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Abs t r a c t .  Bilinear forms in normal variables when the matrices of the forms 
are rectangular are considered. Explicit expressions for the cumulants, joint 
cumulants and joint cumulants of bilinear and quadratic forms are given. Nec- 
essary and sufficient conditions are established for the independence of two 
bilinear forms as well as a bilinear and a quadratic form. Special cases are 
shown to agree with known results. 
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1. Introduction 

Quadrat ic  forms in nonsingular normal variables are widely studied in the lit- 
erature.  Quadrat ic  forms, and their  generalisations in the form of their  mat r ix  
analogues have applications in different disciplines. Quite  a large amount  of work 
is available on the moments,  cumulants,  chi-squaredness, independence,  distribu- 
tions, approximations and asymptot ic  results and Chebyshev 's  type  inequalities 
on one or more quadrat ic  forms, see for example Geisser (1957), Good  (1963), 
Hayakawa (1972), Jensen (1982), Morin-Wahhab (1985) and Provost  (1989), to 
mention a few. Extensive results on quadrat ic  forms are available in the singular 
normal case also. When  it comes to bilinear forms or a collection of bilinear and 
quadrat ic  forms the problem becomes complicated.  Hence not many results are 
available in the l i terature in these lines. Craig (1947) considered bilinear forms 
of the type  X t A Y  where A = Aq a prime denotes a transpose,  X ~ N p ( O , I ) ,  

Y ~ Np(0, I) ,  cov (X ,Y)  = pI,  X and Y are joint ly normal,  p is a scalar and 
I denotes an identi ty matrix.  He established a basic result on the independence 
of two such bilinear forms as well as one bilinear and one quadrat ic  form. An 
al ternate  proof  is given by Aitken (1950). Ogawa (1949) gave a l ternate  deriva- 
tions of the results of Craig (1947). A simpler proof  of Craig's result is given by 
Kawada (1950). Tan and Cheng (1981) computed  the first four joint cumulants  of 
bilinear forms and joint cumulants  of bilinear and quadrat ic  forms when the com- 
ponent  variables are mutual ly  independent ly  distr ibuted.  For a detailed discussion 
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of quadratic forms see Johnson and Kotz (1970). 
In this article we consider bilinear forms of the type X'AiY, Ai is p x q, 

i = 1, 2 and quadratic forms of the type Y!BiY, Bi = B~ where X and Y have 
a joint (p + q)-variate nonsingular normal distribution with coy(X, Y) = El2 not 
necessarily null. Explicit forms for the cumulants of X!AiY~ joint cumulants of 
X!A1Y, X!A2Y and joint cumulants of X'AIY, X'B1Y will be given in this article. 
A number of results giving necessary and sufficient conditions for the independence 
of bilinear forms, bilinear and quadratic forms will also be given. 

2. Bilinear and quadratic forms 

Let the p x 1 vector X and q × 1 vector Y have a joint real normal distribution 
Np+q(0, E), E > 0. Let A1 be a p × q real matrix and As be a q x q real symmetric 
matrix of constants. Let Q1 = X'A1Y and Q2 = Y'AzY. The joint moment 
generating function (m.g.f.) of Q1 and Q2, denoted by ~JQ1,Q~ (t l ,  t2) is given by 
the following expected value. 

MQi,Q2 (ti, t2) 

= E[exp{tlQ  + 

-= fx f eXp 
= I ~ l - 1 / 2 / I z l l / 2 .  

where I( )1 denotes the determinant of ( ) and 

/ E u E i2 - tiAi 1 
= \E 21-tlA~ E 2 2 - 2 t 2 A 2 / '  

~--1 ( y ] l l  ~']12"~ ( ) 
---- E2 i E l  2 )  E = E l i  El2 

' E21 E22 " 

Here E n  is the covariance matrix of X, that is, E n  = cov(X), E22 = cov(Y), 
E12 -- cov(X, Y). By direct multiplication of E and E -1 one can get the well- 
known relations, 

Z21(• l l )  -1 = --Z2-21Z21, 

(2.1) Z2-~ = E 22 -- Z21(y]'11)-lE12~ 

( E n ) - l Z  12 = -E12Z~-~, 

IZl = IE2zIIE111 - '  

and so on. By using (2.1) one can simplify E as follows. 

