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Abstract .  This paper proposes two sequential procedures for selecting re- 
spectively the multinomial cell with the largest cell probability and the multi- 
nomial cell with the smallest cell probability. The stopping rule for both pro- 
cedures uses truncation of the procedure studied by Ramey and Alam (1979, 
Biometrika, 66, 171-173). A property of the least favorable configuration of 
the proposed procedures is proved, which partially solves a conjecture given in 
Ramey and Alam (1979). The proposed procedures are compared with other 
procedures which have been considered in the literature and are found to be 
better in certain respects. 
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1. Motivations 

Ramey and Alam (1979) studied a sequential procedure for selecting the cell 
with the largest probability of occurrence from a multinomial distribution with 
k cells. Their procedure was the combination of stopping rules considered by 
Cacoullos and Sobel (1966) and Alam (1971). Cacoullos and Sobel's procedure 
stops sampling when the frequency of any cell reaches a given positive integer 
M. Alam's procedure stops sampling when the difference between the largest fre- 
quency and the second largest frequency is equal to a given positive integer r. The 
combination of these two stopping rules, which was studied by Ramey and Alam 
(1979), stops sampling when either of these two stopping criteria is satisfied with 
the sample size bounded by k M  - k + 1. When sampling is terminated, the proce- 
dure selects the cell with the unique largest cell frequency as corresponding to the 
most probable event. There is no possibility of a tie for the first place. Bechhofer 
and Kulkarni (1984) studied the performance of the curtailment of the fixed sam- 
ple size procedure considered in Bechhofer et al. (1959). The curtailed procedure 
stops sampling once the frequency of any cell is large enough to guarantee the se- 
lection of a particular cell. The probability of a correct selection for the curtailed 
procedure is the same for the fixed sample size procedure uniformly in the cell 
probabilities. However, curtailed procedure always stops sampling for an equal or 
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smaller sample size. In two more recent papers, Bechhofer and Goldsman (1985b, 
1986) used truncation to improve Bechhofer-Kiefer-Sobel's sequential procedure 
based on likelihood ratios. Our procedures R1 and R2 were partially motivated 
by their results and we also inherit some of their notations and terminology. 

In this paper, we propose a sequential procedure Rt, whose stopping rule is the 
combination of Ramey and Alam's stopping rule, and Bechhofer and Kulkarni's 
stopping rule. The probability of a correct selection for procedure R1 may not 
always be as large as that of the fixed sample size procedure due to the earlier 
stopping time caused by Ramey and Alam's stopping rule. However, by choosing 
appropriate stopping parameters, it always achieves the same probability require- 
ment ((2.1) below) as the fixed sample size procedure with a small expected sample 
size. The concept of combining stopping rules can also be employed in selecting 
the least probable multinomial cell. We propose a sequential procedure/~2 which 
uses a combined stopping rule modified from procedure R1 to select the cell with 
the smallest cell probability. A similar result on the least favorable configuration 
can also be obtained for procedure R2 as for procedure R1. 

2. Notation, terminology and procedures 

A multinomial distribution with k cells 7h, 7r2,..., 7rk is given; let the ordered 
values of the unknown cell probabilities Pi _> 0 (1 < i < k) with ~ 1 P i  = 1 be 
denoted by P[1] _< P[2] <-- " _< P[k], and the corresponding cells be denoted by 
7ro),~r(2),... ,Tr(k ). It is assumed that the values of the Pi and p[j] (1 < i , j  < k) 
are unknown, and the pairings of the Pi and P[Jl (1 ___ i , j  < k) are completely 
unknown. Let P* with 1/k < P* < 1, 6~, ~ denote three specified constants. For 
selecting the cell 7~(k), we require procedure R~ which guarantees that 

(2.1) P(correct selection I R1) _> P* whenever P[k]/P[k-1] >-- 5~. 

For selecting the cell 71"(1), w e  require procedure R2 which guarantees that 

(2.2) P(correct selection [ R2) _> P* whenever P[2] -P[1] -> 5~. 

We should notice that traditionally, two different measures for the distance 
between the preferred cell (Tr(k) or 7r(1 )) and the remaining cells are used (ratio for 
R1 and difference for R2). These two measures defined the so-called preference 
zones (PZ) as follows: 

(2.3.1) 

(2.3.2) 

PZ for R1 = { P :  P[k]/P[k-1] >--- 5~}, 

PZ for R2 = {P : P[2] - PIll -> 5~}. 

