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Abstract. In this paper the problem of finding the design efficiency is con-
sidered when a single observation is unavailable in a connected binary block
design. The explicit expression of efficiency is found for the resulting design
when the original design is a balanced incomplete block design or a group di-
visible, singular or semiregular or regular with A; = 0, design. The efficiency
does not depend on the position of the unavailable observation. For a regular
group divisible design with A; > 0, the efficiency depends on the position of the
unavailable observation. The bounds, both lower and upper, on the efficiency
are given in this situation. The efficiencies of designs resulting from a balanced
incomplete block design and a group divisible design are in fact high when a
single observation is unavailable.

Key words and phrases: Balanced incomplete block design, connectedness,
efficiency, group divisible design, robustness.

1. [Introduction

The unavailability of data is common in scientific experiments. In statisti-
cal planning, it is never possible to anticipate beforehand which observations are
going to be unavailable during the experiment. In case of unavailability of data,
the experimenter can not redo the experiment with a different design because it
costs money, time and effort. However, the experimenter may be interested in
knowing whether all the inferences the experimenter originally planned to do can
even be possible in this situation and, moreover, the efficiency of the resulting
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design relative to the original design. These facts, which are very common in real
life, motivate the research in this paper. Balanced incomplete block and group
divisible designs are known to have many optimal properties in the class of incom-
plete block designs to draw inferences on every possible comparison of treatment
effects. This paper demonstrates that balanced incomplete block and group di-
visible designs remain quite efficient in terms of drawing inferences on treatment
effects comparisons when a single observation is unavailable.

We consider a connected binary incomplete block design d with v treatments,
b blocks, the common replication r for all treatments and the constant block size &
(< v). Let N (v x b) be the incidence matrix of the design d. We assume that the
design d is robust against the unavailability of any single observation (see Ghosh
(1982a)) in the sense that when any single observation is unavailable, the resulting
design dp remains connected. The total number of observations under d is equal
to bk (= wr). There are bk possible cases of a single unavailable observation.
We now consider a situation where a single observation is unavailable and the
resulting design is dy. We assume without loss of generality that the unavailable
observation is corresponding to the treatment 1 and the block 1. It is known that
if the original design d is a balanced incomplete block (BIB) or a group divisible
(GD) design then d is robust against the unavailability of any single observation
(see Ghosh (1982a), Ghosh et al. (1983)). For other pertinent research done in
the area, see the References. In this paper we study the efficiency of the resulting
design dg relative to the original design d. Our study goes in detail for BIB and
GD designs. Let C and Cy be the C-matrices in the adjusted normal equations
under d and dy, respectively (see Dey (1986), p. 43). Let ¥/(C) and 9(Cp) be the
sum of the inverse of the nonzero characteristic roots of C' and Cjy, respectively.
The efficiency of dy relative to that of d is defined as

_ ¥(0)
(Co)

(1.1) E x 100.

The closer the value of F to 100, the higher the efficiency of dy. Throughout the
paper we abbreviate characteristic root by CR and characteristic vector by CV.

2. Main resuits

Let d be a connected binary block design and dy be the resulting design when
a single observation for treatment 1 in block 1 is unavailable. We first partition
the incidence matrix of d for (treatment 1, block 1) and the remaining treatments

and blocks as
1 o
N = [g N*}.

The incidence matrix of the design dy is then

0
w0 ¥].
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The matrices C and Cy are then

g+ N*u gg’'+ N*N*
c_[r=1 0o ] _[o «][k-D 0O 0 g
°71 0 rI g N* 0 g | ju N*|

We define w’ = (k(k — 1))"1/2[(k — 1), —g]. Clearly

1|:1+qu gl+u/N*/j|
(2.1)

(2.2) C - Cp=wuw'

We observe that j,w = 0 and w'w = 1, where j is a (1 X v) vector with all
elements unity.