]E] = ]E n] ](E 22 - 2t2A2) - (E 21 - t l A ~ ) ( E n ) - I ( E  12 - txA1)[ 

iZl l  IIE2~I_llI ~, ~ l / I A  ~1/2 : -- ~b2z~22 za2~22 
t "~ l /2A  ! X-~ X'~--I/2 V~--I/2x ~ /I x~l/2~ 

-- t l l  z~22 Z'XlZ~12z-~22 -~- z~22 z~21~lZ-~22 ) 
2 1 / 2  , - 1  1/2 

- tiE22 A I ( E u  - EnEe2 E21)A1E22 I, 



ON BILINEAR FORMS IN NORMAL VARIABLES 771 

~,1/2 where ~22 denotes the symmetric square root of the positive definite symmetric 
= ~i/2 

matrix E22. One can also write E22 BB' and replace one of ~22 by B and the 
other by B'. For notational convenience we wi]] use the symmetric square root. 
Thus the joint m.g.f, simplifies to the following. 

(2 .2)  = II - t i E 1  - t2E2 - t~Ea1-1 /2  

where 

t - %-.1/2Ai ~. ~ . - -1 /2  
E 1 : E 1 = Y]221 /2~21AlY]~£  2 -4-z--~22 -'~lZ~12z-.22 , 

o,¢.1/2 A ~ .1 /2  
E2 = E~ : '~22 z-12~22 

p 1/2 I - 1  1/2 
E3 = E 3 = E22 A I ( E n  -- E12E22 E21)AIE22 - 

The joint cumulant generating function is available by taking the logarithm of the 
joint m.g.f, and expanding it. That is, 

(2.3) 
1{ 1 } 

lnMQ1,Q2(tl,t2 ) = ~ ~ t rCk  
k = l  

where tr( ) denotes the trace of ( ) and 

(2.4) C = tiE1 + t2E2 + t2E3 

and without loss of generality it is assumed that [[C[[ < 1 where [1( )[I denotes the 
norm of ( ) .  Thus the covariance between Q1 and Q2 is available from (2.3) by 
taking the coefficient of tit2 in the expansion on the right side of (2.3). This can 
come only from C 2. 

(2.5) C 2 2 2 2 2 4 2 E2E1) = t i e  1 + t2E 2 + t i E  3 +tl t2(E1E2 + 

+ ta(E1E3 + E3E1) + t2t~(E2E3 + E3E2). 

Let the (rl, r2)-th joint cumulant of Q1 and Q2 be denoted by K~ 1,~2. Then 

(2.6) 1 1 tr(E1E2) KI,1 = cov(Q1,Q2) = ~ tr(E1E2 + E2E1) = 

1 - 1 / 2  1/2 
= ~tr(E22 EmA1E22 + r~2Ai~12~221/2)(2r~£2A2~ 2) 
= 2 tr(E~tA1E22A2). 

In the simplification in (2.6) we have made use of the properties that for any two 
matrices A and B, tr A B  = tr BA,  tr A = tr A' whenever the products are defined. 
These properties will be frequently made use of in the discussions to follow. Note 
that KI,1 = 0 when •21 -= 0 or when A1E22A~ = O. 
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2.1 Joint cumulants of bilinear and quadratic forms 
The joint cumulant  generating function is given in (2.3). Now we will establish 

81 82 a convenient way of finding the coefficient of t 1 t 2 from the expansion given in 
(2.3). Write 

(2.7) C = t l E t +  t2E2 + t3E3, t3 = t 2. 

The • • r l  r2  r3  terms containing t i t 2 t 3 where r l  ÷ r2  ÷ r3  = r can come only from C r. From 
Pl r2  r3  (2.4), (2.5) and higher powers of C note that  the coefficient of t 1 t 2 t 3 in (2.3) is 

(1/2r)tr~-~(~,x2,~a)(E1E2E3) where the notat ion ~-~(~,,~2,~3)(EIE2E3) stands for 
the sum of products  of permutat ions  of El ,  E2, E3 taking any number  of them at 
a time so that  the sum of the exponents of E~ in each term is ri, i - 1, 2, 3. Thus 
we have the following result. 

