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A b s t r a c t .  Methods for deriving empirical Bayes estimators are generally 
available. Corresponding general techniques for assessing the performance of 
these estimators are not widely developed yet, however. In this paper we pro- 
vide a general procedure for assessing and comparing the performance of the 
empirical Bayes estimators and other estimators in a given data set. 
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1. Introduction 

The  empirical  Bayes (EB) sampl ing  scheme covering a fairly general class of 
s i tuat ions can be described as follows. Let n independent  pas t  real izat ions of the 
r a n d o m  variable (r.v.) ~ be 8 1 , 0 2 , . . . ,  0~. Each of these 0i, i = 1, 2 . . . .  , n acts as 
a p a r a m e t e r  in the da t a  dis t r ibut ion F ( x  I 00 of a r a n d o m  variable X on which 
a vector  of mi  observat ions x~ -- (Xi l , . .  •, xi,~i) is made.  These  observat ions  are 
independent .  The  observed sequence of pas t  observat ions  xl ,  x 2 , . . . ,  ~ is then  
used to const ruct  empirical  Bayes es t imators  (EBE's )  of the current  0 based on 
the current  observat ion x = ( X l , . . . , x , ~ )  f rom F ( x  I t~). The EB scheme which 
has received most  a t t en t ion  is the  special case when m~ = m = 1 (i = 1 , . . . ,  n). 
Reduct ion  of the general scheme is possible if all mi  = m and if the observat ions  
at  each stage can be summar ized  in a sufficient statist ic.  

In pract ice  one can expect  sampl ing  schemes to be much less tidy. Cer ta in ly  
one may  expect  m~ to vary, and reduct ion by sufficiency m a y  not be possible. 
Al though par t icular  cases of unequal  rni have been studied in some detail  there  
has been surpris ingly little sys temat ic  discussion of the unequal  mi  scheme. Three  
ma t t e r s  clearly seem to need at tent ion.  The  first two are, jus t  how to cons t ruc t  
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EBE's and what to do about lack of sufficiency. The third is the somewhat ne- 
glected question of judging the goodness of EB estimation in a particular case, 
relative to, say, maximum likelihood (ML) estimation. For details of general EB 
developments and a discussion of unequal sample sizes see Maritz and Lwin (1989). 

Attention in this paper will be confined to the case of estimating a single pa- 
rameter 0. Extension to a parameter of dimension d > 1 is possible, but will not 
be considered here. We shall also not consider simple EB estimation, i.e. EB esti- 
mation in which prior distribution G(O) of O is not estimated directly. There are 
published studies of the unequal rni, simple EB problem, see for example O'Bryan 
(1976), O'Bryan and Susarla (1977). However it does appear that actual construc- 
tion of simple EBE's will generally involve selection of subsets of observations at 
each stage, calculating the simple EBE for each subset and possibly averaging the 
individual EBE's over all such selections. Also, if the current m is greater than all 
past m i, construction of a simple estimate of the actual Bayes estimate is impos- 
sible. Published accounts of the performance of simple EBE's indicate that EBE's 
based on direct estimation of G are better for finite n. 

The performance of an estimate ~ will be judged by the expected squared 
error W(~). The Bayes point estimate (fa minimizes W(~) and is the mean of the 
posterior distribution. We shall from time to time use notations like W(Bayes), 
W(ML), W(EB) with obvious meanings. Well established practice is to judge 
the performance of an EB estimate by tile expected value of W(EB) over n past 
realizations of 13, E , W ( E B ) .  

2. Construction of EB estimators 

Construction of EBE's for the current parameter 0 has been discussed for a 
general vector parameter case (Lwin and Maritz (1989)). In this section, we repro- 
duce a summary of the results as specialized to the uniparameter case. General 
procedures for assessing the performance of EBE's constructed here are discussed 
in Sections 4 to 6 in detail. 

2.1 EBE with parametric priors of known form 
Let the prior distribution function of O be a continuous function G(O;a) 

with a known functional form depending on a vector of unknown parameters 
a = (al,  . . . .  ak). For notational convenience we shall express the likelihoods and 
other expressions in the following in terms of probability density function (p.d.f.), 
f ( x  I 0), of data distribution F(x ] 0). Modifications for a discrete distribution 
are obvious. 