THEOREM 2.1. The design d is robust against the unavailabilty of a single
observation if and only if

(2.3) 1-w'Ctw >0,
where C* is the Moore-Penrose inverse of C. Furthermore, if (2.3) holds then

w'CTCtw
1-wCtw’

(2.4) $(Co) = 9(C) +

PRrROOF. Let D((v—1)x(v—1)) be a diagonal matrix whose diagonal elements
are the nonzero CR’s of C. We write C = P'DP where PP' = I,_,. We have
C*t = P'D7'P. There exists an I satisfying w = P'l. We get C; = P'AP
and A = D - IlI'. Now, dp is connected if and only if Rank Cy = (v — 1).
Since Cy is nonnegative definite, Rank Cy = (v — 1) if and only if [4] > 0. But
|A| = |D|(1 = VD~!1) and I'D~'l = w'C+w. Hence dy is connected if and only
if (1 — w/'C*tw) > 0. If (2.3) holds then |A4] >0 and Cf = P'A"'P.

We have

Cf =P'A'P
p-1w'p-?
_ p! -1
=P |D +—1—I'D_ll P
Ctww'Ct
_t
=C"+ 1—wCrw’

Taking trace of the above, we get the equation (2.4). This completes the proof.

Notice that w'C~w = w/'C*w for any generalized inverse C~ of C because
w belongs to the column space of C.

THEOREM 2.2. A necessary and sufficient condition for p to be a common
CR of C and Cy with the same CV z is that w'z = 0.
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ProoF. We have
Cox = Cz —ww'z = Cx — (w'z)w.

If w'e = 0 then Cox = Cx = px. If Cz = px = Coz then (w'z)w = 0. Since
w # 0, we have w'z = 0. This completes the proof.

THEOREM 2.3. The vector w is a CV of C with the CR p if and only if
(u—1) is a CR of Cy with the CV w.

Proor. If wis a CV of C with the CR u, then Cw = pw. Now

Cow = Cw — ww'w
=pw— w, (since w'w=1.)

=(p-1w.

Thus (1 — 1) is a CR of Cy with the CV w. The rest is similar. This completes
the proof.

CoROLLARY 2.1. If w is a CV of C then Cy and C have (v—1) CR’s in

common.

PROOF. Notice that all CV’s £ of C except w can be chosen to satisfy
w’'z = 0. The rest is obvious from Theorems 2.2 and 2.3. This completes the
proof.

Theorems 2.2, 2.3 and Corollary 2.1 imply that if w is a CV of C with the CR
w then (i) there are (v — 1) CR’s in common for C' and Cj and (ii) the remaining
CR of Cp is (u — 1).

Suppose that the matrix C' has two nonzero CR’s, namely u; and uo. We
denote Vi = {z | Cx = pyz, 1 # 0} and Vo = {x | Cx = pazx,up # 0},
dimV; = p1, dim V2 = pg, p; + p2 = (v — 1). We consider the situation where w
is not a CV of C. Then w does not belong to V; and Vo. We denote V3, = {z |
Cx =z, p #0,w'z =0} and Vp, = {z | Cx = pox, up # 0, w'z = 0}. Now
w is not a CV of C and w’'z = 0 imply dim Vi, = (p1 — 1) and dim V5, = (p2 —1).
We know that 0 is a CR of both C' and Cy. The following result now follows from
Theorem 2.2.

COROLLARY 2.2. If w is not a CV of C then the number of common CR’s
of C and Cy is (v — 2).

Let the columns of P be an orthonormal basis for V;, i = 1,2 and P’ = [P], P;).
We have PP’ = I,_1). Note that w belongs to the column space of P'. We
write w = P’'l. Let D({v — 1) x (v — 1)) be a diagonal matrix with the first p;
diagonal elements are 1 and the remaining ps diagonal elements are u,. We have
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C = P'DP and ww' = P'II'P. We denote A = D —Il', I'’ = (], 1), where
L(p1 x 1), b(pe x1). Thus Cp = P’AP and ljlj + Ll =U'l = w'w = 1. Now

(25) 0= |CO - 0I‘u| = 'D - ul - 0I(v—1)|(_9)
’D 91 ’ (—0)

= (=02 — 07
[ = 0)(p2 = 0) — (2 — O) i — (11 — O) L ](-0).

The matrix Cy has nonzero CR’s as p; with multiplicity (p1 — 1), pz with multi-
plicity (pz —1) and the remaining two nonzero CR’s #; and 65 are solutions of the
equation

(2.6) 0% — O + pz — 1) + (pape — palil — pBhh) =

We therefore get

(2.7) (01 + 02) = (1 + p2 — 1),
0102 = papo — polily — bl
= pipe — g2 — (g1 — p2)bb.