Both procedures R1 and R2 take (multinomial) vector-observations one-at-a- 
time until certain stopping requirements are satisfied. Let n denote the maximum 
number of vector-observations that the experimenter is allowed to take. The value 
of n may be based on economical conditions. By stage m (m < n), we shall 
mean that a total of m vector-observations have already been taken. Let X.i,m 
(1 < i _< k, 1 _< m < n) denote the frequency in cell 7ri through stage m and 
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X[1],m _< X[z],m < ""  _< X[k],m denote their ordered values. Let i I1 ,  M2, r 1 and 
r2 denote positive integers. Procedures R1 and R2 are defined as follows: 

PROCEDURE R1. 
Sampling rule. Take vector-observations one-at-a-time. 
Stopping rule. Stop sampling at the first stage m at which any one of the 

following conditions is satisfied: 

(2.4) X[k],,~ = if/z; 

(2.5) X[kl,m - X[k- l],m = rl; 

(2.6) X[k],m ~> X [ k - 1 ] , m  "~- n - -  m ;  

(2.7) m = n. 

Selection rule. Having stopped sampling, select the cell ~i if and only if 
Xi,,~ = Xlk],m. If there is a tie for the first place, use randomization to break it. 

Remark 2.1. It is clear from the above definition that a tie for the first place 
can occur only when (2.7) is satisfied. 

PROCEDURE R 2. 
Sampling rule. Take vector-observations one-at-a-time. 
Stopping rule. Stop sampling at the first stage m at which any one of the 

following conditions is satisfied: 

(2.8) X[2l,m = iI2; 

(2.9) X[21,m - -  X [ 1 ] , r n  -~- r2; 

(2.10) X[ll,m <_ X[2l.m - (n - m); 

(2.11) m = n. 

Selection rule. Having stopped sampling, select the cell ~ri if and only if 
X~,,~ = Xtl],,~. If there is a tie for the last place, use randomization to break it. 

Remark 2.2. It is clear from the above definition that a tie for the last place 
can occur only when (2.11) is satisfied. 

Remark 2.3. For procedure R1, the probability of a correct selection is the 
same for all the J'/1 such as that M1 _> n/2 with fixed rl and n. The probability 
of a correct selection is the same for all the ra such as that rl > M1 with fixed 
M1 and n. Similarly, for procedure R2, the probability of a correct selection is the 
same for all the JI2 such as that M2 > n/k,  with fixed r2 and n. The probability 
of a correct selection stays the same for all the r2 such as that r2 > M~ with fixed 
M2 and n. In particular when rl >_ M~ >_ n/2, R1 always makes the same decision 
as fixed sample size procedure. When r2 >_ M2 >_ n/k,  R2 always makes the same 
decision as fixed sample size procedure. Thus the computation of the procedure 
parameters (rl, M1, n) for R1 and (r2, M2, n) for R2 to satisfy requirements (2.1) 
and (2.2) can be restricted to those cases with rl <_ M1 <_ n/2 and r2 <_ M2 <_ n /k  
respectively which saves the computing time significantly. 
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3. The least favorable configurations 

The parameter vector p = (pl , . . .  ,Pk) which minimizes the probability of 
a correct selection under the preference zone (2.3) is called the least favorable 
configuration (LFC). It was shown by Kesten and Morse (1959) that the LFC for 
the fixed sample size procedure of Bechhofer et aL (1959) for selecting the most 
probable cell is given by the so-called slippage configuration under (2.3.1): 

(3.1) PN - 5~ + k - 1' P[1] . . . . .  P[k-1] - 6~ + k - 1 

Alam (1971) showed that for the fixed sample size procedure for selecting the least 
probable cell, the LFC is given by the slippage configuration under (2.3.2): 

(3.2) P[1] = k , P[~] . . . . .  P[k] = k 

Bechhofer and Kulkarni (1984) proved that since early curtailment employed 
in the stopping rule of selecting the most probable cell does not change the final 
decision under any configuration, the LFC should stay the same as if curtaihnent 
is not used. (The result can also be applied to curtailing the fixed sample size pro- 
cedure for selecting the least probable cell.) Ramey and Alam (1979) conjectured 
that (3.1) is the LFC for their procedure. Since our procedure R1 has stopping rule 
which is a combination of curtailed procedure and Ramey and Alam's procedure, 
we infer that the LFC for R1 is also (3.1). A partial result is given in Theorem 
3.1 to solve the conjecture. Numerical calculation based on the theorem is given 
in Section 4 to support our conjecture. Since procedure R1 is a generalization of 
Ramey and Alam's procedure (cf. Remark 2.3), Theorem 3.1 also solved Ramey 
and Alam's conjecture partially. With a straightforward modification to Theorem 
3.1, we can easily obtain Theorem 3.2 which deals with the LFC for procedure R2. 

