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A b s t r a c t .  To estimate the dispersion of an M-estimator computed using 
Newton's iterative method, the jackknife method usually requires to repeat the 
iterative process n times, where n is the sample size. To simplify the compu- 
tation, one-step jackknife estimators, which require no iteration, are proposed 
in this paper. Asymptotic properties of the one-step jackknife estimators are 
obtained under some regularity conditions in the i.i.d, case and in a linear or 
nonlinear model. All the one-step jackknife estimators are shown to be asymp- 
totically equivalent and they are also asymptotically equivalent to the original 
jackknife estimator. Hence one may use a dispersion estimator whose compu- 
tation is the simplest. Finite sample properties of several one-step jackknife 
estimators are examined in a simulation study. 

Key words and phrases: Asymptotic equivalence, asymptotic variance, com- 
putation of jackknife estimator, consistency, iteration, M-estimator, one-step 
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1. Introduction 

The  jackknife is one of the most  popu la r  me thod  in es t imat ing  the  dispersion 
of a point  es t imator .  One impor t an t  class of point  es t imators ,  including the max-  
imum likelihood es t imators ,  is the class of M-es t ima to rs  T(F~), where F,~ is the  
empirical  dis t r ibut ion based on n i.i.d, samples  f rom an unknown popula t ion  F 
and  T is a p-dimensional  functional  defined on a class of d is t r ibut ion flmctions. A 
more precise descript ion is given in Section 2. Let  F,~,i be the empirical  distr ibu- 
t ion based on the da t a  with the  i - th observat ion removed.  The  jackknife e s t ima to r  
of the  dispersion of T(F, 0 is 

(1.1) V~ - n -- 1 E [ T ( F ~ . i  ) _ 2~][T(F~,i ) _ 2~]~ ' 
n i 

* The research was supported by Natural Sciences and Engineering Research Council of 
Canada. 
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where :F = ~ i  T(F,~#)/n and the superscript r denotes the transpose. 
Brillinger (1964) and Reeds (1978) showed tha t  under some conditions, V, 

converges to the asymptotic covariance matr ix  of T(F,,) .  For practical uses, the 
computat ion of V~ requires the evaluation of T(Fn#) ,  i = 1 . . . . .  n. This may 
be cumbersome, since for most M-estimators, T is defined implicitly and each 
evaluation of T involves an iterative process. 

Some efforts have been made in modifying the jackknife est imator to sim- 
plify its computation.  For the least squares estimator in a nonlinear regression 
model, Fox et al. (1980) proposed a linear jackknife est imator which uses the 
linear term in the Taylor expansion to approximate the jackknife estimator. In 
the situation where the point estimator is a fixed point of an iterative process 
Tj+] = g , (T j ) ,  where gn is an explicitly known, data-dependent  function from 
Ti p to TiP, Jorgensen (1987) considered the use of the result from a single step of 
i teration and suggested the following estimator 

1 - e  
(1.2) Us(e) = n ~  ff E Q~[Tl(Gmi(e)) - T]ITI(G,~,~(e)) - T] 'Q: , ,  

i 

where e > 0 is given, G,,i(~) = (Fn - eHi)/(1 - e), Hi is the distr ibution function 
corresponding to the point mass one at the i-th observation, TI(.) denotes the 
result of the first step of the iteration in computing T(.), T = ~ :  Tl(Gn, i (e)) /n ,  
Q~ = (I  - j , , ) - l ,  Jn is the Jacobian of q, evaluated at T(F~,) and I is the p × p 
identity matrix. Here, it is assumed tha t  T(F,,)  is used as the initial point in 
computing Tl(Gn,i(~)), i = 1 , . . .  ,n.  Jorgensen (1987) showed tha t  for fixed n, 
U~(e) converges to the infinitesimal jackknife estimator as ~ -~ 0. In practice ¢ is 
usually taken to be n -1 and therefore G,~,i(e) = F~,i. The limiting behavior (as 
n ~ oe) of the estimator U,~(e) with e = n -1 is not studied in Jorgensen (1987). 

