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A b s t r a c t .  A new es t imator  of a regression function is in t roduced via  min- 
imizing the L l -d i s t ance  between some empir ical  function and its theoret ica l  
counterpar t  plus pena l ty  for the  roughness. The Ll - r i sk  of the  es t imator  is 
bounded  from above for every sample  size no ma t t e r  what  the  dependence  
s t ruc ture  of the  observed random variables is. In the  case of independent  er- 
rors of measurement  with a common variance the  es t imator  is shown to achieve 
the opt imal  L l - r a t e  of convergence within the  class of m- t imes  differentiable 
functions wi th  bounded derivatives.  

Key words and phrases: Nonlinear  regression, min imum dis tance  es t imat ion,  
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1. Introduction 

Let us consider the problem of identifying a real valued t r a jec to ry  r ( t ) ,  t C 

(t, t), of a physical object  under investigation. We assume tha t  the function r(.)  
is smooth,  say m-t imes differentiable, and tha t  the limit values of  r ( i ) ( t ) ,  i = 

O, 1 , . . . ,  m, are fixed and known at bo th  boundary  points t and t, which may" be 
finite or not. 

One can give many practical  examples corresponding to the above model. 
Consider, for instance, an electric circuit, where the charge r( t )  is concentra ted  
inside a condenser at t ime t = 0 while at t = oc the state  of stabil i ty with 
r ( t )  = r ' ( t )  = 0 is achieved. Other  examples one can find in mechanics, as t ronomy 
and so on. 

The  problem of our interest is how to identify the function r(.)  on the basis of 
a finite number  of observations of r ( t i ) + e , ,  i = 1 . . . . .  n, where ei is a random error 
of measuring. In this paper  we t rea t  the case where ti 's are independent  random 
variables with a common absolutely continuous dis tr ibut ion function. Knowing 
the distr ibution of t i ' s ,  one can t ransform them to the random variables uniformly 
dis t r ibuted on (0, 1). Also the boundary  conditions for r can be assumed, wi thout  
loss of generality, to be of the form r (i) ( t )  = r (~) ( t )  = O, i = O, 1 . . . .  , m. 
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So let us consider independent uniformly distributed on (0, 1) random variables 
T1, . . . ,  Tn. Let r be an unknown regression function on (0, 1). Consider random 
variables : t ] , . . . ,  Y~ which are assumed to satisfy 

= r(Ti)  + ei, i -- 1 . . . . .  n, 

where q , . . . ,  en are independent of T1, . . . ,  T~ random errors with Eel - -  0 and 
eov(Ei,ej) = a~j, i , j  = 1 , . . . , n .  The problem is to estimate r given that r is 
from the class 7~ "~ of functions with a bounded m-th derivative on [0, 1] and 
such that r(~)(0) = r(i)(1) = 0, i = 0, 1 . . . . .  m. The least squares estimation is 
meaningless in the present context unless we modify the method e.g. by adding 
f Ir('~)12, the penalty for roughness, to the sum of squares. This leads to smoothing 
noisy data by spline functions (see Silverman (1985)). On the other hand, the 
spline smoothing is asymptotically equivalent to using variable kernel method (see 
Silverman (1984)). We refer the reader to the paper of Jennen-Steinmetz and 
Gasser (1988) for references concerning the kernel methods. 

Another possibility of smooth estimation of r is to minimize the sum of ab- 
solute deviations }-~,in I IY/ - r (Ti ) l  penalized, if wanted, by adding f Ir(m)l. For 
general motivation, historical background and characteristic properties of least ab- 
solute deviation (LAD) methods, we refer the reader to the book of Dodge (1987). 
Asymptotic results concerning LAD estimators of regression function from a finite 
dimensional space one can find in Pollard (1990); a nonparametric case was partly 
treated by van de Geer (1990). Here we investigate a different approach to the 
LAD regression function estimation. As is well known the accuracy of estimating 
r is limited by the fact that there does not exist an unbiased estimator of r from 
the class 7~ "~. Still, for the flmction 

f0 t (1.1) R(t) = 

an unbiased estimator is available. Since (1.1) defines a one-to-one map on 7¢ "~, 
we shall use the notation R G 7~ "~ whenever the corresponding r = R' belongs to 
74 m. We start our investigations with constructing an unbiased estimator of R. 
To this end let us consider an empirical counterpart of R, 

(1.2) Rn( t )  = n Yil(°'t)(T~)" 
i=l 

It can be easily shown that Rn is an unbiased estimator of R. 
Let II II1 denote Ll-norm in the space of functions which are integrable oil 

[0, 1]. Though EIIRn - RIll = ^0 (n -1 /2 ) ,  R~ is not a smooth function. The 
minimum Ll-distance smoother R~ of Rn is defined via minimizing the functional 

J.(R) -fIR  -Rill +/311R(m+l)lll 

over the class of (m+ 1)-times differentiable on R functions with a bounded support, 
where /3 = ~(n) > 0 are prescribed smoothing parameters. The minimum L1- 

penalized distance (MPD) estimator of R (i), i = 1 , . . . ,  m is defined as /~ / ) .  
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The main idea of the above definition follows the idea of the MPD estimation 
of a density and its derivatives, which is investigated in Gajek (1990) and earlier, 
in the case of L2 and Lo~ distances, in Gajek (1989). In the present paper we 
show that a similar approach leads to the regression estimator which achieves the 
optimal rate of Lx-convergence. 

