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A b s t r a c t .  Rank test statistics for the two-sample problem are based on the 
sum of the rank scores from either sample. However, a critical difference can 
occur when approximate scores are used since the sum of the rank scores from 
sample 1 is not equal to minus the sum of the rank scores from sample 2. By 
centering and scaling as described in Hajek and Sidak (1967, Theory of Rank 
Tests, Academic Press, New York) for the uncensored data case the statistics 
computed from each sample become identical. However such symmetrized ap- 
proximate scores rank statistics have not been proposed in the censored data 
case. We propose a statistic that treats the two approximate scores rank statis- 
tics in a symmetric manner. Under equal censoring distributions the symmetric 
rank tests are efficient when the score function corresponds to the underlying 
model distribution. For unequal censoring distributions we derive a useable 
expression for the asymptotic variance of our symmetric rank statistics. 

Key words and phrases: Two-sample problem, approximate scores, Pitman 
efficiency, unequal censoring, Skorokhod construction. 

1. Introduction 

Let Xl i ,  i = 1 , . . . ,  nl and X2j,  j = 1 , . . . ,  n2 be independent random samples 
from populat ions with continuous distr ibution functions (df) F1, /'2 respectively. 
The two-sample problem tests the null hypothesis H0 : FI = F2 versus location 

or scale alternatives, i.e. H1 : Fz(x)  -- Fl(X - 0), 0 6 ( - o c ,  oo) or H1 : F2(x) = 
Fl(x/O),  0 > 0. A rank test statistic for this problem is of the form 

N N 

(1.1) TIN = ~ aN(i)VVNi or T2N = ~ aN(i)(1 -- WNi)  
i=1 i=1 

where N = n l + n 2 ,  WNi is 1 (0) as the i- th smallest value in the combined sample is 
an Xli  (X2j), and aN(i) = J ( i / ( N +  1)) (approximate scores) or aN(i) = EJ(UN~) 
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(exact scores) for some function J(s) on [0, 1]. Exact scores are usually hard 
to compute, the exponential and logistic scores being notable exceptions; also 
most statistical packages produce good approximations to exact normal scores. 
Approximate scores rank statistics are asymptotically equivalent to statistics with 
exact scores and are computationatly simpler. Examples of practically useful rank 
statistics with approximate scores are the squared-ranks statistic (Taha (1964), 
Duran and Mielke (1968)), the quantile based statistics (Johnson et al. (1987)), 
the class of powers of ranks statistics (Mielke (1972)) and the class of generalized 
F distribution scores statistics (McKean and Sievers (1989)). When exact, scores 
are used the two samples are treated symmetrically in the sense that T1N = --T2N. 
However, this is not the case when approximate scores are used. As illustrated 
below, TIN can differ considerably from --T2N and the two statistics will often 
lead to contradictory results. 

A similar situation exists under random censoring. In this case the data consist 
of (Zti,6ti), i = 1 . . . . .  at,  t = 1,2, with Zti = min(Xti, Ya), 5ti = I ( X t i  < Yti) 

where X t i ,  i = 1 . . . .  ,rtt, t = 1,2 are as described above and Yli, i = 1 . . . . .  nl,  
Y2j, j = 1 . . . .  , n2 are two independent samples distributed according to G1, G2, 
respectively, independently of the X-samples. Further, let Z(1 ) <~ " ' -  < Z(k  ) 

denote the k ordered uncensored observations from the combined sample and let 
T~j, j = 1,..., 'rn~ denote the censored times in [T(~), T(~+I)), and let WN~ (WN~j) 
be 1 or 0 according to whether T(i) (Tij) is a Z13 or a Z~j. In this notation, a rank 
statistic for the two-sample problem with censored data is of the form 

(1.2) 

k 

i=1 

k 

S2N = Z 
i=1 

aN(i)WNi + AN(i) E WNij 
j = l  

o r  

( ) aN(i)(1 - VCxi) + Azv(i) Z ( 1  - Wr~Tij) 
j = l  

where the scores aN(i), AN(i) are defined through score functions J~(s), and 

Jc(s) = (1 - s) -1 .~: J~(v)dv. The exact scores are given in Kalbfleisch and Pren- 

tice ((1980), p. 154); the approximate scores are aN(i) = J~(Nf i (T( i ) ) / (N + 1)), 

AN(i) = J~(NF(T(i) ) / (N + 1)), where F is a combined Kaplan-Meier estimator 
from the two samples. Again, the two samples are treated symmetrically only if 
exact scores are used. Now, however, exact exponential scores are the only widely 
available exact scores. Exact scores for a family of distributions related to the 
logistic have also been obtained by Petti t t  (1983). 