We confine our at tent ion to the si tuation where Newton's method is used 
for the iterative process in evaluating the M-functional T. In this case Tt(F,~) 
is called the one-step M-estimator in the literature and its asymptot ic  property 
is well known. Tha t  is, both T(F,~) and TI(F,~) are asymptotical ly normal with 

the same mean and covariance matrix. Let v[~I be the jackknife estimator of the v ? l . S  

dispersion of T1 (F . ) ,  i.e., 

( 1 . a )  y - - 1 - - 
n , S  ,p~ 

i 

where S is the initial point used in computing TI(F~#), i = 1 , . . .  ,n ,  and T1 = 
~-~ T1 (Fn#)/n .  Since T(F,~) and T1 (Fn) have the same asymptot ic  covariance ma- 

trix, v[1] "~,s can also be used to est imate the dispersion of T(F.,) .  The computat ion 

of V [1] needs no iteration and is much simpler than  the computat ion of V~. The n , S  

estimator 1( [1] will be called the one-step jackknife estimator. 

Note tha t  V [1] depends on the initial point S used in computing TI(Fn,~), rz,S 
i = 1 . . . . .  n. Define 

(1.4) V Ill ~/[11 with S = T ( F . ) .  
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It is shown in Section 2 that  Vn [1] is the same as U~(e) in (1.2) with e = n -1. 
Practical reasons for using an initial point other than T(F,~) in computing T1 (Fn,i), 
i = 1 , . . . , n ,  are 

(1) T(Fn) may not be available due to its computational complexity. 
(2) If T1 (Fn) instead of T(F~) is used as the point estimator, it is more natural 

to use TI(Fn) or the initial point used in computing TI(Fr~) as the initial point in 
computing TI(F,~,i), i = 1 . . . . .  n, for the purpose of estimating the dispersion of 
Tl(r ). 

(3) For some users, the point estimators are computed by using a standard 
program. Then it is easy for them to use the same initial point in computing 
T(Fn), TI(Fn) and Tl(V~,i), i --- 1 . . . .  ,n. 

However, it will be shown that if the initial point S is properly chosen, ~z[1] v 'n~S 

and Vn [1] are asymptotically equivalent, i.e., the difference between w[l] and E! 1J v n~S  

is of the order O~(n-a/2). Note that both will and V~ [1] "~,s are of the order Op(n-1). 
This gives us some flexibility: We may use a one-step jackknife estimator whose 
computation is the simplest and/or the most inexpansive. 

Theorem 2.1 in Section 2 shows that as n --* oc, Vn [1] is a consistent estimator 
of the asymptotic covariance matrix of T(Fn). The asymptotic equivalence among 

V~, Vn [1] and v[1] is established in Theorems 2.2 and 2.3 and therefore all these v n~S 

estimators converge to the same quantity. Although in real applications the sam- 
ple size n cannot increase infinitely, the asymptotic theory provides a theoretical 
support (and often a guide) for the proper use of the methodology. The jackknife 
method is supported by not only the asymptotic theory but also a sound intuitive 
background (Tukey (1958), Efron (1982)) and an acceptable behavior in many 
finite sample simulation studies. Results from a simulation study of the finite 

sample performance of V~, V~ [1] and ~z[1] ".,,s are presented in Section 3. 
Section 4 considers the case of regression M-estimation. We establish the 

consistency of the one-step jackknife estimator and show that for the least squares 
estimator in a nonlinear model, the one-step jackknife estimator is asymptotically 
equivalent to the linear jackknife estimator in Fox et al. (1980). 

The last section contains technical proofs. 

2. Asymptotic results 

We start with a precise definition of the M-estimator. Let F be an unknown 
k-dimensional distribution function and 0 be a p-dimensional parameter related 
to F.  Suppose that 0 = T(F) and T is a functional from ¢" to "]'~P defined as the 
unique solution of 

f p(x, T(G))dG(x) = m~  [ p(x, t)dG(x). 
t ~ t  d 

G E .T', 

where 5 c is a convex class of k-dimensional distributions containing F and all 
degenerate distributions, ft C ~P is the set of all possible values of 0, and p is a 
real-valued function defined on 7~ k x 7~ p. Let X1,. •., X~ be n i.i.d, samples from 
F and F~ be the empirical distribution based on X 1 , . . . ,  An. The M-estimator 
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of 0 = T ( F )  is then T(Fn) .  Examples of M-est imators can be found in Serfiing 
(1980) and Huber  (1981). The well-known maximum likelihood est imator  is a 
special type  of M-est imator when F has a density f(x~ O) with a known f and 
p(x, t) = - log[f (x, t)]. 