In fact we have proven somewhat stronger result; Theorem 2.1 gives an upper 
bound for the Li-risk of the MPD regression estimator which is valid for each 
sample size n no matter what the dependence structure of the sample is. 

In order to admit approximate solutions to the problem of minimizing J,,(R), 
one can define MPD estimators as the ones minimizing Jn (R)+6~, ~ > 0. Clearly, 
if ~ tends to zero quickly enough, the asymptotic counterparts of the results 
presented in the paper are still valid. 

2. The main result 

THEOREM 2.1. Let T~m(L,S) = {R E T~ m : suplRJ < L,[IR("~+I)II1 < S}. 
Then for each i = 1 , . . . , m  

sup Ell/%  ) - Ru)II  
RET~'~ ( L ,S)  

<_/3-i/('~+l){M1/3i/2(m+l)(i=~ 1 

+ M2¢t [2 max 

1/2 

~ii + nL 2 /n 

where ~i1, 1~'I 2 and Ma are constants given by (2.5), (2.6) and (2.7) below. 

PROOF. Let k be a m-times differentiable function on R such that 
(i) suppk = [-1, 1], 

(ii) f i 1 k(u)du = 1, 
(iii) f l  1 uik(u)du = 0 for i = 1 , . . . , m .  

Let us define 

[~h(X) = h-l f k (~-h t )  R,~(t)dt 

and for i = 1 , . . . , m ,  

(2.1) R h (x) = - - )  R,~(t)dt. 

From Theorem 2.1 of Gajek (1989), we have that if the kernel estimator (2.1) has 
the bandwidth h(n) = Ci3(n) 1/('~+i) with 

(2.2) c1 = i l lk ( i ) l l l (m- i ) ! /  [ v l m + t - ~ l k ( v ) [ d v  , 
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then for i = 1,...,rn. 

E[IR(n/) - R~i)[[1 ~ C2/5(n)-i/(m+l)EJ~([~,~), 
where 

(2.3) C2-  m + l  ilk(i)tllC~" 
m + l - i  

Since J~(/~n) _< J~(/~h), using the triangle inequality, we get 

(2.4) EI]/~/> - R(i>lll < C2/~(n)-i/em+l>EJn(Rh) -k E I [ / ~  i) - R(i)II1. 

From Lemma A.2 of the Appendix, we have 

EJT;(Rh) < n-l/31/2(m+1) ali+ n L  2 (71/2 
- -  , " . . J l  

i=1 

' { /  Iv[1/2[k(v)[dv + C~m-l j lv[1/2[k(m+l)(v)[dv } 

+n-t3 t/(m+l) 2max 0 , ~ a  o C1 
i<j 

. [ /  [vl]k(v)]dv+Clm-l f [vllk("~+l)(v)tdv] 

+ 3CF +IIIR (m+1)111 

. [ /  Ivr~+llk(v)ldv/(m + l)! +Cf" - l  f ik(v)ldv ] . 
Now, using Lemma A.1 of the Appendix and (2.4), we get 

~ ,•-i/(m+l) M1/~l/2(m+l) crii + n L  2 / n  

\ i = 1  

+ M2t31/('~+1) 2 max O, aij /n + Ma/3 , 

where 

(2.5) 

(2.6) 

and 

 l=C J2{C2[/,v'J2,k,v,, v+C:m 

 2=Cl{C2E/v k,v, v+c m ,jv 

+c:,i v 
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for C1 and C2 defined by (2.2) and (2.3), respectively. [] 

Assume that ~ i < j  ~ij < 0. Then an optimal choice of 3 is given in the 
following corollary. 

COROLLARY 2.1. Let ~ = /~-hTt-(m+l)/(2m+l) and Ei<j (7iJ ~-- O. Then for 
each i = 1 , . . . , m  

sup E I I ~  ~) - n( i ) l l l  
Re~m(L,S) 

~ n--(rn÷l)/(2rn-kl) [~fl j~j'l/2(rn--1)+ M3M4]M4~/(m+I). 

