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A b s t r a c t .  Three known measures of multivariate relationship are presented. 
Under the null hypothesis of lack of multivariate relationship between K ran- 

dom vectors, the asymptotic joint distributions of the (2K) values taken by 

these measures for all possible pairs (X (0, x(J)),  1 < i < j < K, is used to 
construct tests of the null hypothesis based on the maximum and more gener- 
ally, on the greatest values of the measures. The asymptotic power of the tests 
is also obtained under a sequence of alternatives. 
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1. Introduction 

Suppose we have K sets of measurements  on n individuals where each set 
of measurements  represents a specific characteristic.  For example,  we measure a 
vector of biological variables such as age, height and weight, a vector of biochemical 
variables like cholesterol, a lbumin and calcium levels in the blood and a vector 
of variables representing mental  trai ts  of individuals. We are then interested in 
determining the existence of relations between these vectors of characteristics and 
if there  is one, to find which vectors are significantly related. Similar work has been 
done by Cameron and Eagleson (1985) when considering only random variables. 

To measure the relation between sets of variables we use three known measures 
of mult ivariate  relationship. The  first measure proposed by Stewart  and Love 
(1968) is classified as a redundancy measure while the two others  proposed by 
Escoufier (1973) and Cramer  and Nicewander (1979) are known as measures of 

mult ivariate  association. We can calculate the (2K) different values taken by these 

measures to compare  the K vectors two at a time. We will suppose throughout  
tha t  the parent  dis tr ibut ion is in the class of elliptical distributions.  This class of 
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distr ibutions is more general than  the mult ivariate normal model and yet it is quite 
simple (see, for example,  Devtin et aL (1976)). Under this class of distributions,  

the asymptot ic  (as n ~ oc) joint distributions of the ( K )  measures derived in 

Allaire and Lepage (1990) are used to construct  statistical tests to decide when 
large values are significant. The  procedure is approximate  since it is based on 
asymptot ic  null distributions but  it can give an indication when assessing the 
significance of large measures of mult ivariate relationship. 

In Section 2, we present the three known measures of mult ivariate relationship, 
some propert ies and their asymptot ic  joint distr ibutions under  the null hypothesis. 
We propose tests of lack of relationship based on the maximum of the measures in 
Section 3 and obtain the asymptot ic  non-null distributions of the tests statistics 
under a sequence of al ternatives in Section 4. In Section 5, we construct  tests 
based on the s largest measures of relationship, 1 < s < K ( K  - 1)/2. Finally, an 
application of the procedure is presented in Section 6. 

2. Measures of multivariate relationship 

Let 

X = 

be a p x 1 random vector where X (~) is p~ x 1, i = 1 , . . . , K  and }--]~iK lp i  = P. 

Define for i = 1 , . . .  ,K ,  p(i) = E ( X  (i)) and for i , j  = 1 . . . . .  K ,  

Write 

z ~  = Cov(X (~), x O ) )  = E { ( X  (~) - ~(~))(X(:) - ~0)) ,} .  

# = " and E = " " 

\ # ( K )  EK1 " ' "  E K K  

and assume E positive definite. Consider a random sample X1 . . . . .  Xn (n > p) 
drawn from X where 

for a = 1 . . . .  , n. The  usual unbiased est imators  of # and E are 

2 • and S = " ' 

\ ~- (K) SK1 "" SKK 

where for i = 1, . . .  , K ,  2 (~ = ( 1 / , )  E L l X 2  ~ and for ~,j = 1 . . . . .  /<, 

l% 

1 
a = l  
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We consider first, the measure of multivariate relationship proposed by Stewart 
and Love (1968) and defined between X (i) and X (j) for i , j  = 1 . . . . .  K ,  i ¢ j ,  by 

RviSZ) = tr<SijSJJ z Sji)  

tr(Sii)  

where tr(.) is the trace operator. It is classified as a redundancy measure since it is 
based on the prediction of X (/) by X I j) (see Cramer and Nicewander (1979)). We 
consider also two measures of nmltivariate association. These measures are gener- 
alizations of the correlation coefficient. A first measure is proposed by Escoufier 
(1973) and is defined by 