Suppose that  for almost all x, 

~(x,  t) = Op(x, t ) /Ot and ~'(x, t) = O~(x, t ) /Ot  

exist for t E N0, a compact  neighborhood of O. Let 

A(t,c) = f e(z,t)da(z) and A( t ,G)  = OA(t ,G)/Ot.  

Assume that  A(t, F)  and A(t, F )  are well defined for t ~ No and the inverse of 
A(0, F)  exists. Under some conditions (Serfling (1980), Huber  (1981)), 

(2.1) Dnl/2[T(F,n) - O] ~ N(O, I) in law, 

where D~ 1/2 is the inverse of the square root of 

(2.2) D~ = n- l [A(0 ,  F)] -1 Cov[w(X, ,  0)][A(0, F ) ] - "  

and A -~ denotes the inverse of A ~. The matr ix D~ is called the asymptot ic  
covariance matr ix of T(Fn).  Suppose that  T(Fn)  is computed  by Newton 's  method.  
Tha t  is, having the result Tj from the j - t h  iteration, we compute  

r j + l  = Tj - [A(Tj ,F~)]- IA(Tj ,F , , ) ,  j = 1 ,2 , . . .  

and T(F,~) = limj Tj. If we start  with an initial est imator To which is n 1~2- 
consistent, i.e., To - 0  = Op(n-1/2) ,  then (2.1) holds with T(Fo)  replaced by 
T1 (Fn), the result from the first step iteration. 

To compute  the one-step jackknife est imator given by (1.3), we compute  

TI(F,~,~) = S -  [a(S, F~,~)]-~A(S, F~#), i = 1 . . . . .  n, 

with an initial est imator S. The initial est imator S can be any nU2-consistent  

est imator such as T(F,~). TI(F,.) or To. The equivalence among v[1] using different • * 7 ~ , S  

initial est imators is studied in Theorem 2.2. 
In the special case where p(x, t) = (x - t)~(x - t), T(F~) is the sample mean 

and V~ and ~z[1] "~,,s are identical. 

We now show that  the matr ix Q,~ in (1.2) is equal to I and therefore V [1] 
in (1.4) is the same as Jorgensen's  est imator Us(e) in (1.2) with e = n -1. For 
Newton's  method,  the iterative process can be wri t ten as Tj+I = g~(Tj) with 

g~(t) = t - [A(t, F,~)]-~A(t, F~). 

The Jacobian matr ix of g~(t) is 

J~(t) = I - [A(t, F~)]-~OA(t, F~)/Ot + W ,  
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where Wn is a p ×p  matrix whose j - th  row is [OQ(t, Fn)/Ot]*A(t, Fn), and ~j(t, F,,) 
is the j - th  row of [A(t, F.)] -~. Since A(T(F.) ,  F . )  = 0 and A(t, F~) = OA(t, F.) /Ot,  
J~(T(Fn)) = 0 and therefore Qn = I. 

The following results show the limiting behavior of the one-step jackknife 
estimators and are useful for large sample statistical inferences. Proofs of these 
results are given in Section 5. 

THEOREM 2.1. Assume that for almost all x, ¢(x,  t) and fi(x, t) are continu- 
ous onA/'e, for fixed t, O(x, t) and fi(x, t) are measurable, and there are real-valued 
functions hk(x), k = 1, 2, such that 

(2.3) sup l]O(x,t)ll 2 <_ hi(x), 
tEXo 

(2.4) sup Ilfi(:~', t)H < h2(x) 
teA?o 

and 

(2.5) fhk(x)dF(x)<~, ~=1,2, 
where Ilall : (a~a) 1/2 for a vector a and flAil : [trace(A~A)] 1/2 for a matrix A. 
Then as n ~ ec, 

(2.6) n(V[1] - D~) ~0, 
P 

where V [1] and Dn are given in (1.4) and (2.2), respectively. 

Result (2.6) indicates that  Vn [1] is a weakly consistent estimator of Dn. If in 
addition, T(F~) ~ 0 almost surely (this holds in many situations), then it follows 

from the proof of Theorem 2.1 that  Vn [1] is strongly consistent. However, (2.6) is 
sufficient for statistical inference. 

