t h  de r iva t ive  of  
a func t ion  of a func t ion  (no te  t h a t  th is  f o rmu la  is i somorph ic  to  the  s - t h  de r iva t ive  
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of  e x p ( f ( x ) ) ,  f ( x )  at  least be ing differentiable).  In genera l  these  formulas  up to  

M4 will provide  basic expressions occu r r ing  in the  first four non-cen t r a l  m o m e n t s  
of  l t ?I~2/T~ 1 . 

Final ly  the  required m o m e n t s  are derived by eva lua t ing  t e rms  

{1 /P ( s )}  ~o '~ c~S- l M~(o~)do~ (s = 1 , 2 , 3 , 4 )  

which  are a s sumed  to  exist for specified values of  n, the  sample  size. 
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