3. BIB design

In this section, we take the design d to be a BIB design (v, b, 1, k, \) (see Dey
(1986), p. 32). It is well known that the matrix C has CR’s as 0 with multiplicity
1 and Avk~! with multiplicity (v —1). We now have another proof of the following
known result (see Whittinghill (1989)).

THEOREM 3.1. For a BIB design (v,b,r,k,A), w is the CV of C with the
CR Mvk™!. The CR’s of Cy are Avk™! with multiplicity (v —2), (Avk™! —1) with
multiplicity 1 and 0 with multiplicity 1.

PROOF. It is easy to see that w is a CV of C with the CR Avk™!. Now
by Theorem 2.3, (Avk™! — 1) is a CR of Cy with the CV w. Again by Corollary
2.1, Cp and C have (v — 1) CR’s in common. The common CR’s are therefore
Avk~! with multiplicity (v — 2) and 0 with multiplicity 1. The rest is clear. This
completes the proof.

We get 9(C) = (v — 1)k(Aw) ™! and ¥(Co) = (v — 2)k(Av) "L + Qwk~! —1)~L.
For a BIB design, it can be seen that 1 — w'CTw = 1-k/Av > 1—-k/v > 0.
Hence (2.4) is true.

We define Ey = (v — 1)(Avk~! — 1). We have the efficiency of dy relative to
that of d as

(3.1) E=(+E;"H! x 100.
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Notice that £ > 90 ifand only if £y > 9,80 < EF <90 ifand only if 4 < Ep < 9
and 75 < £ < 80 if and only if 3 < Ey < 4. Thus the value of Ejy is the indicator
for efficiency. Out of 91 BIB designs listed in Raghavarao ((1971), pp. 91-94), 88
designs (Series 4-91) have E > 90, 2 designs (Series 2 and 3) have the values of E
between 80 and 90 and only the first design in the Series has 75 as the value of E.

4. GD design

In this section we take the design d to be a GD design (v = mn, b, 7k, A1, A2).
(See Dey (1986), p. 166.) It is well known that the matrix C for d has CR’s
as 0 with multiplicity 1, u; = [r(k — 1) + A\;]k~! with multiplicity (v — m) and

= Agvk~! with multiplicity (m — 1). For a connected GD design, we have
0 < w'Ctw = U'D7 < [Min(gy, u2)] "'l = [Min{py, p22)] 7}, since I'l = 1. For
a connected GD design, A3 > 1 and hence pus > 1. It can be seen that p; > 1
except for the semi regular GD design with parameters v = b =4, m = n = 2,
r=k=2 A =0and Ay = 1. It then follows that 1 — w'Ctw > 0. Theorem
2.1 can now be used in calculating ¥(Cp). Let J,, be an (n x n) matrix with all
elements unity. We now denote W' = [I,, — m '] ® [[, — n~1J,], WO =
[m™ Y] ® [I, — n~1J,] and W10 = (I, — m~1J,] ® [n"1J,], where ® denotes
the Kronecker product. It is easy to check that C = u;[W!l + W01] + lLQWlO It

follows that C* = ufl[W11+W01]+u2'1W10. Let p1 = ,ul_l, pa =n"Hus _M ]
and p3 = [~v 'uy 'l = wi% 2 = 07 uy®? - pr%) and s = o Tu3?],
follows that C* = p1 I, @ I, + p2 1, ® Jp + p3Jm ® J, and CTCt =1, ® I, +

Suppose that the unavailable observation is for the treatment 1 of group 1
occurring in block 1. Furthermore the first block of d where the unavailability of
observation occurs, contains ozl treatments from group 7, 1 < ¢ < m. We denote
Bi=n-—oa;and A = (k—aog)? + Zl =2 a?. We write without loss of generality
that g = [j, 1,0/ l,jaz,%z, e da m]’ It then follows from (2.4) that

(A1) $(Co) = B(C) + [klk — Lyms +12AJk(k — (1 - p1) — po Al
= (v—m =Dy’ + (m - 2)py "
+ [k(k = 1)(p1 + p2 — 1)]
- [k(k = Dpg(pa — 1) + (p2 — pr)n 1A

Although we do not use Corollary 2.2 to calculate ¥(Cy), it is useful in knowing
that there are (v — 2) common CR’s of C' and Cjy.