THEOREM 2.1. Let Q1 = XIA1Y, Q2 = YtA2Y, ( X )  ~ Np+q(O,~), F. > O, 

where A2 = A~ and A1 be real matrices of constants, A1 be p × q and A2 be q x q. 
Then the (rl + 2r3, r2)-th joint cumulant of Qt and Q2, denoted K rt+2,.3.~2 is given 
by 

(rl ÷2r3)[r2[  ( 2r ) 
( 2 . 8 )  /(rl +2ra,r2 = tr  E (E1E2E3) 

( r l , r 2 , r z )  

where El, E2, E3 are defined in (2.2), r = rl ÷ r2 ÷ r3 and ~(~1.~2,~3) is explained 
above. 

For example what  is K2,2 ? The possible breakdowns of (rl ,  r2, r3) are (0, 2, 1) 
and (2, 2, 0). 

E (E1E2E3) = E~E3 + E3E~ + E2E3E2, 
(o,2A) 

r = 3, ra + 2r3 = 2, 

E (EIE2Es)= 2 2 2 2 E1E2EI+ E1E 2 + E2E 1 + E2E~E2 
( 2 , 2 , 0 )  

+ E1E2E1E2 + EzEIE2E1, 

r = 4 ,  r x + 2 r 3 = 2 ,  

r2 ----2. 

r2 = 2 .  

Thus 

(2.9) 2 t r ( E 2 E  3 + E3E22 ÷ E2E3E2) K2,2 = 5 

l tr(E l + + E1 +5 
+ E2E21E2 + EtE2E1E2 + E2E1E2E1) 

2 2 = 2trE2E3E2 + 2 t r E 1 E  2 + t r(E1E2) 2, 
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Remark 2.1. When X and Y are independently distributed E12 = 0 and the 
joint cumulants of Q1 and Q2 are available from (2.8) by replacing E1 by a null 

~ 1 / 2 a ¢ ~  a ~1 /2  
matrix and E3 by ~22 ~1~11~1~-22 • In the sum }-~(r~,r>ra) replace E1 by an 
identity matrix and put r 1 = 0. 

Thus when X and Y are independently distributed 

/£2,2 = 8 tr(E22A2E22XIEllAIE22A2 ). 

Remark 2.2. When X and Y are equicorrelated in the sense of Craig (1947) 
then q = p, A1 = A~, A2 = A~, E l l  = I, E22 = I, E12 = pI = E21 and in this 
case E1 = 2pAl, E2 = 2A2 and E3 = (1 - p~)A~. 

Thus when X and Y are equicorrelated in the sense of Craig (1947), 

2 2 t rA~A~ 16p2tr(A1A2) 2. K2,2 = 8tr  A1A2 + 24p 2 + 

Remark 2.3. If the eumulants of the quadratic form Q2 are to be obtained 
then in (2.8) put rl = 0, ra = 0 and replace E1 and E2 by identity matrices in the 
sum Y~(m.~2,~a)" This will be listed as a corollary. 

COROLLARY 2.1. The r-tit cumulant of the quadratic form Q~, denoted by 
K(r Q2), is given by, 

(2.10) K!Q2) r! . / ,~,1/2_ x~l/2,~r = 2r tr ~--~(E2) = U - l ( r  - 1)!1;rt2~22 212z..22 ) . 
(~) 

Remark 2.4. If the cumulants of the bilinear form Q1 are to be obtained then 
in (2.8) put re = 0 and replace E2 by I in the sum. 

COROLLARY 2.2. 
given by, 

The (rl + 2ra)-th cumulant of Q1 denoted by ,Ac2~) is l~rl -r-2v 3 

(2.11) K(Q1) (rl + 2ra)! 
r l+2~a-  2(rl + r 3 ) t r  Z (EIE3). 

(rl ,r3) 

For approximating the density of Q1, one may need the first four cumulants. These 
will be listed here explicitly. 