The Bayes estimator of 0, based on the current observation vector x is 

f 
0*(x:G,m) ~* [ (2.1) = 0 (x; a, m) = OdB(O ] x; G, m) 

d 

where 

dB(O t x; G, m) = p(:r; O, m )dG(O; o~) /q( x; a, m) 
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is the posterior d.f. of (9 and 

(2.2) p(x;O,m) = I I  f (x j  l O) 
j = l  

and 
f 

(2.3) q(x; a, m) = ] p ( x ;  O, m)dG(O; a). 

The unknown parameter  vector a is to be est imated from the previous da ta  
X l , . . . ,  xn of the EB scheme. 

The EBE of 0 is straight forward and is given by O*(x;&,m) where & is a 
"good" est imate of a based on the previous data. Thus the crucial problem here 
is tha t  of est imating a using all the information available in the EB scheme. We 
consider the maximum likelihood (ML) est imation of a.  

The likelihood function of a based on the past observation vectors x l , . . . ,  x~ 
is 

(2.4) L(xl , . . . ,  x~;a)  = ~I q(x~;a, mi) 
i=1 

where q(x/; a, to,i) is as defined in (2.3) with xi and rni in place of x and m. In fact 
q(xi; a, mi) is the marginal p.d.f, of a r.v. Xi whose realization is xi (i = 1 . . . .  , n). 

The log-likelihood function In L can be directly maximized. Alternatively, we 
can apply an EM algorithm (Dempster et al. (1977)), to obtain an ML estimate &~ 
of a.  In either case one is concerned with the s ta t ionary points of the likelihood 
equations 

(O/Oaj)lnL = Sj(x,a)  : 0; j = 1 , . . . , k  (2.5) 

where 

with 

i = l  

Uji(a) = Olnq(xi; a, mj /Oa: .  

Under certain regularity conditions (see also Lwin and Maritz (1989)), the likeli- 
hood equations can be recast as 

(2.6) S j ( x , a ) = ~ - ~ E  0 1 n g ( ( ~ I a )  X = x i  = 0  j = l  . . . .  ,k  
W1 Oaj 

where the expectat ion is with respect to (w.r.t.) the posterior d.f. B(x,a,  m). 
This may be solved directly if an explicit solution can be obtained. In general an 
iterative solution can be constructed as follows. Let S be a k x 1 vector whose 
j - t h  element is 

(2.7) Sj(xl .,~;~(~)) ~ E  01ng(Ol°~) , . . . .  x~, O~(i) 
u = l  O0~j a = a ( i )  
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and J be a k × k matrix whose (j, t)-th element is 

(2.8) Jjt(z  . . . .  ,z ;a = = z ,a . 

u = i  OL=&(i) 

In the above expressions a (i) is the i-th iterative step estimate of a and a (1) is 
taken as an initial estimate a +. The estimates are updated by the equation: 

(2.9) O / ( i + 1 )  = a ( i )  - -  J - 1 S  i = 1, 2 , . . . .  

This can be shown to be the result of the EM algorithm. When the iterative 
process converges, the resulting quantity &~ is taken to be the ML estimator of a. 

An approximate covariance matrix of &n is needed in evaluating the perfor- 
mance of the EBE 

(2.10) 0*(x;&n,m) 

based on ML estimate &~. This will be discussed in more detail in Section 3. For 
now we only note that if an alternative route of using observed information matrix 
-ix is to be used, one can follow the lines of Louis (1982) to ext rac t /~  as 

(2.11) Ix = J - SS  T 

where J and S are evaluated at a = •n .  The use of (2.11) in an assessment of 
EBE is also discussed in Section 3. 

An attractive feature of (2.11) is that if the EM iterative process (2.9) can 
be readily applied the quantities J and S are obtained as a by-product of the 
iterative process, when convergence is achieved. No extra computation was nec- 
essary. Furthermore the inverse of (2.11) can be used to estimate the covariance 
matrix C of &~. Using (2.6) an approximation to C is obtained as the inverse of 
V whose ( i , j ) - th  element is V~j ~_ cov(Si(x, a), Sj(x ,  a)). This is a special case of 
the general result discussed in Section 3. 

If Ti = Ti(x i l , . . .  , x i ~ ) ,  an estimate of 0i, is based on a sufficient statistic, 
the likelihood, apart from a multiplicative factor not involving a, becomes 

( 2 . 1 2 )  

r l  

i=1 

where h(ti I Oi, mi) is the density function of Ti. The above analysis can then be 
carried out equivalently by using L(t; a) in place of L(x; a). 