Table 1. The values of A for various types of GD designs.

type parameters values of o’s A
singular r=A,k=nc @1=:  TQ=N,041 =" =0n =0 (k—n)k
semiregular r > A1, rk = vAz ai = =am=m"lk k2 (m —1)m~1
regular rk>vXs,and a1 =---=ar =1 041 =" =am =0 k(k—1)

r> A1, A1 =0
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Table 2. E values for singular GD designs.
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No.

E

No.

E

No.

E

No.

E

No.

S1  80.0
S2 929
S3 95.7
S4  96.9
S5 976
S6 917
S7  96.7
58 979
S9 955
S10  98.1
511 971
512 98.8
S13  98.0
S14 98,6
S15  98.9
S16  99.2
S17  99.3
S18  92.9
S19 971
520 98.2
S21 87.5
S22 95.7
S23 974
524 981

525 98.5

S26 976
S27  95.0
528 975
529 98.0
S30 98.8
S31 989
832 95.7
833 983

S34 989
835 97.3

536  98.9
837 97.7
S38  98.3
S39 99.0
5S40 99.3
S41
542 98.8

99.2

543  99.2

S44 99.1
S45 994
S46  99.3
547 995

548 99.6

549
S50
S51
S52
S53
S54
S55
S56
S57
558
S59
S60
S61
562
S63
S64
565
566
S67
568
S69
S70
871
S72

99.6
99.7
96.3
98.4
90.9
96.9
98.1
98.7
99.0
99.0
97.3
98.8
96.4
98.6
98.8
99.1
99.1
98.1
98.9
99.2
98.8
99.5
98.5
99.4

S73
574
S75
S76
S77
S78
S79
S80
S81
582
S83
S84
585
S86
S87
S88
589
S90
591
S92
593
S94
S95
596

99.2
99.1
99.4
99.6
99.5
99.6
99.7
99.7
99.7
95.5
98.2
98.8
98.5
98.4
99.3
97.3
98.9
99.3
98.6
99.4
99.5
99.4
99.6
99.8

S97

598

S99
5100
S101
5102
5103
S104
5105
S106
5107
5108
5109
S110
S111
S112
S113
S114
S115
S116
5117
S118
5119
5120

99.8
97.7
99.0
92.9
97.6
98.5
99.0
99.2
99.3
97.2
98.9
99.3
99.3
98.7
99.4
98.5
99.4
99.1
99.6
99.4
99.5
99.3
99.7
99.6

5121
S122
5123
S124

99.6
99.7
99.8
99.9

Table 3.

E values for semiregular GD designs.

No.

No.

E

No.

E

No.

E

No.

SR1
SR2
SR3
SR4
SR5
SR6
SR7
SR8
SR9
SR10
SR11
SR12
SR13
SR14
SR15
SR16
SR17
SR18
SR19
SR20
SR21
SR22
SR23
SR24
SR25

50.0
83.3
90.0
92.9
94.4
80.0
92.9
95.7
90.0
96.2
94.1
97.6
96.2
97.3
98.0
98.5
98.8
75.0
91.7
95.0
96.4
97.2
90.9
96.6
97.9

SR26
SR27
SR28
SR29
SR30
SR31
SR32
SR33
SR34
SR35
SR36
SR37
SR38
SR39
SR40
SR41
SR42
SR43
SR44
SR45
SR46
SR47
SR48
SR49
SR50

95.5
98.2
97.3
98.9
98.2
98.7
99.1
99.3
99.4
95.7
94.4
96.7
96.7
97.6
98.2
94.1
97.7
98.6
97.1
98.8
98.3
99.2
99.2
99.4
99.5

SR51
SR52
SR53
SR54
SR55
SR56
SR57
SR58
SR59
SR60
SR61
SR62
SR63
SR64
SR65
SR66
SR67
SR68
SR69
SR70
SRT1
SR72
SR73
SR74
SRT75

99.6
95.8
97.5
98.2
98.6
98.3
99.0
97.8
99.1
98.7
99.4
99.4
99.5
99.6
974
96.7
98.0
98.0
98.6
99.0
98.9
98.7
99.2
99.3
99.0

SR76
SR77
SR78
SR79
SR80
SR81
SR82
SR83
SR84
SR85
SR86
SR87
SR8
SR89
SR90
SR91
SR92
SR93
SR94
SR95
SR96
SR97
SR98
SR99
SR100

99.6
99.5
99.6
99.7
97.2
98.3
98.8
99.1
98.9
99.3
99.4
99.6
99.7
99.8
98.1
98.6
99.0
99.2
99.4
99.5

99.7
99.8
98.8
99.1

SR101
SR102
SR103
SR104
SR105
SR106
SR107
SR108
SR109
SR110

99.3
99.5
99.6
99.8
99.8
98.9
99.2
99.4
99.5
99.8
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Table 4. E values for regular GD designs with Ay = 0.
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E

No.