THEOREM 2.2. Assume the conditions in Theorem 2.1 and that S is n U2- 
consistent. Then 

(2.7) v[1] --  Vn [1] = op(n-1). v ~t~S 

If  in addition, there is a function h3(x) such that 

h3(x)dF(x) < 

and 

sup Ilfi(x,t)ll 2 ~ h3(x), 
tEN'~ 

then 

( 2 . 8 )  V [11 - V .  [11 Op(n-3/2). :Q,S 
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The consistency of the one-step jackknife estimators requires somewhat weaker 
technical conditions than the consistency of the original jackknife estimator Vn in 
(1.1). Reeds (1978) showed the consistency of V~ by assuming 

(2.9) 
l l~ (x ,  t) - ~ ( x ,  s)ll _< M ( x ) l l t  - sll t, 

M(x)dF(x)  < 

for an e > 0, which is restrictive and not required for the consistency of the one-step 
jackknife estimators. In fact, Theorem 2.3 shows that under (2.9), the one-step 
jackknife estimators and V, are asymptotically equivalent. 

THEOREM 2.3. Assume the conditions in Theorem 2.1 and that (2.9) holds. 
Then 

(2.10) Vn - V [1] = Op(n-(l+e/2)), 

where e > 0 is given in (2.9). 

3. Simulation results 

A simulation study of the finite sample performance of the one-step jackknife 
estimators was conducted. Let X1 , . . . ,  Xn be i.i.d, random variables having com- 
mon distribution F(x  - 0), where F is symmetric about zero but unknown and 0 
is the unknown parameter to be estimated. In the simulation, 

F(x--O)  = (1--e)O(x--O) + eO ( ~ T  O ) 

with 0 = 1, e - 0.1 and r = 4, where • is the standard normal distribution 
function (F(x - 0) is in the contaminated normal family). We considered the 
following two M-estimators of 0: 

(1) Huber's estimator with 

/ t) 
p(x,t) 

I KIx - tl - ~ K  2 

if Ix - t[ _< K 

if [ x - t [ > K ,  

where K = 1.5 as suggested in Lehmann ((1983), p. 376). 
(2) The least p-th power estimator with p(x, t) = Ix - tiP. We considered only 

p = 1.5 in the simulation. 
To compute the M-estimators T(Fn), we used Newton's method and )i  = 

~ i  X~/n as the initial estimator. The true asymptotic variances of these two M- 
estimators are 1A8448/n and 1.09135/n, respectively. Hence the M-estimators 
are much more efficient than the customary estimators sample mean and sample 
median, which have asymptotic variances 2.5/n and 1.83824/n, respectively. The 
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simulation results also show that the M-estimators are more efficient even for the 
case where the sample size n = 12. 

We examined the following four jackknife estimators: 
(1) The jackknife estimator Vn. 

(2) The one-step jackknife estimator V[11 ] = V [1] in (1.4). 

(3) The one-step jackknife estimator V~[~ ] using TI(Fn) as the initial point S. 

(4) The one-step jackknife estimator V~[~ ] using )(  as the initial point S. 
Table 1 shows the simulation means and variances of these jackknife estima- 

tors under 5,000 replication for n = 12, 20 and 36. For comparison, the simulation 
means and variances and the asymptotic variances Dn of the two M-estimators 
T(F~) and the corresponding one-step M-estimators T I ( F n )  are also given in Ta- 
ble 1. 

Table  1. S imula t ion  m e a n s  and  var iances  of the  M - e s t i m a t o r s  and  the  jackknife  e s t ima to r s .  