If Ti is not a sufficient statistic, then a conventional estimator, say an MLE, 
0i, may be used to reduce the i-th sample. Such a reduction results in what we 
shall call pseudo-Bayes estimation. The use of an MLE 0i can be justified by the 
asymptotic sufficiency of MLE's (see Cox and Hinkley ((1974), p. 36)). In any case 
the EB procedure described above remains the same with h(ti I Oi, mi) in place of 

I 
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Estimation of a need not be by the ML method. Sometimes other methods like 
the method of moments may be much more convenient. Thus it may be possible 
to write down tractable expressions, in terms of a for the moments E(T~G), p = 
1 ,2 , . . . ,  k of the distribution hc(t~; rni,a). Then setting the observed moments, 
( l /n )  y~ t p, equal to the theoretical moments estimating equations 

(2.13) Mp(t; a) = ~ Wpi(O~) = 0, p = 1, 2 , . . . ,  k 
i=1 

are obtained whose solutions are the methods of moments (MM) estimates & of 
a. One can use (2.13) and the matrix V mentioned earlier to obtain approximate 
standard error of & satisfying (2.13). This is discussed in Section 3. 

2.2 EB estimation: Approximation of the prior distribution 
When the form of G is not known it is feasible to obtain a good approximation 

to the Bayes estimate through approximation of G by some means. One may use 
a member of some chosen family of distributions, such as the family of natural 
conjugate priors, where it exists. This would lead to an analysis with parametric 
priors as treated in Subsection 2.1 above. A more versatile approximation to G is 
a step function approximation of G as discussed in Maritz (1967). 

Let G be approximated by a finite mixture Gk having jumps of size A1 . . . .  , Ak 
(0 <_ Ai <_ 1, ~ = l  ~ = 1) at a l  ~2 . . . .  ak. Then L(x, a) can be approximated 
by 

(2.14) Lk(x ,~ ,~)  = p (~  Ic~j,mi)A~ . 
i=1 

Two subapproaches are open. First, assume that )~ = 1/k and treat a l , . . . ,  ak as 
unknown parameters. One can then proceed with a likelihood procedure to obtain 
estimates of a. For identifiability one must impose a restriction a l  _< a2 _< ' "  < 
ak as pointed out in Maritz (1967). The estimating equations are the same as 
(2.9) with L(x, a) replaced by Lk(X, 0~, ~). 

Second, assume that the Ai's are unknown, but the a l ,  a 2 , . . . ,  ak are known 
selected values. In this case too, one can proceed with a likelihood procedure using 
(2.14) with known or selected values of a. This is a typical problem of estimation 
of mixing proportions of a finite mixture of known components. Thus it can again 
be treated by an EM algorithm approach; see e.g. Dempster et al. (1977). In this 
case application of EM algorithm results in a set of iterative equations for Aj's as 
follows: 

(2.15) 

n 

~(~+i) ^(0 Aj = E Aj (x.u)/n with 

k 

j=l 
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In (2.15) i~ ~) is an estimate of Aj at the i-th stage of iteration. At the initial stage 

one can take ~0) = 1/k. As is well known (2.15) leads to the ML estimates of 
Aj's based on the likelihood function (2.14). In the simpler case when sufficient 
statistics Ti (i = 1 . . . .  , n) exist, the above procedure is still valid if we replace 

Ti% i 1-Iu=l f(xiu I aj) by h(ti I ch,m~); the same procedure serves as a pseudo-EB 
method when Ti is a summary statistic but does not possess the property of 
sufficiency. 

Again following the lines of Louis (1982) the observed information matrix of 

based on the likelihood Lk(x,a,,,k) is obtained as ](k), a k x k matrix whose 
(i, j ) - th  element is 

(2.16) 
P(X.u l ai,mu)p(Xu l aj ,mu) 

I]k)(i,j) = -}_2 

where 

r ( ~ )  = ~ p ( ~  l at,mu)At • 
t= l  

As before the inverse of ~(k) can be used to estimate the eovariance matrix C of 
estimates of the unknown parameters ,~. 

2,3 Linear EB estimation 
Suppose that T is an estimate of 0. In this section T need not necessarily be 

a sufficient statistic. Then a linear Bayes estimate of 0 can be sought in the class: 

(2.17) 6(T; coo, col) = COo + colT 

as the one with w0, wl chosen to minimize W(wo +wiT).  Except in special cases it 
is not the actual Bayes estimate, but in the Bayes sense, it is the optimal estimate 
in the class defined by (2.17). Estimates of this type have been discussed by many 
authors; e.g. Griffin and Krutchkoff (1971). In this section our concern is with 
the case when T is based on different sample sizes at different stages of the EB 
sampling scheme. We specialize to the case where we are concerned with the 
estimation of the expectation of T at the current stage. 

