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Abs t rac t .  To estimate the quantile density function (the derivative of the 
quantile function) by kernel means, there are two alternative approaches. One 
is the derivative of the kernel quantile estimator, the other is essentially the 
reciprocal of the kernel density estimator. We give ways in which the former 
method has certain advantages over the latter. Various closely related smooth- 
ing issues are also discussed. 
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1. Introduction 

X = (X1 ,X2 , . . .  ,Xn),  a sample of n i.i.d, observations from a continuous 
distribution, tells us much about  the distribution function F via the empirical 

n 
distribution function Fn(x) = n -1 E i = l  ](Xi  <_ x); here, I (E)  = 1 if event E 
occurs and is 0 otherwise. We will often be interested in the density f = F I, and, 
by the introduction of some smoothing, can usefully est imate tha t  quant i ty  from 
X too e.g. Silverman (1986). 

The inverse Q =- F -1 of F ,  the quantile function, is sometimes the object of 
more direct interest than  is F itself. The da ta  X relate directly to Q as well simply 
by taking the left-continuous inverse of F~, namely the usual empirical quantile 
function 

= x( )I < _< 
7/ 

- -  - -  X ( 1  ) -'~ E ( X ( i )  - X ( i _ , ) ) I  (i - 1 )  < u  . 

i=2 n 

Here, X(i), i = 1,2, . . .  , n  are the order statistics of the sample and 0 < u < 1. 
The derivative of Q (q - Q~) is also a function of some interest tha t  may be one's 
premier target of estimation. Parzen (1979) gives a number of reasons for this; 
others are interested in q because of its appearance in the asymptot ic  variance of 
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sample quantiles. We follow Parzen's (1979) terminology in calling q the quantile 
density function; Tukey (1965) called it the sparsity function. To estimate q, 
smoothing is again necessary, and it is as natural to base such smoothing on Q~ 
as it was to estimate f by basing smoothing on F~, since the same derivative 
relationship holds in each case. 

These first two paragraphs are intended to remind the reader of the twin 
strands F, f, f~ . . . .  and Q, q. q~ . . . .  arising from the inverse relationship F -- Q - 1  
Q = F -1. The discussion so far has supposed that smoothing best takes place 
"within strands". But of course there are close relationships "between strands" 
and in particular 

1 1 
(1.1) q(u) - f ( x )  - 

f ( F - l ( u ) )  ' q(Q- l (x ) )"  

So, are we right to approach our smoothing problems in the manner described? For 
instance, using - throughout to denote any suitable smoothed estimate, we were 
presuming a ~ of tile form (O)' above. But how does this compare with 1 / f (Q(u) )?  
(Actually, Q could be Q~ here.) It is the main purpose of this paper to verify that 
(Q)~ does indeed seem preferable in some ways to its competitor. This is something 
of a relief, since otherwise one might expect the second relationship in (1.1) to offer 
a more viable alternative to the ubiquitous---and appropr ia te- - f  = (t5) ~ form of 
density estimation per se. 

We will work in terms of kernel smoothing methods (e.g. Silverman (1986)) 
in particular forms to be introduced as needed in our development. Notationally, 
we will employ a symmetric probability density function k as kernel (K ~ - k) and 
use b and h for bandwidths (smoothing parameters). Also, k~(.) - a- lk (a -1 . ) ;  
K,(.)  = K(a  -1,) and * denotes convolution. In Section 2, results on kernel 
smoothed estimates of Q itself will be briefly reviewed, with a view to appreciat- 
ing in what sense Q and ( ~ ) - l  are actually equivalent. Such equivalence breaks 
down as we move on to the mainstream smoothing level of estimating q. The main 
thrust of the paper, on estimating the density quantile function, is contained in 
Section 3. Related problems, of estimating densities, reciprocals of densities and 
density quantiles (reciprocals of quantile densities), are briefly treated in Section 
4. Theoretical performance will be measured in squared error terms, as Mean (In- 
tegrated) (Weighted) Squared Error (M(I)(W)SE). The usual kind of asymptotic 
representation of such quantities will be examined (as n ~ oc, b = b(n) ---, 0 
such that nb ~ .~c, and likewise for h). We will not attempt to be very techni- 
cal in our mathematics (references cited will often do that) but simply assume as 
nmch smoothness of f as necessary, mostly the usual assumption of its having two 
continuous derivatives. 