R~52) = t r (S i jS j i )  ," 

I tr(S2i i ) tr(S~j)  

a second measure is presented by Cramer and Nicewander (1979) and is defined 
by 

= tr(S l S  SLl S, i) 

Pi 

for i , j  = 1 , . . . ,  K ,  i ~ j .  These measures possess the following properties: (a) 

0 < RVi~ h) _< 1 for h = 1,2,3; (b) RViJ ~) = RVj% h) for h = 2 and for h : 3 

if we replace p, by min{pi ,p j} :  (c) when pi = pj = 1, RV~5 h) reduces to the 

squared correlation coefficient between variables X (i) and X (j), for h = 1,2,3; 
(d) when Pi = 1, RV/5 h) reduces to the squared multiple correlation coefficient 

between the variable X (i) and the vector X (¢) for h = 1,3; (e) RV/51) and RV/(j 3) 
functions of canonical correlations and (f) RV~% 3) is invariant under nonsingular are 

of either X (0 or X (j) while RV/~ 1) and R V ~  ) are invariant linear transformations 
under orthogonal transformations of either set of variables. For the proof of these 
properties and other results on measures of multivariate relationship, the reader is 
referred to Cramer and Nicewander (1979), Ramsay et al. (1984) and Lazraq and 
Cl~roux (1988). 

Suppose that the distribution of X is in the class of elliptical distributions 
Ep(p,  V) with mean vector #, covariance matrix ~ = c~V for some c~ and kurtosis 
parameter ~ (see Muirhead (1982)). This class of distributions generalizes the mul- 
tivariate normal distribution (t~ = 0) and contains a large number of alternatives to 
the normal model like the e-contaminated multivariate normal distribution and the 
multivariate t distribution. It includes long-tailed and short-tailed distributions. 
We are interested in the null hypothesis 

(2.1) Ho : Eij = O, l < i < j < K 

which does not imply mutual independence of the vectors X (~) (except when ~; = 0) 
but only non-correlation between the components of X (0 and X (j) for all 1 < i < 
j < K. In Allaire and Lepage (1990), it is shown that H0 is equivalent to the 
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hypothesis of lack of multivariate relationship between X (~) and X (j) that is, for 

fixed h, h e {1, 2, 3}, pVi~ h) = 0, 1 _< i < j <_ K where pVi~ h) is the population 

measure of multivariate relationship defined in the same manner as RVi~ h) replacing 
S by E for 1 < i < j < K and h = 1, 2, 3. In Allaire and Lepage (1990) it is also 

shown that for fixed h, h e {1, 2, 3}, the RV~h)'s, 1 <_ i < j < K,  under H0, are 
asymptotically (as n ~ oc) independent and distributed as 

(2.2) (1 + ~) p~ p~ / ' k  " ijkl if h = 1, 
k = l  l = l  

(2.3) (1 + n) P~ pj 
"ak l vV i j k l  

{tr(E2~) tr(E~j)k=z l=1 

(2.4) ( 1 + ~ )  2 if h = 3  Xp~pj  
Pi 

if h = 2, 

where A~i),...,A(pi~ ) are the eigenvalues of E~i, i = 1, . . .  ,K ,  and the Wijkl are 
independent N(0, 1) random variables. Distributions (2.2) and (2.3) were actu- 
ally derived for the case K = 2 in Lazraq and Cl~roux (1989) and Cl~roux and 
Ducharme (1989) respectively. 

3. Tests of lack of relationship based on the maximum RVi~ h), 1 <_ i < j <_ K 

When K variables are measured on n individuals and the measurements are 
assumed to be normally distributed, the likelihood ratio test for the independence 
of the K variables against the alternative that there is only one non-zero correlation 
is based on the maximum correlation coefficient (see Moran (1980)). However we 
often measure on each individual K sets of variables where each set corresponds 
to a specific characteristic and we are interested in the relationship that may exist 
between these characteristics. 