Suppose that the distribution function F(x I O) is parametrized such that 

(2.1s) E(T I O) : O, E( T2 I O) : 0 2 + q(O)/m 

at the current stage. Here q(O) is a function taking positive values for all 0 in the 
support of F(x I 0). When Ti is computed from (Xi l , . . . ,  Xim~ ) at the i-th stage, 
the same relationships (2.18) hold for Ti with me in place of m. 

Now the choice of coo, cot which minimizes W(coo + cotT) at the current stage 
is given by 

[1 E(O) [ E(O) l 
(2.19) E(O) E(O : " 
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Let 7p = E(op) and ag = 72 - 71- Also let v = E{q(O)}. Then 

(2.20) 
~o = ( 7 , . / m ) / ( ~  + . / m ) ,  

wl = 1 - ( v / r n ) / ( a ~  + L,/rn). 

For constructing EBanalogues of the linear Bayes estimator, we need to construct 
estimates of 

(2.21) 7i = E(O), e~ = E(O 2) - {E(O)} 2, t, = E{q((9)} 

based on the data  (T1, . . . ,  T~). 
An advantage of this approach is that estimation of the above expectations 

can be straightforward in certain important special cases. We demonstrate this 
by considering a special choice of q(O) as 

(2.22) q(O)=ko+klO+k202. 

This choice covers the special cases considered in more detail in the following 
sections. 

Let 

Yi = mi(mi + k2)-l(ko + lglTi q- k2T?), 
k 

T = E T i / n ,  
i=1 

n 

sg = ~ ( T ,  - ¢ ) 2 / ( n -  1). 
i=1 

Then define the estimators for 71 and u as 

(2.23) ~ = ~ Y~/n. 

i=1 

It can be readily shown that "Yl and P are unbiased for 71, bc i.e. 

E ( ~ ' I )  = 71, 

E(~)  = . .  

Further by noting that 

n 

E(s})  = d + . - - '  ~ - v '  
/--1 

we obtain an unbiased estimator of a02 as 

77/-1 eo ~ = s~ - ~ - '  E i 
i = 1  
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It should be noted however that P and &~) could produce negative estimates for 
small n. However, we exclude this possibility by assuming that  sufficient amount 
of previous data are available. Thus, under some conditions which allow Y/ to be 
defined, one can readily construct linear EB analogues of the linear Bayes estimator 
6G(T; ,a0, COl) by using estimates &0 and &l based on ~/1, P and &02. 

We acknowledge here that the method of construction of 5 and &02 given above 
has been applied to the case where F(x I O) is a binomial distribution with param- 
eter (n, 0) by Southward and Van Ryzin (1972). Thus (2.23) gives an extension of 
their result to the case of data distribution with properties (2.18) and (2.22). 

It is also possible to estimate directly E(O p) for p = 1, 2 using the moments 
~i'~=1 TP/n (p = 1, 2). In either case the procedure is the same as the method of 
moments described in (2.13) and hence produces the same estimates. 

3. Assessing the performance of EB estimators 

Parametric G case 
The quantities to evaluate for assessing the performance of an EB estimator 

are W(ML), W(Bayes) and E ,W(EB)  mentioned in Section 1. In general each 
of these quantities is a function of the parameters a, and can, in principle, be 
estimated. The most troublesome is EnW(EB), because it requires estimation of 
the covariance matrix of the estimates of a. In the following we denote an estimate 
of a based on a genera] method by & and in the case of a maximum likelihood 
estimate we use &. 

The general form of the estimating equations for a is 

n 

= = 0 ,  

i=1 

p =  1,2 . . . .  ,k 

and a large n approximate formula for the covariance matrix C of the estimates is 

(3.1) C = D -1 V(Dr)  -1 

where the elements of 

(3.2) 
V are Cov{Sv(m; ~), Sq(X;  or)}, 

Dare {OESP (x;a)  } 
Oaq a=o~ 

for p, q = 1, 2 . . . . .  k. See for example, Maritz ((1981), p. 12). 
The general form (3.1) is useful in many contexts, for two reasons. The first, 

and more obvious one is that the reduction applying to the ML case does not 
always hold. An example of this sort occurs when an approximation to the true 
prior distribution is used. Other examples arose in alternative EB approaches, like 
linear EB estimators. 
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The other reason is that it is eminently realistic in some situations to suppose 
that the mi vary randomly. In this case (3.1) is still applicable and we can estimate 
the elements of C by 

(3.3) Cpq - - -  

1 n 

(n - 1 )  ~-~{Upi(&) - Up.(&)}{Uq,(~) - Uq.(&)}, 
i = l  

p , q =  1 ,2 , . . . , k .  