K[Q, ) i I = 5 tr Z ( E 1 E 3 )  = ~ t rE1  = trE21A1 = expected value of Q,, 
(1,0) 

K~Q1) _ 2! 2~ 
- 2(2---) tr Z (E1E3) + ~ tr Z (EIE3) 

(2,0) (0.1) 

1 
2 tr E12 

K~Q1) _ 3! 
- 2(3----) tr 

+ trE3, 

3~ 
(E1E3) + 2 ~  tr ~ (E1/~3) 

(3,o) (1,1) 

= tr E 3 + 3 tr E1E3, 

K(Q~)_ 4! 4! 4! 
-- 2(4---) tr Z (E1E3) + 2 - ~  tr Z ( E 1 E 3 )  -4- 2 ~  tr Z (E1E3) 

(4.o) (2,1) (0,2) 

= 3 t r E  4 + 12trEaE~ + 6trE32. 
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2.2 Independence of bilinear and quadratic forms 
Consider the same Q1 and Q2 in Section 2. What is a set of necessary and 

sufficient conditions under which Q1 and Q2 are independently distributed? For 
the equicorrelated case, see Remark 2.2, Craig (1947) and others showed that the 
condition is A1A2 = 0. It is easily seen that when X and Y are independently 
distributed, the condition remains the same if A 1  = A~ and E 2 2  = I. We wilt 
establish a general result with the help of the joint cumulant generating function 
given in (2.3). We need a result which will be stated here as a lemma. 

LEMMA 2.1. For two arbitrary p × p matrices A and B, 

(2.12) tr(AB) 2 + 2tr (AB) (B 'A ' )  = 0 ~ A B  = O. 

This result was established by Kawada (1950). The proof follows by observing 
that the left side of (2.12) can be written as a sum of positive definite quadratic 
forms of the type (1 

E ( C o ,  Cai) 1/2 \ c j i /  
ij 

which can be zero only if c~ o = 0 for all i and j ,  where cij is the ( i , j ) - th  element 
of AB.  

THEOREM 2.2. Let t X )  ~ Np+q(O,E), E > O. Let Q, = X ' A 1 Y  and Q2 = 
, , - - /  

Y ' A 2 Y ,  A2 = A'2 and A1 be p × q. Let coy(X) = E n ,  cov(Y) = E22, cov(X, Y) = 
E12 = E~I. Then Q1 and Q2 are independently distributed iff A1E22Ag~ = 0 and 
A'~E12A2 = O. 

PROOF. Let Q1 and Q2 be independently distributed. Then 

(2.13) MQl,o(tl, O)MO,Q2(O, t2) = MQ1,Q~(tl, t2) 

where MQI,Q2 (tit2) is given in (2.2). Take logarithms on both sides and expand as 
2 2 in (2.3) and then equate the coefficient of t i t  2 on both sides to get the following. 

(2.14) 2 tr(E2E3E2) + 2 tr(E~E~) + tr(EiE2) 2 = 0 

where El,  E> E3 are given in (2.2). Equation (2.14) is noted from (2.9). But 
observe that El,  E2, E3 are symmetric matrices and further E3 can be written as 
B ' B  where B (Y~11 E 1 2 E 2 1  1/2 1/2 = - ~ 2 1 )  AlZ22 . Hence (2.14) reduces to 

(2.15) [2tr(E~B')(BE2)] + [tr(E1E2) 2 + 2tr(E1E2)(EIE2)'] = O. 

But the quantities in each bracket is nonnegative and hence each is zero. That is, 
EIE2 = 0 and BE2 = 0. But BE2 = 0 ~ AIE22A2 = 0 since E l l  - -  E12E2-1E21 > 
0, E22 > 0. Then 

E1E2 = 2(E;~/2E21AlE2eA2E~ 2 + ~ 2 / 2 A t l r 1 2 A 2 r ~  2) 

ox'~l/2 /1/ X-~ a v~l/2 
= Lza22 2"llZ-a12e't2za22 , 
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Thus EIE2 = 0 ~ A~E12A2 = 0. This establishes the necessity. Now check 
MQ~,o(tl,0)MO,Q~(O, t2) and MQ~,Q~(tl,t2) separately under the conditions 
A1E~A~ 0 and = AIE~A~ -- 0 to see that they are equal. This completes 
the proof. 