If it is suspected that there is only one non-zero measure of multivariate re- 
lationship at the population level or one non-zero Eij, i < j ,  tests of the null 

hypothesis given by (2.1), based on the maximum of the RV~ h), 1 <_ i < j <_ K,  
for fixed h, h E {1, 2, 3}, seem adequate in this situation. For normally distributed 
random vectors, the likelihood ratio test for H0 against this alternative is based 

(see Allaire and Lepage (1991)) o n t h e  maximum of the (2K) possible values 

of a measure of multivariate relationship called the Hotelling-Rozeboom measure 
(see Cramer and Nicewander (1979)) defined between X (i) and x(J) ,  i < j ,  by 
one minus the vector alienation coefficient which is the determinant of the matrix 
Ip~ - Sj-31SjiS~lSij. With the results of the preceding section, asymptotic tests 
can be constructed. The tests consist of rejecting the null hypothesis if 

n max Rvi~h) > c  (h) 
l<i<j<_K 
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where h is fixed, h C {1, 2, 3} and c~  ) is the (1 - a ) - t h  quantile of the asymptot ic  

distribution of n maxt  <i<j<_K RVi~ h). To obtain the critical values c(~ h), h = 1, 2, 3, 
g(h) set ~ z] , 1 < i < j _< K the random variables such tha t  under H0, 

r t  • ~ )  " 

(3.1) \RV(h'h)l v(hi 
K ~ K - 1  K 

E 
where ----* stands for convergence in distribution as n + oc. For fixed h, h E 
{1, 2, 3}, the random variables y/(jh), 1 _< i < j _< K,  are independent and their 
distributions are given by (2.2), (2.3) and (2.4). Therefore, we have for fixed h 
and positive x, 

P(oh)(x)= lim P ~ max /~vo > x  
n ~ c  l < _ i < j < K  

= 1 -  lim P(nRV(I: h) <_ x,...,nRv(~h]_l K <-x) 

= t - PRY1(2 h) <_ x ..... Y(K h)--, K <-- x) 
: 1 -  H H P(Yi~ h ) <  x). 

l < i < j < _ k  

Hence, the critical values c(~ h) can be obtained by iteration on x so tha t  P(oh)(x) = 
a. In practice, it is much simpler to evaluate the critical levels of the tests from 

(3.2) P(°h) (n max rv}?)) =1 -  H H  P( ':~h) <-n max ,< i< j<K 
- - l<_i<j<_k 

where, for h = 1,2,3, rv} h) are the observed values of RVi~ h), 1 _< i < j _< K.  
For h = 3, the chi-square distribution function with PiPj degrees of freedom is 

needed but  for h = 1 and 2, since y/~ht is distributed as a sum of eigenvalues 
times chi-square random variables, the Imhof algorithm (1961) can be used. The 
unknown parameters  are replaced by consistent estimates: E is replaced by S; the 
eigenvalues of 2ii are replaced by the eigenvalues of Nil and ~ is replaced by a 
consistent est imate (see, for example, Cl~roux and Ducharme (1989)), k equal to 
a third of the average of the sample kurtosis coefficients of the p variables. 

4. Asymptotic power of proposed tests 

If the null hypothesis is false, there is at least one pair, say (io,Jo), for which 
,~(h) 

E~0j o ¢ 0 or alternatively pvi;jo > 0, then we have for h = 1, 2, 3, 

n ~  l < _ i < j < _ K  n ~ o c  
1 < i < j < _ K  

_> lira P(nRVi(o~)o > c(~ h)) = 1 
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since for h : 1,2,3, RV/(o~) ° is a consistent estimate of pE(h).to3o > 0. Therefore, 
the tests proposed in the preceding section are consistent. In the following, we 
consider the sequence of alternative hypotheses 

{ E 0 = 0, ( i , j )  ¢ (io,jo) 

HI~ : Ejoi o = E( - A 
loJo 

where io < J0 and A is a fixed Pjo ×Pio matrix. We derive, for fixed h, h C {1, 2, 3}, 

the asymptotic (as n -~ oc) joint distribution of nRVi~ hI, 1 <_ i < j < K,  under 
Hx~. First, we prove the following lemma. 