The optimal choice of 514 in the above bound is 

3In -- {2M3(m + 1 - i)/[Ml(2i - 1)]} -2(m+W(2"~+l). 

Remark 2.1. As pointed out in Gajek (1989, 1990), the L;-properties of the 
MPD estimator do not follow from the bounds for its L2-risk via the Cauchy 
inequality. 
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Appendix 

LEMMA A.1. Let L = suP0<t<l [r(t)l. Then for each i = 1 , . . . , m  

E[IR(hi) - R(i)lll ~- h-~+I/2n-l ( ~  -~.~=, 
1/2 J' 

aii+ nL 2 tvll/21k(i)(v)ldv 

+ h-i--l~ -1 2max O, ~-~ ~ j  Ivllk(~)(v)ldv 
i<j  

+ hm+l-'llR(m+l)rll f Ivlm+l-~lk(v)ldv 
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PROOF. 

therefore 

(A.1) 

Since 

R(~)(x) = h-i-~ f k(i) (~--~-) R(t)dt 

fo hv (z - hV)mR(m+l)(x _ z)k(v)dzdv, + - ~  

EI/~(h i) - R(i) I _ h-iE f [ R  n(x - hv) - R(x - hv)]k(i)(v)dv 

f ro  hv (z - hv) m + m~ R(m+l)(x - z)k(v)dzdv 

Observe that for v > 0 

{ E I R ~ ( x  - b y )  - R . ( x )  - [ R ( x  - hv)  - R ( x ) ] I }  2 

< V ~ r [ R ~ ( ~  - b y )  - R ~ ( x ) ]  

=n-2Var[i=~lY~l(x-h.,~)(Ti) ] 

where T = (TI,..., T,~). Since 

and 

therefore 

(A.2) 

= min(x, h v ) ~  aii + 2min 2(x, h v ) E  aij 
i=1 i<j 

= ~ V a r [ ~ ( T 1 ) l ( ~ _ h . , x ~  (TI ) ]  

<_ nL 2 min(x, hv), 

E I R . ( x  - hv)  - R n ( x )  - R ( x  - hv )  + R ( x ) I  

<_n -1 hlvl a~+nL 2 +2(hv)  2max 0, E ( T i j  
\ i = l  i<j 

~<j 
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where the last inequality follows from the fact that v/-a--+- b _< v/a+ v~, a, b > 0. It 
is easy to prove that (A.2) holds also for v < 0. Now, using (A.2) and the identity 
f k (i)(v)dv = 0 for i = 1 , . . . , m ,  we get 

/ [ R ~ ( x  - by) - R ( x  - E hv)]k(i)(v)dv 

< n- lh l /2  ~ + nL ~ Ivll/2[k(O(v)ldv 
i=1 

+ n - l h  2max O, Eo- i j  Iv]]k(i)(vDIdv. 
i<j 

Since 

~ / ~ o h V ( z - - h v )  m-{/l~(m+l) (. +z)k(v)dzldv i ( m  - ~)! ~ 
< hm+l-i[[R(m+l)[[ 1 f Iv[re+l-ilk(v)[ dv 
- ( m  + 1 - i)! ' 

therefore the assertion follows from (A.1). [] 

LEMMA A.2. The following inequalities hold: 

(i) E[[/~(hm+l)l[1 _4 h-m-1/2n -1 crii + nL 2 
\ i=1  

+ IlR(m+l)lll / I k (v ) ldv;  
J 

/ Ivll/2lk("~+'l(,,)ldv 
1/2 

/l vlpk(m+l)(~)l& 

(ii) E[IRh -- Rn[ll _< hl/2n-1 aii + nL 2 Iv[1/2[k(v)ldv 
\ i=1  

+ hn -1 2max O, E ~i j fvllk(v)ldv 
i<j 

+ hm+ll[R(m+l/lll /Ivlm+llk(v)ldv/(m + 1)!. 

PROOF. (i) Observe that 

~(~m÷l) (x )  = h - ~ - 1  f [ R n ( x  - b y )  - R n ( x )  - R ( x  - hv )  + R(x) ]k (m+l ) (v )d~  

+ h - m - 1 / [ R ( x  - hv) - R(x)]k(m+l)(v)dv 

and 
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[R(x  - hv)  - R ( x ) l k ( m + l ) ( v ) d v  = h m+l /R(rn+l)(x - h v ) k ( v ) d v .  

The rest of the proof is similar to the proof of Lemma A.1. 
(ii) Since 

h 7, 

therefore 

limb(x) - R~(x)I  < f [ R n ( x  - by) - R~(x) - R(x  + R(x)]k(v)dv hv)  

/~o h~' (z - hv) ~ R(m+l)(x + m~ - z ) k ( v ) d z d v  

Now, the assertion follows as in the previous cases. [] 
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