In the case of maximum likelihood estimation straightforward calculation 
shows that D = V so that (3.1) reduces to the usual formula for the large sample 
covariance matrix of MLE's; D is the information matrix. The actual calculation 
of estimates of C can proceed either by finding expressions for D in terms of a and 
then substituting the MLE & for a, or simply by using the observed information 
matrix whose elements are 

(3.4) {~-~OUpi(a)/Oaq} , p , q = l , 2  . . . .  ,k, 
i----1 a : &  

see for example, Cox and Hinkley ((1974), p. 302). In fact (3.4) reduces to (2.11) 
when a is estimated by ML approach, i.e. C can be estimated by the inverse of 
the observed information matrix in (2.11): C = I~-l(a). 
Finite approximation to G 

Next we consider the finite approximation to G as discussed in Subsection 2.3 
where G is approximated by a finite step function Gk with jumps of size A, . . . ,  Ak 
at known steps al ,  • • •, ak. Here we have the observed information matrix for A as 

given in (2.16), ](k) whose inverse can be used to estimate the covariance matrix 
C of the estimate A. 
Applications 

Details of the use of the estimated C in estimating EnW(EB) vary with 
the forms of data distribution and prior distribution, and are illustrated in the 
following sections dealing with particular distributions. 

It is often easier to evaluate the difference 

(3.5) EnW(EB)  - W(Bayes) = EnEQ{O*(x,&,m) - O*(x,a,m)} 2 

where EQ is the expectation with respect to marginal distribution of X,  Q(x,  G, m) 
whose p.d.f, is q(x; G, m) in (2.3). 

4, The Poisson distribution 

If the distribution of X for given 0 is Poisson with mean 0, the statistic T = 
(X1 + ""  + X m ) / m  is sufficient for 0. The probability distribution of Z = m T  
conditional on 0 is Poisson with mean (mO) and the moments of T are given by 

(4.1) E ( T  I e) -- O, E( T21 o) = o 2 + o / m ,  
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(i) Parametric G case 

If the prior distribution G is assumed to have the Gamma (al ,  a2) then the 
p.d.f, is 

g(01 a) = { ~ / r ( ~ e ) } 0  ~ - 1  e x p ( - ~ 0 ) ;  0 > o. 

and the posterior distribution of 0 given T = t is also a Gamma(a1 + m ,  a2 +roT). 
Prom (2.6), 

(4.2) 

Uli(a) = a 2 / a l  -- E ( O  ] T = ti) = a 2 / a l  - (c~2 + m i t i ) / ( c q  + mi) ,  

U2i(a) -- l n a l  - ¢(c~2) + g ( l n O  [ T = ti) 

-- l n a l  - ln(al  + rni) - ~P(a2) + ~b(a2 + rniti) 

which provide elements of S in (2.6). Also the matrix j - 1  can be evaluated as 

j - 1  -°~2 [ '~t (O~2) 1/Ctl 1 
1} L 1/al a2/a~ ]" 

Hence the iterative equations can be readily constructed. The observed informa- 
tion matrix can be estimated by 

(4.3) ~ft= F -&2/&12 1/&1 1 [ 1 / ~  - ¢ ' ( ~ 2 )  - 

rt 71 

i = 1  i = 1  

i = 1  i = 1  

In (4.2), •(.) is the digamma function. 
It should also be noted that  the expressions for Uli(a) and U2i(a) and the It 

can be directly obtained from the marginal probability distribution of Z = rnT 
whose explicit expression is, 

pG(z) = m z ~ p [ r ( ~ 2  + z)/{r(~2)z!}](~l + m) ~÷~ 

Alternative method of estimating a by MM technique may also be used by 
exploiting the moment expressions of a Gamma(a1,  ct2) distribution for 0. The 
resulting estimate & of a is obtained as the solutions of 

71 

i = l  

r = 1 , 2  

where 

w ~ , ( ~ )  = t~ - ~ ( ~  + 1 ) / ~  - - ~ / ( ~ 1 - ~ ) .  
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The matrices D and V in (3.1) are now given by: 