LEMMA 4.1. Let S be the sample covariance matrix obtained from a sample of 
size n drawn from an elliptical distribution 'with co,variance matrix E and kurtosis 
parameter ~. Then under H l n ,  w e  have 

vec(S21) ) 
Z =,fl  " c>Z 

\ vec(SK 
where Z is distributed as Nf(pz,  Ez), f = ~ ~I<_i<j<_K PiPJ, 

0 

# z  = vec(A) 

0 

Y]ll ® E22 

E z =  (1+~;) ( 
\ 0 

o)  
EK-1  K-1 @ EKK 

vec(Sji) is the PjPi x 1 vector formed by stacking the columns of the pj x Pi matriz 
S~i for 1 < i < j < K and ® denotes the Kronecker product of matrices. 

PROOF. We have to show that for any f x 1 vector 

A12 ) 
A = " ~ Nf, 

\ AKI1 K 

A'Z~ c A'Z. We can write (see Allaire and Lepage (1990)) 

vec(SK K- l )  \ vec (ZK K-l )  
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where the f × f matrix ft may be partitioned into p~pj x PkPl matrices 

f~k/= (1 + g)((Eik ® Ejl) + Kp~p~ (Ejk ®Eit)) + a vec(Eji)(vec(Elk))' 

for 1 _< i < j _< K and 1 <_ k < 1 <_ K, hp~pj is a pipj x PiPj commutation matrix 
defined by 

Pi Pj 

k=l  /=1 

and Akl is a pi x pj matrix with all its elements being zero except the entry 
(k, l) which is unity. Since Z,~ is asymptotically multivariate normal, MZ,~ is 
asymptotically normal, hence 

A' Z,~ - v/-~ E E l  <~<j<K "~y vec(Zji) 
c) N(0, 1). 1/2 

Rep lac ing  Ejoio by A/v/n and using the fact that Eji = 0 for (i,j) ¢ (io,jo), we 
get 

V/~ zo3o A'ij vec(Eji) A( . vec(A) -- ' 
l<i<j<_K 

and 

l<_i<j<K l<_k<l<_K 

"'ij ji..ij "~- E E E E ' lk /~ij ~ji ~kl 
l<_i<j<_K I<i<j_<K l<_k<l<_K 

(i,j)¢(k,1) 

.,ij~ji.,ij -~ Zo3o~joio.,~ojo n t- 
l<i<j<_K 

(i,j)¢(io,Jo) 

= E E /ViJ (1 + n)( Eii ® Ejj)Aij + O(n -W2) 
l<i<j<_K 

= A'EzA + O(n -1/2) 

since 
Joio = (1+  a)(Eioio ® Ejojo) + O(n -1) f~J0io 

under Hln. The result is obtained from Serfling (1980). [] 

It follows from this lemma that under Hln, t he  Rv/~h)'s, 1 < i < j < K,  
remain asymptotically independent for fixed h, h E {1, 2, 3}, but a non-centrality 
parameter is introduced in the asymptotic distribution of nRVi~h) o. The proof is 
identical as in Allaire and Lepage (1990). 
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THEOREM 4.1. Under the assumptions of Lemma 4.1 and under Hln,  we 
have for  fixed h, h E {1,2,3}, 

7?. 

where for h = 1, 2 the y(h)  's, 1 < i < j < K ,  are independent and distributed as 

in (2.2) and (2.3) except that for  V (u) the random variables Wiojokl are replaced z090 