2. Smooth estimation of Q 

As the natural kernel estimator of F, /~, simply convolves kb with F~ (e.g. 
Azzalini (1981), Reiss 1981)), so we can estimate Q by Q = kb * Q,~ (Parzen 
(1979)) i.e. 

fi kb(u -- y)dy. Q(U) = X ( i )  J ( i -1) / r~  
i = 1  
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For comparisons with a number of variations on Q, see Sheather and Marron 
(1990). There is a problem with boundary effects that we ignore; boundary ker- 
nels or other edge correction methods (e.g. Miiller (1991)) should be employed in 
practice if 'u is close to 0 or 1. Building on Falk (1984), Sheather and Marron 
(1990) give the MSE of Q as 

(2.1) MSE{Q(u)} _~ ~b4{q'(.u)}2a 4 + u(1 - U)q2(u) _ bq2(u).g,(k), 
/l f/  

where o-~ ==. f y2k(y)dy and '~/,(k) =- 2 f yk(y)K(y)dy = f K(y){1 - K(y)}dy. The 
first term in (2.1) is due to squared bias, the second and third to variance; also, 
set b = 0 in (2.1) to obtain the usual asymptotic representation of MSE{Qn(u)}. 

Now, 

Y(x)  = K h ( x  - 

i=1  

We could invert F to get an alternative estimate of Q, say Q, as suggested by 
Nadaraya (1964). A numerical procedure would be necessary to perform the in- 
version. Notice that the apparent avoidance of boundary worries (if the support 
of F is R) may be illusory, edge effects being replaced by awkward (if usually 
implicit) suppositions on tail behaviour. Azzalini (1981) obtains the MSE of Q: 

lh4 [q ' (u)]2  u(1 - u) k + - - q 2 ( u )  - hq(u)g'(k) • (2.2) MSE{Q(u)} Lq2(u) J a4 ~ n 4 

Now, the natural scaling match-up between h and b at a point x = Q(u), if 
we were to allow h to vary with x and b to depend on u, is via the relationship 
b(u) = h(x)f(x) .  And sure enough, if this is so, (2.1) and (2.2) coincide precisely, 
and there is no (asymptotic) difference in performance between Q and Q (a phe- 
nomenon noticed elsewhere including Lio and Padgett (1991)). One is inclined 
to view use of constant b in ~) as a natural choice for "constant kernel" quantile 
estimation, and hence require h in Q to vary with x to match. 

As the above concentrates on estimating Q, so there are parMlels re estima- 
tion of F. In fact, Q-1 (albeit with a locally varying^b) has precisely the same 
asymptotic properties as does the much more natural F with constant h. 

3. Smooth estimation of q 

As q = Q', the natural direct kernel estimate of q is 0 --- (Q)': 

= ~=2X(~){kb( u ( i : l ) ) - k b ( u - - i ) }  

( ,I) ~-~,(X(~) - X(~_l))kb u - X(n) 
i=2  T/ 

+ X(1)kb(U). 

Various authors (e.g. Parzen (1979), Falk (1986), Welsh (1988), Babu and Rao 
(1990)) have considered this appealing kernel quantile density estimator which 
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runs a kernel smoother through consecutive order statistic spacings located on the 
grid i/n, i = 1,2, . . . ,n .  

MSE properties of 0 have been derived by Falk (1986), among others. A 
particularly attractive feature of this direct kernel estimator is that to O(n -1/2) 
its bias looks like kb * q, so its leading bias term depends on unknowns simply 
through q". Specifically, 

(3.1) MSE{0(u)} -~ b4{q"(u)}2~r 4 + q2(u)~ 

where ~ = f k2(y)dy. This expression tells us that rates are just the same as for 
kernel density estimation per se, shows how the coefficients of b and n depend on 
q, and might be used as a basis for bandwidth selection, and so on. 

Interest here, however, is centred on how this MSE compares with that of 
the alternative estimator t/(u) = 1/f(Qn(u)), where ] _= (/3), is the usual kernel 
density estimator. This (obvious) alternative has also appeared in the literature, 
if less frequently than has ~ (e.g. Sheather (1987), Hall et al. (1989)). Here, we 

have taken Qn as estimator of Q inside f( .)  for convenience: actually any Q which 
differs from Q by order n -1/2 (or even something slightly bigger) would do, a 
smoothed quantile estimator with appropriate degree of smoothing perhaps being 
preferable globally to avoid piecewise constancy of the estimate. 

Writing 1/](x) = 1/[f(x) + {f(x) - f(x)}] -~ {1If(x)} x [ 1 -  {](x) - f (x )} /  
f(x)], and carefully translating from x to u -- F(x), we get 

Once again, taking (pointwise) h = h(x) = bq(u), we can make this match up 
better with expression (3.1). Explicitly, 

(3.2) MSE{q(u)}= ~b4 [ q"(u)-  3{q'(u)}2]2 J at: + - ~  q2(u)a" 

The variance contributions to (3.1) and (3.2) are now identical. There remains, 
however, a persistent difference in the biases. While that of ~ is q"(u), the bias of 
q is actually [3{q'(u)}2/q(u)] - q"(u). Simplicity and interpretability may favour 
the former, but at any point u it is unclear which of 0 and q is better. Indeed, the 
squared bias of 0 is only less than or equal to that of ~ if q(u)q"(u) < 1.5{q'(u)} 2 
and q'(u) 7 ~ O. (The main condition is equivalent to f (x) f"(x)  > 1.5{f'(x)}2.) 
Very roughly, it seems that in general q might do the better job towards the centre 
of the distribution and 0 would tend to be preferable more in the shoulders and 
towards the tails. At stationary points the two have the same behaviour to this 
degree of approximation. 