COROLLARY 2.3. The necessary and sufficient condition for the indepen- 
dence of Q1 and Q2 is (1) AIE22A2 = 0 when X and Y are independently dis- 
tributed; and (2) A1A2 = 0 when X and Y are equicorrelated in the sense of Craig 
(1947). 

Remark 2.5. In the proof of Theorem 2.2 we have made use of the explicit 
expressions for the cumulants. By writing bilinear forms as quadratic forms 
one can Mso make use of the results on quadratic forms, see for example Rao 
((1973), p. 188), for establishing this theorem. In this case write Q1 = X'A1Y = 

0 (1/2)(X, y I ) ( A  0 A 1 ) ( X ) a n d Q 2 = Y P A 2 Y = ( X ' , Y  ' ) ( 0  0 A2)  ( X )  
0 

3. Bilinear forms 

Let ( X )  ~ Np+q(O,E), E > Owith c o v ( X ) :  Ell, cov(Y) = E22, cov(X,Y) 

= El2 = E~I. Let QI = X'A1Y and Q2 = XtA2Y where A1 and A2 are p × q real 
matrices of constants. We will use the same notation Q2 to denote a bilinear form 
here. This will not create any confusion since we will not be considering results 
where the Q2's of Sections 2 and 3 both will be involved. The joint m.g.f, of Q1 
and Q2, denoted again by 3IQ~.Q~ (tl, t2) is available by following through similar 
steps as in (2.1) to (2.2). Then 

(3.1) MQ ,Q2(tl,t2) = IB*I- /2/I I 1/2 

where 

IB* 
E 11 E 12 -- tlA1 - t2A2 

= E 21 - tlA~l - t2A~ E 22 

: Ir1111r211 

• [Iq --F~21 ( t l A  1 - 4 - t 2 A 2 ) -  E22(t~A~ + t2A~)~,12~,21 

- E22(tln~1 + t2A~)(EH - ~12E21~21)(tlA1 q- t2A2)[. 

Thus 

~IQx,Q2(t i , t2)  

~1/2~, A '  + t2A~)E12E~I /2  (3.2) = rIq - 2~/2221(txA1 + t2A2)212~ 2 - ~22 ~1~1 

- E2~/2(tlA1 + t2A2)'(Ell - E12E2.21E21)(tlA1 + t2A2)E~2[ -1/2 
/ 1/2 1/2 

(3.3) = lip - ~11/2~.12(tlA11 4- t 2 A 2 ) ~ l l  - E l1  (~IA1 -~- t2A2)~21~111/2 
1/2 # A V~1 /21 -1 /2  

- Ell  ( t lA t+  t2A2)(E22 - E21E1~E12)(tIA1 + ~2~2j z-q1 ] - 



776 A. M. M A T H A I  

From (3.2) one can write 

(3.4) ] t I Q ~ , Q 2 ( t l , t 2 )  = [Iq - t i E 1  - t 2 E 2  - t a E 3  - t 4 E 4  - t 5 E s ]  - 1 / 2  

where 

(3.5) 

~3 = t2, 
, 

E1 = E 1 
J 

E2 = E 2 

= E; 
E4 = E~ 

= E ;  

t4  = t~ ,  t5 = t i t 2 ,  , 

: Y]221/2y]21A1Y]ol~ 2 -~- Y]~2Al~12Y]221 /2  

x - , - 1 / 2 v  , / i  v ,1/2  x~l/2 M v ,  x ~ - l / 2  
z~22 z~21zt2~22 -~- ~ 2 2  za2z~12~22 , 

x~l/2At r~a x~1/2 ~"22 ~ t~ '~1~22  , D = El l  - E12E2.1E21, 
x~l/2 M n a  x~l/2 
z~22 za2 .tJ.m.2 z--, 22 

v'l /2 at n a  ~,1/2 ~1/2AI  n /1 ~ 1 / 2  
za22 ZalL 'Z ' I2~22 q - ~ 2 2  Za2JJZ-tl&22 ' 

For convenience we will use the same notat ion Ei 's  as in Section 2. Note that  the 
E i ' s  appearing in Sections 2 and 3 are not all the same. Consider the expansion 
of lnMQ~ Q~(tx t2) as in (2.3) where the C here is given by 

C = t l E i  + . . .  + t 5 E s .  