~r(~(h) 1) for k = 1, ,P~o, by W (h)iojokl which are independent and distributed as ,,  t~kl , " • • 
l = 1 . . . . .  PJo, where 

kl 

(E-1/2 ® IP~° ) vec(A) if  h = 1, (7(1)'  ~ ioio 

~ ' k l V/ ~ + 

= ( E - 1 / 2  - 1 / 2  

r,(2)' ,-ioio ® Ejojo ) vec(A) i f  h = 2, 
"-'kl VII + 

c ( h )  is the normalized eigenvector corresponding to the eigenvalue kl 

{ ~[.~°) of multiplicity pjo of (Eio~o ~ I~jo) 
x(i°) /~  (j°) O ~e ( ~  @ ~ . .  / 
A k  l J t ioio 3o3oj 

i f h = l ,  

if h = 2  

2 and y.(3)~o3o is distributed as ((1 + ~)/p~o)Xp~opj ° (62) where 

52 = (vec(A))t(Eioi o ® Y]~jojo) - 1  vec(A) 
l+ r ; ,  

As a consequence, we can calculate the asymptot ic  power of the tests of Section 
3. It is given, for h = 1, 2, 3, by 

( ) IIII lim PHI,, n max RV~ h) > c ~  ) = 1 -  P(Yi j  < c ~  )) 
n ~ o c  l < i < j < _ K  

l<_i<j<_K 

where the distribution of y/~h), 1 < i < j < K,  is given above. 
More generally, when E~j = Aij/v/-n for the s pairs ( i , j ) ,  1 <_ s <_ K ( K  - 

1)/2~ belonging to the set I = { ( i l , j l )  . . . . .  ( is , js)} and Eij = 0 for ( i , j )  ~ I, 

1 < i < j < K,  we can prove that  the random variables y~h) of Theorem 4.1 
are independent and distr ibuted as in (2.2), (2.3) and (2.4) for (i, j )  ~ I and 

, (h) for (io,Jo) E I replacing (io,jo) by (i~,jr)  and A by AjT.i ,̀  for distr ibuted as riojo 
r ~ X ,  . . . .  s. 
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(h) 5. Generalization to the s largest RV/ j  , 1 < s < K ( K  - 1) /2  

When  it is suspected that  there is not only one, but  a few non-zero mea- 
sures of multivariate relationship between the X(i) 's, we can then utilize also the 
information contained in the second largest, third largest, . . .  measures of mul- 

t ivariate relationship, not only the maximum. Let P}:) = 1 - Fi(~)(nRV~ h)) for 

1 _< i < j _< K and fixed h, h C {1,2,3} where F~ (h) are the distr ibution functions 

of the random variables y~h) given by (3.1) when Eij = 0. Since the Yi~h)'s are 

continuous, under H0 the P ~ ) ' s  are asymptot ical ly  independent and uniformly 
dis t r ibuted over the unit interval (0, 1). Keeping in mind that ,  under H0, the 

RVi~ h)'s are not asymptot ical ly  identically distributed, we shall base our tests on 

the quantities PI~ ) which represent the individual asymptot ic  critical levels or p- 
R V  (h) values of the observed _ ,~ j  's, Therefore, instead of using the largest RVi~ h)'s we 

will consider the smallest P}jh)'s. First, we prove the following lemma. 

LEMMA 5.1. Let T --- (T1 . . .T~) '  be a vector statistic based on a random 
sample of size n drawn from a continuous population and U = (U1 . . .  U~)' a ran- 
dorn vector with continuous distribution function such that P(Ui 7 £ Uj) = 1 for  all 
i # j .  I f  

T c ) U  ~ 

then for 1 < s < r, we have 

T(s) \ U(s) 

where T(i) and U(~) are the i-th order statistics of the Ti' s and Ui's respectively. 

PROOF. Using the notat ion of Lindgren (1976), let u = (M1,. . . ,us)  be a 
permuta t ion  of the integers 1 , . . . ,  r taken s at a time. Each of these r! / (r  - s)! 
permuta t ions  defines a region in ~T given by 