E

87.5
95.0
94.4
95.0
96.9
97.4

R113
R114
R116
R125
R128
R129

97.7 RI130
98.0 Rl144
98.4 R147
90.0 RI153
96.2 R154
97.6 RI161
96.7 RI162
98.4 RI163
98.6 RI183

97.7

R191

97.9 R199
98.0 R201
98.8 R202

99.0
99.1
99.2
99.3
98.1
96.7

98.6
96.9
98.7
99.0
99.2
99.3
99.3
974
98.8
98.7
99.4
99.6
99.7
99.7
99.6
99.7
99.5
99.8
99.8

Table 5. Bounds on E values for regular GD designs with A; > 0.

No. lower wupper No. lower wupper No. lower upper
R1 79.0 87.5 R26 927 97.9 R59 948 96.3
R2 80.0 923 R27T 949 95.7 R60 95.1 974
R3 882 846 R28 92.7 98.3 R61 951 98.0
R4 801 947 R30 95.9 969 R62 96.8 97.3
R5 80.0 96.1 R31 96.1 97.7 R63 951 98.5
R6  90.7 92.9 R32 96.5 97.4 R64 95.0 98.8
R7 88.9 92.1 R33 96.2 98.2 R65 97.7 98.0
R8 79.8 97.1 R35 97.1 97.7 R66 949 99.0
R9 91.1 94.6 R37 975 98.0 R67 979 98.4

R10 919 93.2 R42 844 89.0 R68 978 98.2

R11 795 97.7 R43 94.2 95.5 R69 95.6 97.5

R12 91.2 95.7 R44 93.8 85.5 R71 97.1 97.6

R13 913 94.1 R45 944 96.5 R72 975 98.1

R14 793 98.1 R46 95.6 96.1 R73 972 98.2

R15 91.2 96.6 R47 944 972 RT4 978 98.3

R16 94.1 95.0 R48 96.2 96.6 R76 97.7 98.9

R17 93.2 94.7 R49 944 97.7 R78 98,5 98.6

R19 92.0 94.4 R50 96.2 97.2 R80 98.0 98.9

R20 928 95.1 R51 96.6 97.1 R82 984 98.7

R21 925 96.2 R52  96.7 97.1 R83 98.5 98.8

R22 926 97.2 R53 943 98.0 R84 985 98.9

R24 943 95.2 R56 96.9 98.0 R85 985 99.1

R25 93.3 96.8 R58 975 97.8
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Table 5. (Continued).

No. lower upper No. lower upper No. lower upper

R87 987 989 R123 98.2 99.3 R157 99.2 99.5
R89 98.9 99.0 Ri124 99.0 99.3 R158 99.2 99.5
R94 91.5 93.3 R126 99.2 99.4 R159* 99.6 99.6
R95 96.3 97.1  R127 99.3 99.4 R160* 99.6 99.6
R96 96.8 96.9 R131 99.4 99.5 Rl164 98.1 98.2
R97 95.6 96.0 R132* 995 99.5 R165* 98.5 98.5
R98 974 97.7 R133 94.7 96.5 R166 96.4 97.9
R99 974 97.8 R134 96.0 96.3 R167 98.5 98.9
R100 975 98.1 R135 97.7 984 R168 96.7 98.7
R101 979 98.0 R136 98.2 98.3 R169 99.0 99.1
R102 97.6 98.4 R137 96.0 96.8 R170 99.0 99.1
R103 981 98.2 R138 98.2 98.6 RI1T71 99.1 99.2
R104 923 958 R139 96.6 97.0 R172 97.8 97.9
R105 96.8 98.2 Rl140 97.9 98.0 R173 97.3 98.6
R107 978 98.7 Rl4l 98.5 98.6 R174 98.2 98.6
R108 98.4 98.6 Rl142 98.5 98.7 R175* 984 98.4
R109 95.9 964 R143 95.3 97.9 R176* 98.4 98.4
R110 983 98.5 R145 97.2 97.5 R177* 98.6 98.6
R111  98.7 98.8 RI146 98.0 99.0 R178 97.6 99.1
R115 977 99.0 R148 98.8 98.9 R179 99.0 99.1
R117  98.6 98.8 RI149 98.8 99.2 R180* 99.0 99.0
R118 98.1 984 R150 99.0 99.1 RI181* 995 99.5
R119 98.2 98.8 RI151 99.1 99.3 R182 99.3 99.4
R120 98.2 99.0 R152 98.6 99.5 R184* 997 99.7
R121 982 992 RI155 99.1 99.2 RI185* 99.7 99.7
R122 989 99.0 R156 99.1 99.4 R186 98.6 98.7