The coefficient o f t ~  1- . . t~  5, r = rl  + - . . + r 5  is coming from C ~ only. This is 
given by (1 /2 r ) t r  ~-~(~1 ..... ,,5)(E1 . . .  Es) where the notat ion is explained in Section 

2. Note that  t3 = t~, t4 = t~ and t.5 = t i t 2  and hence the joint eumulants  of the 
type  (rl + 2ra + rs, r2 + 2r4 + rs) can be obtained from this coefficient. Again 
denoting the (Sz, sz)-th joint cumulant of Q1 and Q2 by K ~ , ~  we have, 

THEORENI 3.1. 

(3.6) Km +2ra+~5,~2+2~.4+,- ~ 

(rx + 2r3 + r5)!(r2 + 2r4 + r5)! 

2r tr ((,,1,..~.,,,5)(E1 E5) )  

w h e r e  r = rx + " ."  + r s .  

R e m a r k  3.1. Various cumulants of Q1 are available from (3.6) by put t ing 
r2  = 0, r4  = 0, r5  = 0 and replacing E2, E 4  and E5 by identities in the sum 
Y~(E1. . .  Es).  

R e m a r k  3.2. When X and Y are independently dis tr ibuted various joint 
cumulants  of Q1 and Q2 are available from (3.6) by put t ing E1 = 0, /?72 = 0 and 
replacing D by El l .  In the sum ~ ( E I . . .  Es) put  rl = 0, r2 = 0 and replace E1 
and E2 by identity matrices. 

R e m a r k  3.3. When X and Y are equicorrelated in the sense of Craig (1947) 
the joint cumulants of Q1 and Q2 are available from (3.6) by put t ing E1 = 2 p A l ,  
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E2 = 2pA2, E3 = (1 - p2)A~, E4 = (1 - p2)A~, E5 -- 2(1 - p2)AIA2. Note that in 
this case q = p ,  A1 = A t, A2 = A~. 

The first few cumulants will be needed if someone is trying to approximate 
the distributions of Q1 and Q2 or the joint distribution of Q1 and Q2. Hence a 
few of these will be listed here explicitly. 

Take K1,0, K0,1,/(2,0, Ko.2 from (2.11) or from the explicit forms given there. 

1 1 1 
i t r ( E 1 E 2 + E 2 E 1 ) +  t r E s =  t r E 1 E 2 +  trE5 

= tr(E21A1E21A2) + tr(E2~A~E11A2) = cov(Q1, Q2); 

2! 
K2,1 = 2 ~  tr(E~ E2 + E2 E~ + E1 E2 El) 

2! 2! 
(3.7) + 2 - ~  tr(E1E5 + EsE1) + ~(2) tr(E2E3 + E3E2) 

= tr(E~E2) + tr(E1Es) + tr(E2E3); 

K1,2 : tr(E22E1) -[- t r (E2E5)  -[- tr(E1E4); 

2 2 E2E4 + tr 2 t rE3E4 K2,2 = 2trE~E2 + 2tr  E~ + 

+ 2 tr E~E3 + 4 tr E1E2E5 + tr(E1E2) 2. 

Remark 3.4. When X and Y are independently distributed 

(3.8) K2,2 = tr E5 ~ + 2 tr E3E4. 

THEOREM 3.2. Let ( X )  ~ Np+q(O,E), E > O, cov(X) -- El l ,  cov(Y) - _ 

E22, cov(X,Y) = E12 = E~I. Consider Qi = X ' A i Y ,  where Ai is a p × q real 
matrix of constants, i = 1, 2. Then the necessary and sufficient conditions for the 
independence of Q1 and Q2 are 

AIE22A~ 0, I = A1EllA2 = 0, A2E21A1 = 0, A1E21A2 = O. 