P a r t  A: Hube r ' s  e s t i m a t o r  

T(Fn)  TI (Fn)  V,~ V [11 v[1] V II1 
n l  " n 2  n 3  

n = 12, Dn = 0.09871 

Mean  1.02745 1.03045 0.09977 0.09977 0.09944 0.10133 

Var 0.08663 0.08703 0.00419 0.00419 0.00408 0.00440 

n = 20, D~ = 0.05922 

M e a n  1.02768 1.03029 0.05874 0.05874 0.05868 0.05949 

Var 0.05135 0.05156 0.00073 0.00073 0.00073 0.00080 

n = 36, Dn  = 0.03290 

Mean  1.03093 1.03348 0.03273 0.03273 0.03268 0.03313 

Var 0.02873 0.02885 0.00012 0.00012 0.00012 0.00013 

P a r t  B: T h e  least  1.5th power  e s t i m a t o r  

T(Fn)  T l (Fn)  Vn I/[1] I/'[11 l/J1] 
" n l  " n 2  " n 3  

n = 12, Dn = 0.09095 

M e a n  1.00137 1.00092 0.09957 0.09957 0.10217 0.11384 

Var 0.09200 0.09361 0.00545 0.00545 0.00522 0.00565 

n = 20, D~ = 0.05457 

Mean  1.00002 1.00026 0.05682 0.05682 0.05826 0.06315 

Vat  0.05461 0.05533 0.00113 0.00113 0.00106 0.00115 

n = 36, Dn = 0.03032 

Mean  1.00118 1.00127 0.03131 0.03131 0.03185 0.03365 

Var 0.03037 0.03062 0.00020 0.00020 0.00019 0.00020 

The simulation results are summarized as follows. 
(1) The mean and the variance of the one-step jackknife estimator V~[ll I is 

almost identical to the mean and the variance of the jackknife estimator Vn, re- 
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spectively. Note that V~[~ ] uses the M-estimator T ( F n )  as the initial estimator 
S. 

(2) The means and the variances of the other two one-step jackknife estima- 

tors, Vn[~ ] and Vn[~ ], are not the same but close to the mean and the variance of 
V~, respectively. Thus, in addition to the asymptotic results in Theorems 2.2 and 
2.3, the one-step jackknife estimators are also close to the jackknife estimator for 
fixed and not very large sample sizes. 

(3) The jackknife and one-step jackknife estimators are good estimators of 
the asymptotic variance D~. For small n, the finite sample variance of T(F~)  or 
T1 (F~) may not be close to D~, especially for the case of Huber's estimator (Table 
1, part A). In such cases, the jackknife and one-step jackknife estimators are not 
very good as estimates of the finite sample variances of T(F~) and TI(Fn). 

(4) Overall, the one-step estimator V~[~ ] , which uses T1 (F~) as the initial point 
S, is preferred in terms of its performance and computational simplicity. 

4. Results for regression M-estimators 

We extend some results in Section 2 to the regression problem. Let yi, i -- 
1, . . . ,  n, be the observations satisfying 

(4.1) yi = f ( z~ , f l )  + e~, 

where fl is a p-dimensional vector of unknown parameters, z{'s are values of a 
q-dimensional regressor, f is a known real-valued function on ~q × ~P, and ei's 
are random errors. If f is linear in fl, then (4.1) is called a linear model; otherwise 
(4.1) is called a nonlinear model. The M-estimator of fl is obtained by solving 

Z ~(Y i  -- f ( z i ,  f in))  ----" rain ~-~ ~a(yi - f ( z i ,  f l ) ) ,  
i z 

where ~ is a real-valued function on T¢ and/3 is the set of all possible values of ft. 
When ~(t) = t2 /2 ,  f t ,  is the ordinary least squares estimator. 

We now study the estimation of the dispersion of the M-estimator/3n. If zi 's 
are random and X i  = (Yi, zi), i = 1 , . . . ,  n, are i.i.d., the problem reduces to a 
special case of that in Section 2 with p(x,  t) -- ~ (y  - f ( z ,  t)). Therefore, we focus 
on the case where zi's are deterministic. 

Assume that p is twice continuously differentiable and that ei's are indepen- 
dent with 

(4.2) E[~'((i)] : 0 for all i. 

Note that we do not assume that ¢~'s are identically distributed. If 99 is an even 
function and the distribution of e~ is symmetric about zero, then E[p'(e~)] = 0. 
In the case of least squares estimation, ~(t)  = t~ /2  and (4.2) reduces to the usual 
assumption that E(ei) = 0 for all i. 
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Under some conditions (see Theorem 4.1), /3~ is asymptotically normal with 
mean/3 and asymptotic covariance matrix 

Dn = [M,~(/3)] -1 E E[~'(e~)]2g(zi'/3)[g(zi,/3)]~[Mn(~)] -1, 
i 

where g(z,  ~/) = O f ( z ,  ~)/O'y and 

(4.3) Mn(~) = E E[~"(e~)]g(z~'13)[g(z~'/3)]r" 
i 

Let G(z,  ~/) = Og(z, ~)/a~/,  r~ = Yi - f ( z i ,  ~ ) ,  

and 

Hn,i = E{~'(rj)G(zj,~n)-~"(rj)g(zj,~n)[g(zj,~n)] r} 
j¢ i  

tn,i = ~n -- H~-,~ E ~ ' ( r j ) g ( Z j , ~ n )  
j¢~ 

= ~n + Hn , {P ' ( r i )g ( z i ,~n ) .  