D 
~ 2  

?~o~ 2 n 

2na2(a2 + 1) (2a2 + 1) 1 K--,m_ 1 ' 
O/21 Oz I 

(4.4) [ ~2~( ~2~.( t t2 t t t 
# 2 i  - -  P l i )  P 3 i  - -  P 2 i ~ 1 i )  

V =  [ :=1 ~=1 
n 

~ 3 i  --  # 2 i / t l i )  # 4 i  - -  P 2 i )  

where #'Ti = E(Ti °) 

the expectation being taken with respect to the marginal p.d.f, of Ti. 
For a given set of past data we can now obtain an EBE of the current 0 by 

substituting & or & for a in the formula 

for the Bayes estimate. Similarly, W(Bayes), given by 

(4.5) W(Bayes) = o ~ 2 / { 0 / 1 ( o  Q n t- ?Tt)}, 

is estimated by substituting & or &. 
The difference EnW(EB) - W(Bayes) can be estimated by using (3.5). 
For the EBE based on MLE's of a we then have 

(4.6) W(EB)-W(~c)={a2+ma2/al-0/2+ma2/al} 2 & 1  + m  a I q - m  

+ var(Z) 

where var(Z) is the variance of Z with respect to the marginal distribution Pc(z). 
A simple approximation for E~W(EB) - W(Bayes) is obtained by replacing 61 in 
the denominators of the expression above by 0/in which case we obtain 

(4.7) var(&2) "4- (0~2/0~1) 2 var(dq) -- 2(a2/al) cov(c)l, &2) var(dl) var(Z) 
(al + ?Yt) 2 + (al + m) 4 

where vat(Z) = (mc~2/al)(1 + m/al) which can be estimated in the obvious way 
using the estimates of vat(61), var(d2) and cov(&a, d2) or through the use of the 
observed information matrix (4.3). 
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(ii) Linear EB estimation 
For the Poisson data distribution comparing (4.1) and (2.18), we have q(O) = O. 

The solution of (2.19) for this case is 

(4.8) 
~o = ('y~lm)l('y: - ~ +.y~lm) = ~o('~), 

giving the linear Bayes estimator, 

(4.9) (~G (T; ~o, o21 ) -- 6G (T; ~) = ~o (~) -~- ~dl (~/)T. 

The linear EBE is obtained by substituting an estimate ~/for ff in (4.9). One 
such estimate -~ is obtained by estimating "~p : E(OP),  p : 1, 2, from the estimating 
equations 

n 

Z w;~(.y) = o p = 1 , 2  

i=1 

where 
W~*~(~) = t~ - ~1, 

w ~ * ~ ( v )  = t~  - ~ x / m ~  - ~ 2 .  

The covariance matrix for ~/can be obtained using the method of (3.1). We have 
for this case o] 

D =  _ ~ 1  

m i  

while V is the same as the expression in (4.4). 
The difference EnW(linear EB) - W(linear Bayes) is given by 

E n { ( ~ 0  - ~0)  2 + 2~1(~0  - ~0)  + (~1 - ~1)2~2}  

which can be evaluated to second order by expanding the above expression in 
terms of Taylor series in -) and using the covariance matrix C of x/. 

The quantity W(linear Bayes) can be directly evaluated as 

W(linear Bayes) = co02 + 2w0(wl - 1)3~1 + (wl - 1)2")'2 + w21"/1/m. 

5. The binomial distribution 

The binomial distribution has been previously studied; but even for the case 
when the parametric form is assumed to be known, say a conjugate beta prior 
d.f., the assessment of the standard errors has not been properly made except in 
some special cases. Simulation studies have been carried out sporadically, but by 
its nature these cannot provide a comprehensive study. The linear EBE for the 
binomial case has been proposed by Griffin and Krutchkoff (1971) who also gave 
the linear Bayes estimator for a general case. Martz and Lian (1974) compared 
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various methods of EBE for the binomial case which contains the linear EBE. But 
except for a few methods the existing results are based on simulation studies. 