PROOF. Necessity. Let Q1 and Q2 be independently distributed. Then 

(3.9) /1/IQ1,0(tl, 0)/~!0,Q~ (0, t2) --- MQ1,Q 2 (t l ,  t2) 

where MQ1,Q2(tl,t2) is given in (3.2). Take logarithms on both sides of (3.9), 
22 expand and compare the coefficient of t i t  2 on both sides to get K2,2 = 0 where 

K2,2 is given in (3.7). Since K2,~ = 0 for all E12 it should hold for E12 = 0 also. 
Then from (3.8) 

(3.10) t rE~ + 2tr  E3E4 ---- 0. 

But note that 

trE52 = tr(Es)(Es) '  _> 0, 

tr(E3E4) --- tr(D1/2A1E22A~DW2)(D1/2AIE22A~D1/2) ' > O. 
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Hence 

D1/~A1E~2A;D ~/~ = 0 ~ A~E~A~  = O. 

Then  from (3.3) one has X I E u A e  = 0. Now impose these conditions on (3.7) and 
simplify. After a lot of algebra K~,2 of (3.7) can be wri t ten  as follows. 

(3.11) t 1/2 1/2 
K~,2 = 2 t rUl (E22  A 2 E I I A 2 E ~  )U~ 

1/2 t 1/2 
+ 2t rUe(E22 A1EnAIE22  )U2 

-t- 2 [ t r ( U 1 U 2 )  2 ÷ 2tr(UIU2)(U2U1)] 

where 
x ~ - l / 2 x ~  a ,c,1/2 

U 1 ~ z..22 z~21~lZ-J22 
x~ -  1/2x~ / i  ~ 1 / 2  

g 2 ~- z~22 z-~21.e't2/,22 . 

Note tha t  U1U~ -- 0. Also independence of Q1 and Q2 implies tha t  K2,2 = 0 for 
all Ax, A2, E n ,  E22. Pu t  U2 = 0, tha t  is, select an A2 such tha t  E21A2 = 0. Then  

x~1/2 /i ~ l / 2 T ,  
K2,2 = 0 ~ ~ n  ~2~22 (;1 = 0 ~ A2E21A1 = 0. Similarly A1E21A2 = 0. Under 
the conditions A2E21A~ = 0 and A1221A~ = 0 note tha t  U1U2 = O, U2U1 = 0 and 
K2,2 = 0. Hence, the conditions A2E~IA1 = 0 and AIE21A2 = 0 are necessary. 

To see the sufficiency consider MQ~,O(tl, 0)Mo,Q~ (0, t2) and MQ~,Q~ (tl ,  t2) sep- 
arately and impose the conditions A1E22A~2 = 0, A~EIIA2 = 0, A2E21A1 = 0 and 
AIE21A2 = 0. Under these conditions the E5 of MQ~,Q2(tl, t2) reduces to 

(3.12) x ~ I / 2 A /  x~ x~-- lx-  a ~ 1 / 2  x ' l / 2 A t  x ~ x ~ - l x  ~ A x ' , l /2  
E 5  z --z~22 .tllZ.,12z~22 z_~21z-12z_,22 - -  z_~22 z-t2z~12z~22 z.,21ZllZ~22 . 

MQl,o(tl ,  0)Mo Q2 (0  t2) 

= II - tiE1 - t2E2 - t21E3 - t2E4 

+ t~t2E3E2 + tlt2E1E2 + tlt~E1E4 + t21t~E3E4[ -1/2. 

But  note tha t  under the necessary conditions E1E4 = O, EaEe = O, E3E4 = 0 and 
E1E2 = - E 5  of (3.12) which establishes sufficiency. 

COROLLARY 3.1. When X and Y are independently distributed then Q1 and 
Q2 are independently distributed iff A1E22A~ = 0 and A ~ E n A 2  = O. 

C O R O L L A R Y  3.2. When X and Y are equicorrelated in the sense q = p, 
E l l  ~--- O'12I, E 2 2  = O '2I ,  E21  : pI = E12  then Q1 and Q2 are independently 
distributed iff A1A~ = O, A~IA2 = 0, A1A2 = O, A2A1 = O. 

COROLLARY 3.3. When X and Y are equicorrelated in the sense of Craig 
(1947) then Q1 and Q2 are independently distributed iff A1A2 = O. 

Remark 3.5. Similar comments  as in Remark 2.5 are also applicable here. 
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