Then the one-step jackknife estimator of the dispersion o f / ~  is 

( )( V[1] _ n -  1 tn,i 1 E t~,~ tn# 
n . n i rt i 

Here we use/3n as the initial estimator in computing the one-step M-estimator after 
deleting the i-th pair (Yi, zi). Hence V [1] is the same as Jorgensen's estimator Un(e) 
with e = n-1.  

Some special cases are studied in the following. 
(1) ~(t) = t2 /2  and f is linear in/3. In this case, model (4.1) is a linear model 

and/3~ is the ordinary least squares estimator. The one-step jackknife estimator 
reduces to the usual jackknife estimator given in Miller (1974). Its consistency was 
shown by Miller (1974) for i.i.d, e~ and by Shao and Wu (1987) for independent 
but non-indentically distributed ei. 

(2) ~(t) = t2 /2  and f is nonlinear in/3. In this case, model (4.1) is a nonlinear 
model and/3n is the ordinary least squares estimator. Fox et al. (1980) proposed 
the linear jackknife estimator 

where 

and 
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& = _ g(z , 

i 

Note that  p '(ri)  = ri and ~n(ri) = 1 in this case. It is shown in Section 5 that  
under the conditions stated in Theorem 4.1, 

(4.4) 

(3) f is linear in/~ but ~ is arbitrary. In this c a s e / ~  is the M-estimator in 

a linear model (Huber (1981)). The estimator Vn [1] is asymptotically equivalent to 
the one given by (6.6) and (6.15) in Huber ((1981), Chapter 7) with w~ = [~'(rd] 2 
to handle the unequality of E[p'(ei)] 2. 

The proof of the following theorem is given in Section 5. 

THEOREM 4.1. Assume the conditions on ~ and ei previously stated and that 
f ( z ,  7), 9(z ,7)  and G(z,7) are continuous functions on {llzll < z ~ }  × 7~ p, where 
z~ = sup~ ]]zill is finite. Assume further that there is a function h such that for 
all i, 

and 

sup [~ '(Yi-  f ( z i ,  ~/))]2 __< h(yi), 

sup l~"(Yi - f(z~,'y))l _< h(y~) 

sup E[h(yi)] 1+~ < oc 
i 

with a constant ~ > O, where N'z = {7 : - ~11 c} for a constant c > O. 

Let Mn(/3) be given by (4.3). Assume that fin ---+/3 and l iminfn[n-lMn(/3)] > O. 
P 

Then 
n(V21- Do) ,0. 

P 

5. Proofs 

We first establish the following lemma. 

LEMMA 5.1. Assume the conditions on • stated in Theorem 2.1. 
any sequence of random vectors {n satisfying ~ ~ O, 

P 

m a x  I]A({n, F,~,~ ) - A(O, F) ]  t , 0 .  
i < n  p 

T h e n  f o r  

PROOF. 
bers, 

Prom the conditions on • and the uniform strong law of large num- 

IIA(~, F ~ ) -  A(O,F)L I >0. 
p 



ONE-STEP  J A C K K N I F E  697 

The result follows from 

(5.1) max IIA(6~, F,~#) - A(6~ ,  F ,~ ) I [  ' 0. 
i<_n p 

Note that 

(5.2) A({,~, F~,~) - A({n, F~) - 
1 

n - 1 [A({,~, Fn) - tI'(X~, {n)]. 

H e n c e  for  ~n E J~fo, 

max IIA(~, F~#) - A(~n, F~)II 5 - -  
i<_n 

< - -  

1 

n -  1 i<n 

1 1 
n - 1 []a({., Fn)[I + ~ m<_ax[hg~(XiJ]~'" ,0. 

p 

Hence (5.1) follows from P ( ~  C Af0) --* 1. [] 

P R O O F  OF T H E O R E M  2.1. 