The r.v. X is Bin(l, 0) so that, in the current stage, m T =  (X~ + .-. + Xm) 
is Bin(m, 0) and T is sufficient for 0. Also note that 

(5 .1)  E ( T  I O) = O, E (  T2 I O) - 0(1 - 0) + 02 . 
m 

(i) Parametric G case 
Consider the case when 0 is distributed according to a Beta(a1, a2) distribu- 

tion. Then 

(5.2) g(o I - F(a l  + a2) 0c,~_1( 1 _ 0 ) a ~ _  1 
r ( a l )P (a2)  

and the posterior distribution of O is given T is Beta(a1 + roT, ct 2 ~- m - T i n ) .  
From (2.5), 

(5.3) 

U l i ( O t )  = ~/,(OZl -[- c t2)  - ~ , (Ct l )  -~ E ( l n O  ] T = ti) 
= ~,(al  + a2)  - ~ ' (a l )  - V,(al + a2 + re.i) + ~ ( a l  + m i t d ,  

U.2,i(a) = ~/,(al + ~2) - ¢ ' ( a 2 )  + E(ln(1 - O) I T = ti) 

= ~'(al + ~2) - ¢ ' ( a 2 )  - e ' ( a l  + a2 + mi)  + V,(a2 + mi - mi t i ) .  

These quantities define the vector S in (2.11). Also, we have 

(5.4) ,l_ 1 1 [~d(cti -]- O~2) -- ~/(OZ2) --~/(O~1 -t- O~2) ] 

where 
d = ~"(~1)~"(~2)  - ~ , ' ( ~ 1  + ~2){e,'(o~) + ~,'(~2)}. 

Hence the iterative equation for updating a vector of initial estimates 

(d~ °), d(2 °)) can be readily written down. The eovariance matrix of d is obtained 
as the inverse of V whose elements are 

(5.5) V12= 

V22= 

i=1  

V21 = E cov{~,(al + miT~), ~,(a2 + mi(1 - T~))}, 
i=1  

f i  var{W(a2 + rni(1 - Ti))}. 
i----1 

The Bayes estimator of 8 is 

O*(t; ~. m) = (,~1 + mt)/(O~x + o~2 + m) 
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and the EBE of 0 is obtained by replacing a by &. An approximation for the 
E~W(EB) is obtained from the approximate relation 

E~W(EB) - W(Bayes) 

(Oll -I'- 0~2)2(0q "t- O~2 Jr- m )  2 

var(&l) + var(&2) + 2 coy(&1 + &2) 
+ var(mT) 

(Oq -t- 0:2 -~- m )  4 

where 
var(mT) = m2°~l (Ct l  + 1) + m a l a 2  _ m 2  a 2 

(Ctl Jr- O~2)(Oq -t- OL2 -~- 1) (al + a2) 2" 

Approximate expressions for variances and covariance of &l, &2 are obtained from 
V- i  and the Bayes risk is 

(5.7) W(Bayes) = a l a 2 / { ( a l  + a2)(al  + a2 + 1)(al + a2 + m)}. 

(ii) Linear E B  estimation 
For the Binomial distribution we have 

E ( T I O )  = O, 

E( T2 I 0)  = 0 2 + 0 ( 1  - O)/m, 

so, as in the Poisson case, we need estimates of 7p = E ( 0 P ) ,  P = 1, 2. They are 
obtained by solving 

~-~ W;*~ ( "y ) = O, p = 1, 2 
i = l  

where 

(5.8) 
VVli(~) = ti - "~1, 

and an estimated approximate covariance matrix of the estimates "~ of "), can be 
calculated as in the ML case. The solution of (2.19) for the binomial distribution 
is 

Also 

W(linear Bayes) = ~0 2 + 2w0(wl - 1)"/1 + (021 - 1)2"/2 -~- Wl2('yl - " y 2 ) / m  

and EnW(linear EB) - W(linear Bayes) can be estimated as in the Poisson case, 
using the estimated covariance matrix of &0, &l obtained from the estimated co- 
variance matrix of ~ and the relation (5.8). 
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6. The normal distribution 

We take the distribution of X to be N(O, ~2) with a 2 known and fixed. Since 
we have m > 1 current observations, and mi 2> 1 past observations at each stage 
it is possible to calculate an estimate of cr 2 and use it in EB estimation. It is also 
possible to develop EBE's in which cr is allowed to vary from one experiment to 
another so that we have the sequence (0i, a2) of realizations of the two-dimensional 
parameter random variable (O, E2). However, we shall here consider only the fixed 
and known ~2 case. 