To illustrate the difference between the two statistics with approximate scores 
consider the data in Kalbfleisch and Prentice ((1980), Table 6.1, p. 147), In this 
data set nl = 5 with one censored observation and n2 = 4 with one censored 
observation. When exact exponential scores are used, S1N = -2.26 = --S2N; 
however with approximate exponential scores, S1N = --2.36 and S2N = 1.96. If all 
the data were treated as uncensored and exact exponential scores are used, T1N = 
--2.53 = --T2N; however with approximate exponential scores T1N = -2.705 and 
T2N = 1.627. 



SYMMETRIZED APPROXIMATE SCORE RANK TESTS 747 

The purpose of this paper is to propose a symmetric  approximate scores rank 
statistic defined by 

(1.3) n2 nl 
SN = ~-S1N -- ~ -S2N.  

In the next section it will be seen that  this combination is suggested by the efficient 
scores test statistic. More insight into the statistic in (1.3) is gained by noting 
tha t  it equals the conventional rank statistic with centered score functions. In the 
uncensored case, use of centered score functions is suggested by Hajek and Sidak 
((1967), p. 61). 

Remark 1.1. In the censored da ta  case, Cuzick (1985) showed the asymp- 
totic equivalence of the approximate scores rank statistic S1N (or S2N) to the 
corresponding statistic with exact scores but did not address the issue of choosing 
between SIN and S2N. It should be noted tha t  our Theorem 2.1 is different in 
nature  than  Cuzick's Theorem 1 as it deals with the (parametric) efficient scores 
statistic. Thus, in addition to motivating the symmetric  approximate scores statis- 
tic, Theorem 2.1 allows a direct proof of the efficiency of SN (see Corollary 2.1). 

For simplicity the effect of using uncentered score function is demonstra ted 
with uncensored data. We performed a simulation s tudy with exponential samples 
to evaluate the nominal significance level of six scaled rank statistics. The exact 
and approximate log-rank statistics are 

E L R = E c N ( i ) I V ~  L N ( N _ I )  E c N ( i )  2 , 
i=I i=l 

/ r  N 
ALR1 = TN1 [N(N - 1) E a N ( i ) 2  ' 

i:1 
/ r  N 

ALR2 = TN2 LN(N - 1) ~--~aN(i)2 
i=1  

_ I [  nln.2 N ]~12 
SALR= "iN/IN(W-- i)Ea"{{)2 ' 

i=l 

where cN(i) = n -1 + (~ -- 1) -1 + . . .  + (n -- i + 1) -1 -- 1 are the exact scores, 
TN1, TN2 employ aN(i) = - log(1 - i / (n  + 1)) - 1, and in analogy to (1.3) the 
symmetrized statistic TN = (n2/N)T1N - (nl/N)T2:c. The other two statistics 
are A M I N  = min(IALRll ,  ]ALR21) and A M A X  = max(IALRll ,  IALR21). 

These simulation results indicate that ,  with small samples, the a t ta ined level 
of the symmetric  test is close to the nominal level whereas the at tained level of 
each of the two conventional tests is very discrepant. The practice of choosing the 
smaller or the larger of ALR1, ALR2 should clearly be avoided. 

Our main results, pertaining to randomly censored data,  are s tated in the next 
section as Theorems 2.1, 2.2. The proofs are given in the Appendix. 
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Table 1. Achieved level and power of exact and approximate log-rank statistics with exponential 
samples using 1000 replications and nominal level a = 0.1 (uncensored samples). 