{T(F~) E Af0}. Let 

Since T(F~) >0, we may focus on the event 
P 

(5.3) 
A : A(O, F) ,  An = A(S, Fn), An = A(S, F . ) ,  

A,~,i = A(S, Fn,i), An# = A(S, Fn#), 

(5.4) A~ = ( n -  1)E(A~.~),,~,i -1 -1 A-1A ~ - A ~  M ) ( A ~ , ~ # -  ~ ~ 

and ( 1 ) (  )r 
-1  1 E -1  = _ _ hn#A~ ,  ~ - h ~ l A n  (5.5) Bn n(n- 1) E A ~ ,  iAn,~ A ~ I A ~  n 

i i 

Then 

with S = T(Fn). 

nV[J ] = A~ - Bn 

For S = T(F. ) ,  A~ = 0. Hence 

A n = ( n _ l )  E -1 r - r  A.#(An,i - An)(An,i - An) An, ~. 

Let 

Since 

c~ = (n -  1) ~ A-I(~. , , -  ~n)(~n,,- ~)~A -~. 
i 

(5.6) A~,~ - An - 
n - 1  n 

j # i  j 

1 
n - 1 JAn - ~(X~, Sl], 
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we have 

C,, - 1 A_ ~ E[~b(X~,  S) - A~][g,(X~, S) - A~]'A -~. 
n - 1  • 

i 

By conditions (2.4), (2.6), S---+ 0 and the uniform strong law of large numbers,  
p 

C,~ - nD,~ , O. By Lemma 5.1, As - C~ ,0 and therefore A,, - nD,~ - , 0. It 
p P p 

remains to show that  B ,  ~ 0, which follows from 
p 

an ~ E -1 A,~,iAn.i - nA~lAn *0. 
P 

i 

From (5.2), (5.6) and A~.I~ - Ag a = A~,I~(A~ - A~,,)Ag 1, 

1 _1 [¢~(Xi, S) A~]A~IA~,i 
i 

- 1  1 
< }lA~-*ll max Ila~,~ll max IIAn,,ll 7-2--/_ 1 ~ II~(X~, S) - Null. i<_rz i<n 

i 

Hence b~ ,0 follows from (5.6), Lemma 5.1 and condition (2.4)-(2.6). [] 
p 

PROOF OF THEOREM 2.2. We use the notat ion given in (5.3)-(5.5). Let 

Z,~ = (n  - 1) E ( A ~ - , {  - A~I )AnA~(A~ ,~  - A ~ ) .  
i 

Then A~ in (5.4) is equal to 

Z~ + (n 1 )  E --1 r - - r  -- An,i(An,i - An)(An,~ - An) An, i + cross product  terms. 
i 

For (2.7), it suffices to show that  Z.. 

1 ) )A~,~[~(X~,  S) - A,~]A~ l, 

, 0 .  S ince  A - I - A ~  1 = ( 1 / ( n -  T~t 
P 

(5.7) - 1  2 1 
IIz~LI < II-X~ll211A~'ll2 max IIAn,~ll ~ ~ LI~(X, ,S) -  A,~II 2. 

- -  i _ < ~  
i 

From condition (2.4), for S E N'0, 

tl~(Xi, s)  - A~II 2 ~ 2 ~ [ h i ( X d ]  2 + 2<lA~lb ~, 
i i 

From condition (2.5), E i [ h 2 ( X i ) ] 2 / n  2 ~ 0. Hence 
P 

1 
(5.8) n ( n - 1 )  E [ [ ~ ( X I ' S ) - A ~ [ [  2 p*0" 
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By the mean-value theorem and the fact that A(T(Fn), F,.) = 0, 

An = A(&, Fn)[S - T(F~)], 

where & is between S and T ( F , ) .  From Lemma 5.1, A(&,Fn)  )A. Then 
P 

An = Op(n-1/2) ,  since both S and T(F~)  are nl/2-consistent. Thus 

(5 .9)  IIA.II 2 = o p ( . - 1 ) .  

Hence Z,~ > 0 by (5,7)-(5.9). 
p 

For (2.8), it suffices to show that 

Z n = O; (n  -1) and B ,  = Op(n-1). 