THEOREM 3.1. The LFC for procedure R1 is of the form 

P = ( O , O , . . . , O , s , p , p , . . . , p ,  p6~) where O < s < p .  

PROOF. We begin with some notations developed in Bechhofer and Goldsman 
(1985a). Let X l t , X 2 t , . . . , X k t  denote the frequencies of the cell probabilities 
Pl <_ P2 <_ " '  <__ Pk-1 < Pk at stage t of sampling, t = 1 ,2 , . . . .  Here we 
assume that Pl < P2 <_ " <_ Pk-1 <_ Pk without loss of generality. Proce- 
dure R1 terminates sampling when any of the condition in (2.4)-(2.7) is sat- 
isfied. Define #(11,12 . . . . .  Ik) to be the number of distinct paths of the sam- 
pling process {X t ,  t -- 1, 2, . . .}  which lead to procedure termination exactly when 
X t  = (X l t ,  X 2 t , . . . ,  Xk t )  = ( /1 . . . .  , lk). Then it is clear that 

(3.3) #(11: 12, .-. ,Ik) 
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~-- i----1 
l l ,12 , . . . , I k  

- E E . . , E  
j l : 0  j2=O jk=O 

x # ( j l , j 2 , . . . , J k )  
11 - j l , 1 2  - j 2 , . . . , l k  - -  j k  

w h e r e (  al , a2,a. . . , ak ) = a[/ I-[k=l ai! is the multin°mial c°efficient" 

Thus the probability of a correct selection P ( C S  I R1) can be written as 

k 
i h 

(3.4) P ( C S l R 1 ) = E # ( l l , 1 2 , . . . , l k ) R ( l l , . . . , l k ) H p  i 
1 i=1 

where ~--2~1 is taken over all the possible stopping points (11,12,..., lk) with lk = 
maxl<i<k li and R ( l l , . . . ,  lk) = # of li's whose values are equal to lk. 

k Since max(h,l 2 ..... lk) Y'~=I li=~, we can make the terms in P ( C S  I R1) in 
(3.4) all have order n by multiplying each term in ~ 1  a factor (Pl + p2 + "'" + 

pk)n-~i~=l h = 1. Thus P ( C S I R 1  ) can be rewritten as 

(3.5) P ( C S  ] R1) = E # ( l l ' 1 2 " ' " l k )  
1 

1 ~2 n - -  li 111 li+ni 
x R( l l ,12 , . . .  lk) l l P i  

' r t l , n 2 , . . .  , n k /  i=1 

k l where ~ 2  is over all the possible partitions (nl, n2 , . . . ,  nk) of n - Y~i=l i in k 
cells. 

k 
In P ( C S  t R1), we fix p3,p4, . . .  ,pk and let Pl = x and P2 = 1 - x - ~ i=3Pi .  

Thus P ( C S  I R1) becomes a function of x only. We can prove that P ( C S  I R1) is 
a non-decreasing function in x by showing that the derivative of P ( C S  I R1) with 
respect to x is non-negative. The detailed proof is tedious and it is omitted here. 
But the complete proof is available from the author upon request. 

Thus, we can push Pl toward 0 and P2 toward pk/~* and the P ( C S  ] R1) value 
will not increase by doing this process. Since the proof holds for any x = pi < 
pj = 1 - x - Y~ m#i Pm, we can apply the same pushing process repeatedly until 

m•j 
the LFC in the statement of the theorem is reached. [] 

Remark 3.1. The results of Theorems 3.1 and 3.2 are the same as the re- 
sults for fixed-sample-size procedures that were given by Propositions 13.C.l.b 
and 13.C.2.b of Marshall and Olkin (1979) where the authors have used Schur- 
Convexity of the decision function to reprove the Theorem 1 of Kesten and Morse 
(1959) and Theorem 1 of Alam and Thompson (1972) more elegantly. Here our 
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proofs have followed the approaches in Kesten and Morse (1959) and it is not 
known to the author at this point that the Schur-Convexity approach will work 
for our sequential decision rule. 

Since the proof of Theorem 3.1 does not involve the measure we used to define 
the PZ in (2.3.1), the same argument can be applied to the PZ in (2.3.2) for 
procedure R2. We will only state the result in Theorem 3.2 and omit the lengthy 
proof. 