(nl, n2) ELR a ALR1 a ALR2 a A S L R  a A M I N  a A M A X  ~ 

Null Hypothesis 

(8,8) 0.95 0.136 0.130 0,100 0.025 0.241 

(8,15) 0.112 0.129 0.156 0.112 0.045 0.240 

(15,15) 0.112 0.136 0.124 0.111 0.047 0.213 

(10,20) 0.107 0.124 0.133 0.105 0.049 0.208 

Alternative Hypothesis: Scale Ratio = exp(1.6N -1/2) 

(8,8) 0.171 I).299 0.103 0.168 0.071 0.331 

(8,15) 0.155 0.245 0.053 0.156 0.030 0.268 
(15,15) 0.195 0.306 0.123 0.195 0.106 0.323 

(10,20) 0.162 0.235 0.075 0.165 0.05 0.260 

Alternative Hypothesis: Location Difference = 2N -1/2 

(8,8) 0.285 0.425 0.164 0.292 0.148 0.441 
(8,15) 0.249 0.364 0.125 0.254 0.107 0.382 
(15,15) 0.237 0.370 0.145 0.247 0.136 0.379 

(10,20) 0.254 0.356 0.112 0.263 0.101 0.367 

a The statistic is explained in the main text. 

2. The main results 

We begin by der iving the effÉcient scores tes t  s ta t i s t ic  for the  two-sample  scale 

problem.  This  will be used b o t h  for mo t iva t i ng  the  s y m m e t r i z e d  rank  s ta t i s t ic  

and  for es tabl ishing its a s y m p t o t i c  efficiency. 

Assume  we observe (Z t i ,  ~ti),  i = 1 , . . . ,  n t ,  t = 1, 2, where  

(2.1) Zti  = min(Xt i ,  ]~t~), St~ = I ( X t i  < Yt i )  

as descr ibed in Sect ion 1. We will consider  the  scale a l te rna t ive  mode l  F1 (x) = 

F(x0-1), F~(x )  = F ( x a 2 )  where  F is a specified d i s t r ibu t ion  funct ion.  However  

loca t ion  a l te rna t ives  can  be t r ea t ed  similarly. We will emp loy  the p a r a m e t e r  t r ans -  

fo rma t ion  (0-1,0-2) ~ (m 0), where  

(2.2) 0-1 = 0-e-qe,  o-2 = °'epe 

w h e r e p  = n x / N  and  q = 1 - p  wi th  N = n l + n 2 .  This  r e p a r a m e t r i z a t i o n  is 
due  to  N e y m a n  and  Scot t  (1967). Note  t h a t  0-2/0-1 = exp(0) so the  hypo thes i s  of  
equal  scales can  be wr i t t en  as 0 = 0. Covar iance  ca lcula t ions  under  0 = 0 show 
t h a t  in this two-sample  mode l  the  p a r a m e t e r s  0- and  0 are o r thogona l  (Moran  
(1970)). This  result  implies t h a t  the  efficient scores s ta t i s t ic  for t es t ing  # = 0 can  
be ob ta ined  by replac ing a square  roo t  n cons is tent  e s t ima to r  for 0- in the  efficient 
scores s ta t is t ic  ( N e y m a n  (1959)). I t  should  be r emarked  t h a t  the  above  choice of  
p and  q is crucial  for the  or thogonal i ty .  
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Assume for the moment  tha t  a is known. The efficient scores test statistic for 
0 = 0 has the following functional representat ion 

(2.3) Lx = {qn~ / J~[F(ax)]d[-I~(x) - pn2 / J~[F(ax)]d[I2~(x) } 

+ {qnl f J~[F(crx)]d[Ilc(X)- pn2 / Jc[F(ax)]dfI2c(X) } 

=: LN~ + LNc 

where [Its(x) = nt  1 E~2I I( xti ~ x, ~ti = 1), lflt~(x) = nt  1 ~-~-i~1 I(Xti ~ x, 6ti = 
0), t = 1,2, and 

- J~(s)ds. (2.4) J~(s) = - I -  F-I(s) (F-1 (s))' Jc(s) - I s 

The functional expression (2.3) suggests a rank statistic of the form 

(2.5) SN = {qnl f J~[F(x)]d[Ii~(x)-pn2 /'J~[F(x)]d[I2~(x)} 

~-: SNu + SNc 

where /~t, t = 1,2 is the Kaplan-Meier est imator for the survival distr ibution 
obtained from sample t and 

(2.6) Y = pYl + qY2. 

(In practice one actually uses ['* = F'N/(N + 1) but,  for notat ional  simplicity, 
this will not be made explicit.) 