Global considerations can be thought of as helping us determine which estima- 
tor has the "better" collection of points at which it is the preferable one. Simply 
integrating MSE's will (usually) lead to integrals that  are not finite, so we employ 
a MIWSE of the form MIWSE(~) = E f qW (u) {~(u) - q(u)}2du. Choice of power w 
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has a nonnegligible effect on our answers. We intuitively like the idea of choosing 
w so that the MIWSE is "on a par" with the (unweighted) MISE of an estimator 
f (x)  of the density f(x);  w = - 3  achieves this. 

Practical difficulties with implementing the local variation of h with f notwith- 
standing, the integrated weighted squared bias (IWSB) of either 0 above has the 
form b4R(q)(7~/4 where/~(q) is that functional of q appropriate to ~. In fact, 

R(q) = f qW(u){q"(u)}2du' 

while 

[~(q) = f qw-2(u)[q(u)q"(u) - 3{qt(u)}~]2du. 

Write 

I(q)= f qw-l(u){q'(u)}2q"(u)du and J (q )= f q'~-2(u){q'(u)}4du. 
Integration by parts yields that, for well-behaved q, 

1 
I(q) = --~(w - 1)J(q), 

so that 
/~(q) =/~(q) + (2w + 7)J(q). 

Since J(q) > 0, it follows that IWSB(0) < IWSB(~) provided w > - 7 / 2 .  This 
range of w for which 0 "wins" in MIWSE terms includes, of course, our favoured 
w -- -3 .  The direct estimate 0 therefore tends to dominate the indirect estimate 
more often than the reverse in sufficient of the areas that  most weight is given to by 
the usual kind of MISE (in f estimation terms), c] appears to take over when less 
notice is taken of performance in the tails of the distribution, in agreement with 
our comment about the pointwise comparison. 0 clearly wins when the unweighted 
case w = 0 is meaningful. 

To close this section, it may be useful to remind the reader that another pop- 
ular method of quantile density function estimation, namely the Siddiqui-Bloch- 
Gastwirth estimator (e.g. Hall and Sheather (1988), for definition and references) 
is precisely a version of 0 (as noted by various earlier authors). 

4. Related problems 

While little in our comparisons is totally clear cut, we have demonstrated ways 
in which "direct" kernel estimators of q may be thought preferable. Another is 
their simpler extension to derivative estimation. 

We very briefly address estimation of f in a similar light. This is, of course, 
the standard problem of nonparametric density estimation (e.g. Silverman (1986)) 
which has the usual kernel density estimator f as a standard solution. But as q 
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might be estimated directly or via f ,  so f might be estimated directly, or (per- 
versely?) via q i.e. define f - 1/gt(F,~(x)) (or else involving other appropriate 

The MSE of ] is very well known; it is 

I 4 I/ 2 4  i (4.1) MSE{/(x)} _ {/ (x)} + 

The equivalent formula for f at x = Q(u) using b = b(u) = hf(x)  turns out to be 

(4.2) MSE{f(x)} 4 [f"(x) {f'(x)}2 

The variances of f and f are the same, the biases differ in ways entirely 
parallel to the discussion in q-space. Interestingly, this means that there are 
places (actually, likely to be in the centre of the distribution, specifically where 
f ( x ) Z ' ( x  ) > 1.5{f'(x)} 2, i f(x) ¢ O, again) where the reciprocal of the direct es- 
timator of the quantile density function outperforms f.  That said, the analogous 
global MSE manipulations do turn out to favour f .  Weighting integrated MSE's 
by fW(x), one finds that ] is superior to f in MIWSE terms provided w > - 7 / 2  
once more. But now the natural choice of w is most likely w = 0, so we are further 
into the region of superiority of the direct estimate, and there is also a greater 
difference between the two. Overall, there is little here to force us to rethink our 
use of f as the basic kernel density estimator. 

Estimating the density quantile function, f(Q(u)),  rather than q(u) or f (x) ,  
is more akin to the latter because of the ability to estimate Q to order n -1/2, an 
amount negligible compared with smoothing rates. Thus, this author sees the more 
appropriate estimator of f (Q(u)) as being f at an appropriate ~)(u) rather than 
the reciprocal of O(u). Likewise, 1/f(x)  might be estimated via direct estimation 
of q rather than via f.  

Finally, our theoretical interest has been couched in MSE terms. However, 
tailoring loss functions to end points implies possibly alternative comparisons. 
For instance, Hall and Sheather (1988) show that, for certain confidence interval 
and hypothesis testing problems concerning sample quantiles, instead of MSE's 
squared bias and variance, the important aspects of ~'s behaviour are determined 
by bias itself and variance. It therefore turns out that much of what we have done 
here remains pertinent; a twist is that even when q'(u) ~ O, biases differ in sign 
between 0 and q. 
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