THEOREM 3.2. The LFC for procedure R2 is of the form P = (p-5~,p,p ....  , 
p,s) whereO<_p-~ <p<_s. 

Remark 3.2. Theorems 3.1 and 3.2 give exactly the same results as given in 
Lemma 1 of Kesten and Morse (1959) and Lemma 2.1 of Alam and Thompson 
(1972). Their results were for fixed-sample-size procedures for selecting the most 
probable and least probable cells respectively. To prove the LFC is the slippage 
configurations for both selection goals, they went on to prove a second lemma in 
the respective papers. For our sequential procedures R1 and R2 we could neither 
prove the conjecture that the slippage configurations are LFC's, nor could we 
find counterexamples to deny the conjecture for general k. However, numerical 
evidence for k = 3 and 4 justifies our conjecture. We present some computational 
results in Section 4. 

4. Tables and concluding remarks 

Table 1 presents the combinations (rl, Ml,n) whose P(CS I R1, LFC)'s 
achieve P* = .75, .90, .95 with 5~ = 2.0, 2.4, 3.0 and k = 3, 4. The LFC for 
each individual case is identified in the following manner. By Theorem 3.1, the 
LFC is for the form (s,p, pS~) for k = 3 and (s,p,p, pS~) for k = 4. We first wrote 
a Fortran program to calculate the exact P(CS I R1) under a general configura- 
tion (Pl,P2,-. . ,Pk).  Then for each k and each 5~, we divided the interval where 
s may take values (i.e., [0, 1/(k - 1 + 5~)]) into 100 equal length subintervals and 
calculated P(CS I R1) for all configurations whose s's are taken to be the end 
points of these 100 subintervals. The LFC should be the configuration which min- 
imizes P(CS I R1) under each (k, 5~). For all the cases considered in our table, the 
LFC's are slippage. For each P* and 5~', we also tabulated E(N I R1, LFC), the 
expected sample size under the LFC, and E(N I EPC), the expected sample size 
under the equal parameter configuration (p, p , . . . ,  p). The last column of the table 
presents No, the sample size required to guarantee P* under the fixed-sample-size 
procedure. 

Remark 4,1. The result in Theorem 3.1 saves significant computing time in 
locating LFC even though the LFC has not been completely identified. 

Remark 4.2. By truncating the sample size at n, our procedure R1 improves 
upon Ramey-Alam's procedure (see Table IIA and Table IIIA in Bechhofer and 
Goldsman (1985a)) in both criteria E(N I LFC) and E(N I EPC) in every ease 
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under consideration. The procedure R1 also requires smaller maximum sample 
size than Ramey-Alam's procedure. 

Remark 4.3. The n values for procedure R1 are always taken to be no less 
than No, the size for the fixed sample size procedure of Bechhofer, Elmaghraby 
and Morse in order to reduce E(N) to its smallest value. However, we do not have 
to restrict ourselves to choose those n's which are larger than No. For example, 
in the case of k = 3, P* = .75, 6~ = 2.4, 

P{CS I R1, LFC, (rl, M1, n) = (4, 4, 7)) --- .75016, 

E{N I R1, LFC, (r2, M1, n) = (4, 4, 7)) --- 5.55940, 

E{N } R1, EPC, (rl, M1, n) = (4, 4, 7)} = 5.78601. 

By reducing n to 7 which is the size for fixed-sample-size procedure, we will get 
larger E(N) values. In our table, we always choose the combination (rl, Ml,n) 
that minimizes E(N I R1 , LFC). 

Table 2 presents the combinations (r2, M2, n) whose P(CS I R2,LFC)'s 
achieve P* = .75, .90, .95, with 6~ = .2, .3 and k = 3, 4. The LFC is identified 
in a similar manner as in Table 1 described above. Again, LFC's are all slip- 
page. Analogous remarks for Table 2 can also be made as Remarks 4.1 and 4.3 for 
Table 1. 

Table 2. 