= {x : < . . .  < < , x , r }  

where vl,..., Ms, Ms+l, . . .  , M r is a permutation of the integers I,..., r. Note that 
each Rv is the union over the (r - s)! possible permutations of Ms+l .... , Mr of the 

mutually exclusive sets {x I x~1 < "'" < xvr}. The set of regions {R~}u constitutes 

the sample space except for the boundaries which have probability zero under the 
assumption of continuity. Let R C ~ be the projection of R~ on [~s corresponding 

to the specific permutation M = (i ..... s). Let A be any subset of R and Av be 
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the set of points in R .  whose s smallest coordinates when ordered yield a point in 
A. Thus we have 

lim lim P(, I ) 
n - - ~  C ~  ¸ D ~  

= 2 i &  e ( ( r l  . . .  Tr )e  
/ 2  

= ~ l imc  P( (T I"  • Tr) E A~,) 
t /  

= Z P ( ( U I U ~ )  e Av) 

---- P ( (U(1)""  U(s)) E A). [] 

From this lemma, we deduce, for fixed h, h E {1, 2,3} and for 1 _< s _< 
K ( K  - 1)/2, tha t  

where ~(i)D(h/' for i = 1, . s is the i-th order statistic of the P}h)'s 1 _< i < j _< K 

and U(i) is the i-th order statistic of a random sample of size K ( K - 1 ) / 2  uniformly 
distr ibuted over the unit interval. The joint distribution of U(1) <_ '-- _< U(s) is 
given by the density function (see David (1981)) 

r!(1 - us) "-s  if 0 < Ul < . . .  < u~ < 1, 
(5.1) f ( u l  . . . .  , us) = (r - s)[ L 

0 otherwise 

with r = K ( K  - 1)/2. We propose to reject the null hypothesis if at least one of 

the ordered critical levels P ~ )  is small. If the desired asymptotic  significance level 

of the test is a then s critical values Cl . . . .  , cs are required such tha t  

(5.2) 

The choice of the c~'s can be done in many ways. Since in general we have no 
information on the type of alternative to consider and we wish to give equal weight 

to each P~/~), we suggest choosing the ci's such tha t  the individual probabilities 

P(U(i) <_ ci) be equal for i = 1 , . . . ,  s. We can compute these probabilities by 
using the fact tha t  U(i) has a beta(i,  r - i + 1) distribution. The ci's are obtained 
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by iteration so that equation (5.2) is satisfied where the left-hand side is computed 
using the density function (5.1) which gives 

1 - P > ci = 1 . . . .  f ( u l  . . . .  , u s ) d u l  . . . d u . ~ .  

The critical values ci,  i = 1 . . . .  , s ,  decrease as s increases so it is possible that 

p } h )  considered by itself is significant but considered together with p } h l  is not 

significant. More generally, the s - 1 largest measures of multivariate relationship 
can yield significance while the s largest may not. One should then look more 

closely at the s - 1 pairs (X (i), X (j)) corresponding to the significant Pi(jh)'s. 

6. An application 

Consider the national track records for men of 55 countries given in Dawkins 
(1989). This data set is part of a larger set collected by Belcham and Hymans 
(1984) for the 1984 Los Angeles olympic games. There are 8 variables correspond- 
ing to 8 different track events ranging from the 100 meters race to the marathon. 
The variables are grouped into three subsets of variables representing three types 
of races. First, there are three sprints: the 100, 200 and 400 meters events; then 
there are two middle-distance races: the 800 and 1500 meters events; finally there 
are three long-distance races: the 5 and 10 kilometers events and the marathon. 
The sizes of the subvectors are respectively Pl = 3, P2 = 2 and p3 = 3. 

It is of course suspected that there exist relations between the three types 
of races. However, we do not know which type of races are significantly related 
when simultaneously comparing them two at a time. It is known that performance 
in running reflects the energetic and mechanic capacities of the athletes (see, for 
example, P6ronnet and Thibault (1989)) and that these capacities have different 
relative importances which are specific for different race distances (Svendenhag 
and Sj6din (1984)). For example, the maximal aerobic power (MAP) is very 
important for middle-distance races while the percentage of MAP sustained and 
the anaerobic capacity are the primary physiological factors of marathon runners 
and sprinters respectively. However. since the statistical unit used is a country, we 
will find out whether the nations that produce world class runners succeed in doing 
so for all types of races or only for certain pairs of race types. This would reflect 
for example, the genetic background of the runners or the training programs held 
in each country. 