The estimate T = (X1 + . - .  + X m ) / m  of 0 is distributed N(O, cr2/rn) and is, 
of course, a sufficient statistic. For the parametric G case we shall take the prior 
distribution to be N(a l ,  ct2); in our previous notations a :  -- 71, a2 = ~/2 - ~/12. 
(i) Parametric G: 0 distributed N(C~l,a2) 

The marginal distribution of T is N(C~l, ct2 + o-2/m) hence it follows simply 
that the MLE of a l ,  a2 are the solutions of Sp(t; a) = 0, p = 1, 2 as in equations 
(2.5) or (2.6) with 

= - + 
( 6 . : )  

U2i(o~) = - 1 / ( a 2  + a2/mi) + (ti - a : )2 / (a2  + cr2/mi) 2. 

The matrix J required for the iterative ML process is given by the elements 

J l l  = --/~/~2, 

n mi(ti -- a l )  
J:2 = - /~X ~2--~ ~2 ~n--~-2 = J21, ) 

rt 1 n :2o~ 2 ~ m~(ti_oq)2 
' ] 22 -  2Oz2 Oz3 "= i=1 

Now the elements of the approximate covariance matrix of & are given by V -1 
where elements of V are given by 

n 

i=1  

V:2 = V2: = O, 
n 

V22 = Z 1/{2(a2 + o21mi)2}. 
i=1 

The covariance matrix of & is used, as before, in the following to assess the goodness 
of the EBE relative to the MLE. We have 

W(Bayes) = 1/(rn/a 2 + 1/a2) 

and after making approximations similar to those giving (4.7) and (5.6), 

(7 4 
E~W(EB) - W(Bayes) _~ ((7~ + ma2)2var((~l) + 

0-4 

(~2 + m~2)3 var(&2)" 
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(ii) Linear EB estimation 
For the normal distribution we have 

E ( T I O  ) : O, 

E( T2 I O) = 02 + a2/m. 

Again, we need estimates of ?,p = E(OP), p = 1, 2. These are obtained by solving 

Wv~(,y)=0 p = l , 2  
i=1 

where 

(6.2) 

and the solution of (2.19) for the normal case is 

= - + . 2 / m } ,  

= - - + 

Also 

W(linear Bayes) = {a2 + rn(y2 - y~)}" 

The quantity E,~W(linear EB) can again be evaluated in terms of the eovariance 
of ~0 and ~'1. 

7. Discussion 

The main contribution of this paper is to bring the assessment of empirical 
Bayes estimators to the same level as the assessment of ML estimators in the usual 
theory at least for the case when the prior d.f. can be represented by a parametric 
d.f. This was made possible by the use of a second order result (3.1). A more 
rigorous proof of this result is recently given by Brown (1985); the examples used 
in this paper satis(v the required regularity conditions mentioned there. 

REFERENCES 

Brown, B. M. (1985). Multiparameter linearization theorems, J. Roy. Statist. Soc. Set. B, 47, 
323-331. 

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics, Chapman and Hall, London. 
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete 

data via the EM algorithm (with discussion), J. Roy. Statist. Soc. Set. B, 39, 1-38. 
Griffin, B. S. and Krutchkoff, R. G. (1971). Optimal linear estimators: An empirical Bayes 

version with application to the binomial distribution, Biometrika, 58, 195-201. 
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm, J. 

Roy. Statist. Soc. Set. B, 44, 226-233. 



RISK-EFFICIENCY OF EMPIRICAL BAYES ESTIMATORS 657 

Lwin, T. and Maritz, J. S. (1989). Empirical Bayes approach to multiparameter problems: with 
special application to the multinomial distribution, Ann. Inst. Statist. Math., 41, 81-99. 

Maritz, J. S. (1967). Smooth empirical Bayes estimators for continuous distributions, Biometrika, 
54, 435-450. 

Maritz, J. S. (1981). Distribution-Free Statistical Methods, Chapman and Hall, London. 
Maritz, J. S. and Lwin, T. (1989). Empirical Bayes Methods, Chapman and Hall, London. 
Martz, H. F., Jr. and Lian, M. G. (1974). A survey and comparison of several empirical Bayes 

estimators for the Binomial parameter, J. Statist. Comput. Simulation, 3, 165-178. 
O'Bryan, T. E. (1976). Some empirical Bayes results in the case of component problems with 

varying sample sizes for discrete exponential families, Ann. Statist., 4, 1290-1293. 
O'Bryan, T. E. and Susarla, V. (1977). Empirical Bayes estimation with non-identical compo- 

nents: Continuous case, Austral. J. Statist., 19, 115-125. 
Southward, G. M. and Van Ryzin, J. R. (1972). Estimating the mean of a random binomial 

parameter, Proc. Sixth Berkeley Symp. on Math. Statist. Prob., Vol. IV, 249 263. 