P* ~ (r2, M2,n)  P(CSIR2,LFC) E(NIR2, LFC) E(NIR2, EPC) N 

k = 3 .75 .3 (2,3,7) .76636 5.54179 5.68313 7 

.2 (4,6,17) .75586 13.51177 14.05518 16 

.90 .3 (3,5,15) .90230 10.65978 12.13003 15 

.2 (5,13,38) .90164 26.23318 31.30759 37 

.95 .3 (5,7,21) .95002 16.44052 18.79208 21 

.2 (7,18,56) .95021 34.57044 45.73080 54 

k = 4  .75 .3 (1,116) .77591 4.60219 4.14844 6 

.2 (2,4,16) .76072 11.57677 12.07290 15 

.90 .3 (2,2,10) .90809 8.36650 7.83524 10 

.2 (4,7,31) .90026 20.26012 23.94635 29 

.95 .3 (2,3,13) .95132 9.59149 10.48805 13 

.2 (5,10,42) .95078 26.65183 31.26086 40 

Remark 4.4. In compliance with a referee's request, we have looked up the 
E(N) values for Ramey-Alam's procedure (RA) from Bechhofer and Goldsman 
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(1985a) and calculated the relative efficiency of R1 to RA. We regard this as a 
measurement to compare these two procedures. The relative efficiency eft(R1/RA) 
is defined as follows: 

E(N I RA, P) 
eff(R1/RA I p )= E(N I RI ,p ) where p is either LFC or EPC. 

The relative efficiency was not computed for R2 since the fixed-sample-size 
procedure of Alam and Thompson (1972) was the only existing procedure for 
selecting Pill and the fixed-sample-sizes required are shown in the last column of 
Table 2. We do not regard the fully sequential procedure based on likelihood ratios 
of Bechhofer et al. (1968) as an appropriate procedure to compare with because R1 
and R~ are not fully sequential and the stopping rules (2.4)-(2.7) and (2.8)-(2.11) 
are easier to implement than traditional sequential procedures. 

Remark 4.5. Asymptotic results based on the largest order statistics and 
the second order statistics for R1 and the smallest order statistics and the second 
smallest order statistics for R2 require the application of Gnedenko type limit laws 
and it is very unlikely that they will give close approximation. However, we believe 
that in this paper, we have fulfilled the purposes of showing that (1) it is possible 
to improve upon Ramey-Alam's procedure by truncating and curtailing, (2) that 
the LFC of the proposed procedures are slippage and thus reduce the computing 
time for the procedure parameters and (3) that the idea of using the difference of 
order statistics can also be applied to select the smallest cell probability. 

REFERENCES 

Alam, K. (1971). On selecting the most probable category, Technometrics, 13, 843 850. 
Alam, K. and Thompson, J. R. (1972). On selecting the least probable multinomial event, Ann. 

Math. Statist., 43, 1981-1990. 
Bechhofer, R. E. and Goldsman, D. M. (1985a). On the Ramey-Alam sequential procedure 

for selecting the multinomial event which has the largest probability, Commun. Statist. 
Simulation Comput., 14(2), 263-282. 

Bechhofer, R. E. and Goldsman, D. M. (1985b). Truncation of the Bechhofer-Kiefer-Sobel se- 
quential procedure for selecting the multinomial event which has the largest probability, 
Commun. Statist. Simulation Comput., 14(2), 283-315. 

Bechhofer, R. E. and Goldsman, D. hi. (1986). Truncation of the Bechhofer-Kiefer-Sobel se- 
quential procedure for selecting the multinomial event which has the largest probability (II): 
extended talks and an improved procedure, Commun. Statist. Simulation Comput., 15(3), 
829-851. 

Bechhofer, R. E. and Kulkarni, R. V. (1984). Closed sequential procedures for selecting the 
multinomial events which have the largest probabilities, Commun. Statist. Theory Methods, 
13(24), 2997-3031. 

Bechhofer, R. E., Elmaghraby, S. and Morse, N. (1959). A simple-sample multiple-decision 
procedure for selecting the multinomial event which has the highest probability, Ann. Math. 
Statist., 30, 102-119. 

Bechhofer, R. E., Kiefer, J. and Sobel, M. (1968). Sequential Identification and Ranking Proce- 
dure, The University of Chicago Press, Chicago. 

Cacoullos, T. and Sobel, M. (1966). An inverse sampling procedure for selecting the most 
probable event in a multinomial distribution, Proceedings of International Symposium on 
Multivariate Analysis (ed. P. R. Krishnaiah), 423-455, Academic Press, New York. 



622 PINYUEN CHEN 

Kesten, H. and Morse, N. (1959). A property of the multinomial population, Ann. Math. Statist., 
30, 120-127. 

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Application, 
Academic Press, New York. 

Ramey, J. T. and Alam, K. (1979). A sequential procedure for selecting the most probable 
multinomial event, Biometrika, 66, 171-173. 