As noted by Dawkins (1989), if the raw data were analysed in the same units, 
too much weight would be put on the long-distance races, particularly on the 
marathon. Therefore, each variable is rescaled to give mean 0 and standard devi- 
ation 1 so that the transformed variables represent the relative performances of a 
country in different events. 

A goodness of fit test for normality is performed on each variable. The 
Kolmogorov statistic modified by Stephens (1974) is used. For every event, the 
normality assumption is rejected at the level 0.05 except for tile 200 meters race. 
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Also a consistent estimate of n, the kurtosis parameter which is zero for a multi- 
variate normal population, is obtained through the use of an algorithm found in 
Cl~roux and Ducharme (1989). The data set yields k = 1.201 thus the underlying 
distribution can not be assumed to be multivariate normal. 

Table 1 gives the results of the tests of Section 3. The critical levels of the tests 

for H0 " p t @  = 0, 1 <_ i < j _< 3, based on the maximum R ~  ~) are computed from 
formula (3.2) with Imhof's algorithm (1961) using the subroutine FQUAD found in 
Chapter 9 of Koerts and Abrahamse (1969). The computations are performed on a 
CYBER 170 series, model 835/855 computer using the FORTRAN 5 programming 
language. The significant results given in Table 1, agree with the one obtained 
when we apply the asymptotic test proposed by Muirhead and Waternaux (1980) 
which yields a critical level smaller than 0.01. 

Table 1. Tests statistics and critical levels for Ho : Ei j  = O, 1 <_ i < j < 3, 

Measure of Pair ( i , j )  
Critical 

multivariate max rvi3 corresponding to 
l<i<j_<3 level 

m a x  rvij relationship 1 _<i<j<a 

Stewart & Love 0.8235 (2, 3) 0.00016 

Escoufier 0.8323 (2, 3) 0.00002 

Cramer & Nicewander 0.4422 (2, 31) 0.00245 

Although we strongly reject the null hypothesis, so that there are significantly 
large measures of multivariate relationship in the data, we do not want to stop here. 
We are interested in assessing which measures can be thought to be significantly 
large. Table 2 gives the ordered critical levels for each pair (X (/) , x(J)), 1 < i < j < 

individual tests of p ~ )  = 0, based on the three measures of multivariate 3, for the 

relationship. It gives also the estimate/~ computed from the components of X (/) 
and X (j). It is interesting to note that for all three measures, the relationship is 
the highest between middle-distance and long-distance races while it is the lowest 
between long-distance races and sprints. 

To use the tests of the preceding section with all s = 3 ordered critical levels, 
we need to determine the critical values Cl, c2 and c3. As discussed in Section 

5, this can be done so that equal weights are given to the ---P~i~)'s. i = 1, 2, 3. We 

find at the significance level 0.01, Cl = 0.0012, c2 = 0.0350 and ca = 0.1531. Not 
only the null hypothesis is rejected at the level 0.01 since at least one ordered 

P~)  is smaller than it's corresponding critical value, but we see that all three 
critical levels are smaller than their corresponding critical values. Therefore, we 
can believe all three measures of multivariate relationship to be significantly large 
at the 0.01 significance level. 
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Table 2. Ordered critical levels for the individual tests of H0 : pV (.h) = 0, h = 1,2, 3. ~ J  

Measure of Ordered Corresponding 
Pair 

multivariate critical measure 
( i , j )  

relationship levels rvij 

Stewart & Love 

Escoufier 

Cramer & Nicewander 

0.000016 0.8235 (2,3) 0.8836 

0.000376 0.6652 (1,2) 1.5062 

0.002369 0.5413 (1,3) 1.2112 

0.000001 0.8323 (2,3) 0.8836 

0.000080 0.7136 (1,2) 1.5062 

0.000368 0.5140 (1,3) 1.2112 

0.000240 0.4422 (2,3) 0.8836 

0.006215 0.4103 (1,2) 1.5062 

0.030323 0.2472 (1,3) 1.2112 
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