In the above discussion we assumed that  cr was known. However, SN is free of 
since, under the null hypothesis,  ~" est imates F(~rx) without  requiring a to be 

known. Since the proof of the asymptot ic  equivalence of SN and LN is the same 
for all values of a, wi thout  loss of generality, we take a = 1. 

The results of this paper  will be shown under the following assumptions 
(El)  (i) F has a differentiable density f .  

(ii) p remains bounded away from 0 and 1. 
(E2) For a = u or c the derivative J~(.)  exists on (0, 1) is continuous and 

we have ]J~(s)] _< K[s(1 - s)] - 5+~ ,  IJ'~(s)] ~ K[s(1 - s)] -L5+~ for all s • (0, 1) 
where If, ~ are positive constants.  
Assumption (E2) has been checked for the exponential  scores, log-normal scores, 
half-logistic scores and generalized F-dis t r ibut ion scores. 

THEOREM 2.1. Let (El) .  (E2) hold and assume further that G1 = G2. Then 

(2.7) N-1/2(LN - SN) ---* 0, as N --~ oc, 
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in probability under 0 = O. 

PROOF. 

(2.8) 

(2.9) 
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Relation (2.7) will follow from relations 

N-1/2(SN~ - LNu) P, 0 

N-1/2(SNc--  LNc) P) O. 

and 

For t = 1, 2, let Htu (Htc) denote the sub-distribution functions P ( X u  _< x, 6 = 1) 
(P(Xti  < x, ~ = 0)). Noting that under 0 = 0 and the assumption that G1 = G~ 
we have HI~ = H2~ =: H~ it follows that (2.8) will be established by showing 

(2.10) n~/2 /[J~(-P) - J~(F)]d([-It~ - H~) P, O, t = 1, 2. 

Intuitively this is justified by noting that (/Itu - Hu) can absorb n]/2 without 
"blowing up" while J~(fi) - J~(F) -~ 0 pointwise; for a rigorous proof of (2.10) 
see Akritas and Johnson (1990). The proof of relation (2.9) follows by similar 
arguments and this completes the proof of the theorem. 

A standard contiguity argument yields the followig corollary. 

COROLLARY 2.1. The rank statistic SN has Pitman efficiency one with re- 
spect to the efficient scores statistic L N. 

Theorem 2.2 below gives a variance formula for SN under unequal censoring 
distributions. First we need the following 

LEMMA 2.1. Let r = max(~-cl,Ta2) and assume that 7 < TF, where "rG = 
sup{x:  G(x) < 1} for any d.f. G. Set Q(x) = fo[J~(F(y)) - Ju(F(x))]d[Gl(y) - 
G2(y)]. Then 

(2.11) N-1/ S , _pqN1/2{ f f J (F)d/I2,u 
+ / Jc(F)d[-ll,c- / &(F)d[-I2,c 

+ Y)dQ} 

where ~_ denotes asymptotic equivalence. 

The proof is given in the appendix. 

Remark 2.1. Under equal censoring distributions Q(x) = 0 and the right- 
hand side of (2.11) is a scaled difference of two averages. Each average is formed 
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from a set of lid random variables and the two sets are independent.  Thus, under 
the null hypothesis, the asymptot ic  variance of SN is given by 

(2.12) N -1 Var(SN) = pq Var[J(X,  5)1 

where J ( X ,  5) = 5 J u ( F ( X ) ) +  (1 - 5 ) J c ( F ( X ) ) .  An est imate of Var[J (X,  5)] is 
N-I [Ey~_I  J ( X l j ,  61j) 2 + Ej'~=l J(Xij ,  6ij) 2] where J(X,  6) = 6Ju(F(X))  + (1 - 

6)Jc(F(X)).  In the uncensored case (2.12) reduces to the familiar expression 

(2.13) N -1 Var(SN) = pqVar[J~(F(X))] 

and Var[Ju(F(X))] can be es t imated from N -1 ~N_ i J~( i / (N + 1)). 

The next lemma is essentially contained in Breslow and Crowley (1974) and 
can also be obtained from the results in Peterson (1977). 