From (5.7), (5.9) and Lemma 5.1, Z,, - Op(n -1) is implied by 

I I ~ ( x ~ ,  s )  - A.II  2 = O p ( n - 1 ) ,  
i 

which holds under the assumed conditions on ~. The proof of Bn = Op(n -1)  is 
similar. [] 

PROOF OF THEOREM 2.3. By the mean value theorem and A ( T ( F n ) , F , )  = 
0, 

A~,i = A(&,i, F~.~)[T(F.) - T(F,,,i)], 

where &.i is between T ( F . )  and T(F. , i ) .  Then 

Vn n - 1 E [ A ( & . i ,  F .  ,)]-IAm,A~.,[A(&.,, ,,.,)] - -  • F ,  - - 9 -  

yt 
i 

Comparing the above expression with the An and B~ in the proof of Theorem 2.1, 
we conclude that (2.10) is implied by 

X - 1  - 1  (5.10) m a x  II . . .  - An.,ll = Op(~-~/2), 
i_<n 

where A~,~i = A(&,,, Fn,~) and An,i = A(T(F,) ,  Fn,0- From condition (2.9), 

- 1  - 1  

_< IIA~,~IIIIAL~IIIIT(F.) - &,~ll ~ ~ } -2  M ( X J )  

_< IIAL~IIIIAL~IIIIT(Fn) - T(Fn,dlI" V-J--f-1 
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From Reeds (1978), n(Vn - Dn) ,0. Hence 
p 

m a x  I IT(F,~) - T(F,~,.~) II ~ _< ~ I IT(F,~) - T (F , ,# ) I I  2 --- O , ( n - ~ ) .  
i ~ n  i 

This and Lemma 5.1 imply (5.10). [] 

PROOF OF THEOREM 4.1. By using the following lemma, the result can be 
shown using the same argument used in the proof of Theorem 2.1. Therefore, the 
detailed proof is omitted. [] 

LEMMA 5.2. Let Yi, i = 1, 2 , . . .  be a sequence of independent random vari- 
ables, zi, i = 1, 2 , . . .  be a sequence of deterministic q-vectors satisfying supi I[zi[[ = 
z ~  < oc and u(y, z, ~/) be a continuous funct ion on ~ × {[]z[] < z~¢ } × Afz. Suppose 
that there is a function h(y) such that 

(5.11) 

sup ]u(y,z ,?)[ <_ h(y), 

,upe[h(y,)] ~+~ < 
i 

for  a constant 6 > O. Let ~/n, n = 1,2, . . .  be a sequence of random p-vectors 
satisfying 7n ~ /3. Then 

p 

1 u 
Z {  (Y. ~, ~ )  - E[u(y,.z~,#)]} 7 0 .  

PROOF. Under the given conditions, we need only to show that 

(5.12) 1E[u(yi, z~,yn)-u(yi,zi,#)[ ~0. 
n p 

i 

Let )/(A) be the indicator function of the set A. Then the left side of (5.12) is 
bounded by the sum of 

(5.13) 

and 

(5.14) 

n 
i 

! ~ lu(y~, z~, 7~) - u(y~, zi, Z)lx(ly~l < m) 
n 

i 

for any m > 0. Under condition (5.11), the quantity in (5.13) can be made 
arbitrarily small by choosing m large. For any fixed m, the quantity in (5.14) 
converges to zero in probability by the uniform continuity of the function u on 
[ -m,  m] × {llztt < zoc}× J ~  and the condition that 7n ~/7. This proves (5.12). 

p 
[] 
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PROOF OF (4.4). Comparing tn.i with {n,i, we need only to show 

(5.15) m a x  I I / l ~ - ~ H n , ~  - I I I  > 0. 
i~_n P 

Note that for ~(t) = t2/2,  ~'(t)  = t and p"(t) = 1. From the definition of H,,,i 
and/ tn ,  the left side of (5.15) is equal to 

-< IIST: ll max ÷ + }. 

From the continuity of the functions f ,  g and G, 

and 

1 
- m a ×  IIg(z~, D~,)II 2 >o 
71 i<n p 

1 
- m a x  tr lliC(z ,j )ll > o. 
n i<n p 

From Lemma 5.2, II/~11 = Op(n) and 

1 0. - -  ) 

n p 
i 

Hence (5.15) holds. [] 
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