LEMMA 2.2. For t = 1, 2, n}/2(Ft(x) - F ( x ) )  is asymptotically equivalent to 

[ jo  1/2 ^ ~o x ] x dn t [Ht~ - Ht~] ~/2(flt Ht)dCt 
[1 - F ( x ) ]  i ----t-It + nt  - 

where Itlt(x) = n ;  1 y~i'~l I(Xti  <_ x), Ht -- 1 - (1 - F)(1  - Gt) and Ct(x) = 
f : ( 1  - Hd-2gHt . 

Since the upper  limits in the integrals in (2.11) can be taken to be w, the last 
term on the right-hand side of (2.11) is 

/o /0 (2.14) N 1/2 (F - F)dQ = [O(v) - QldN1/2(F - F). 

Lemma 2.2 and some direct calculations yield 

LEMMA 2.3. AssumeT < TF and letU(x) - - Q ( w ) - Q ( x ) .  Then f o r t = l , 2 ,  

U(x)dn~/2(Ft(x) - F(x) )  = Dtu(x)dn t (Ht~(x) - Ht,(x))  

1/2 ^ + Ot~(x)dn t (Htc(X) - Htc(X)) 

where Dt~(x) = [U(x) + f~ FdU] [1 - Ht(x)]- '  + f~(Ct(x)  - Ct)(1 - F)dU and 
Dtc(X) = f f  (Ct(x) - Ct)(1 - F)dU. 

Lemma 2.1, Lemma 2.3 and relation (2.6) yield 

THEOREM 2.2. Under the assumption that ~- < TF, 

N-1/2SN ~- pqN~/2 { / Vlu(x)dItIl,~(x) - f v~u(x)d/-I2,~(x) 

+ / Vlc(X)d~Ilc(X) - / V2c(x)df-I2c(X) + B} 
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where VI~ = J~(F) + pDI~, V2~, = ]~(F) - qD2~, Vlc = &(F) + pDlc, V2~ = 
J~(F) - qD2~ and B is a centering constant. 

As in Remark 2.1 it follows tha t  the asymptotic  variance of SN is given by 

(2.15) N-1Var (SN)  = pq{qVar[V1(Xl,(51)] + pVar[V2(X2,62)]}, 

Vt(X, (~) = ~iVt~ (X) + (1 - (~)Vt~(X) = J(X,  6) + n tN  -1 [6Dr.(X) + (1 - 6)Dry(X)]. 
An estimate of Var[Vt(Xt, 6t)] is the sample variance of Vt(Xti, 6ti), i = 1 . . . . .  nt. 

Appendix 

PROOF OF LEMMA 2.1. For simplicity we present a proof under the assump- 
tion that  [d~(0)l < e¢, a = u., c. This covers exponential scores, half-logistic 
scores, powers of ranks scores and generalized F-dis t r ibut ion scores, but  not the 
log-normal scores. Write 

(A.1) J~ (F)  J~ (F)  + (/" ' = - F ) J ~ ( z ~ ) ,  a = ~ ,  c 

where z~ is between _f" and F.  From (2.5) and (A.1) it follows that  

(1.2) N-1/2SN =pqN1/2 [ . /  J~(F)d/2/lu - , /  J~(F)dH2~, 

+ / , ]c(F)dI2I i~-  J'J~(T')d[t2~] 

= pqNt/~[f J~(F)dfI~ - f &(F)dLr2~ 

+ f J,:(F)dit1~- / J~(F)dH2~] 

+ pqX ~/~ .f(f'. - F) ~ [J" (z~)diho - ,L ('~)d/~o] 
0 

where the index ct takes values u, c. Note tha t  

(A.3)  2V 1/2 f (~-' t ° 
- f),Q(z~)d(S~ - H~) 

J 

= N ~/2/[&(F) - & ( F ) ] ~ ( / ~ , ~  - H,~)  ~ 0 

by relation (2.10). Next it is easily seen tha t  

N1/2 f (F_ t . , F ) [ J ~ ( ~ )  - J'~(F)]dHt.~ 
/ 

0(A.4) 

]J~(0) l < ~ .  Finally some calculations yield by the facts tha t  r < rF and ' 

/o /o (A.5) Q ( x ) = .  J.'~(F)dHI~; - ,  Ju(F)dS~+' J;(F)dHI~-~ . J~(F)dH,2c.. 
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Relations (A.2)-(A.5) imply Lemma 2.1. 
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