Table 5. (Continued).

No. lower upper No. lower upper

R187 97.9 99.0 R198 98.4 99.5
R188 98.1 99.4  R200 99.4 99.5
R189* 99.3 99.3 R203* 99.0 99.0
R190 99.6 99.7 R204* 99.1 99.1
R192* 99.8 99.8 R205* 99.1 99.1
R193* 9838 98.8  R206 98.6 99.4
R194 99.0 99.1  R207 98.7 99.6
R195 98.3 99.2  R208 99.5 99.6
R196* 99.2 99.2  R209* 99.8 99.8
R197* 99.2 99.2

*Indicates designs for which lower and upper bounds coincide.

For regular GD designs with A\; > 0, we now present bounds A; < A <
A, for various k. Notice that 1 < a3 < n,0< a; < n,i = 23,...,m and
a2+ + am = k — ;. We denote the greatest integers in (m — 1)~1(k —n) and
n~Y(k — 1) by v and ¢, respectively. If k < n, we have A > 0 and if k > n then
A > (k—-n)*+(m—1)u?+(2u+1)[(k—n)—u(m—1)]. Moreover, if (k—1) > n(m—1)
then A < n?(m—1)m and if (k—1) < n(m—1) then A < (k—1)2+tn2+(k—1—nt)2,
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It can be checked that the expression [k(k—1)u2(u1 — 1)+ (uz — p1)n 14| is in fact
positive for A = A; =0, A = Ay = (k—n)2+(m—-1)u?+2u+1)[(k—n)—u(m—1)]
and for A=Ay =n?(m-1)m, A=Ay = (k—-1)2+tn? + (k—1-nt)?. We
denote 1;(Cp) and 2(Cy) as the values of ¢(Cp) for A = A; and A = Ay,
respectively in (4.1). It follows that ¥2(Ch) < ¥(Co) < 91(Co) for Ay > A
and ¥1(Co) < ¥(Co) < ¥a(Co) for Ax < A1 If By = (¥(C)/41(Co)) x 100 and
E; = (¥(C)/v2(Co)) x 100, then the difference Ey — E; becomes small as A
approaches As.

We present in Tables 2-4, the E values for GD designs given in Clatworthy
(1973), which are singular, semiregular and regular with A; = 0. We also present
in Table 5, the Fy and FE5 values for regular GD designs with A; > 0. We call the
minimum of E; and E> as lower and the other as upper.

In Table 2, all designs except those numbered S1 and S21 have E values greater
than 90. For designs numbered S1 and S21, F values are greater than or equal
to 80. In Table 3, all designs except those numbered SR1, SR2, SR6 and SR18
have E values higher than 90. For designs numbered SR2 and SR8, E values are
greater than or equal to 80. The design SR1 had F value 50 and the design SR18
has E value 75. In Table 4, the design numbered R18 has E value 87.5 and all
other F values are higher than 90. In Table 5 the designs, numbered R1-R37,
have k = 2, A1, A2 > 0. For these designs, we have 2 = k£ < n and this implies
A; = 0 which corresponds to oy = 2 and o; = 0 for ¢ = 2,...,m. This is indeed
possible because A; > 0. Also, 1 = (k—1) < n(m — 1). The greatest integer in
n~1(k—1)is 0. Hence Ay = (k — 1)? + tn? + (k — 1 — nt)? = 2. This corresponds
to the situation with a; = 1, exactly one among o, ...,a,, is 1 and the rest are
zero. This is again possible because A2 > 0. The bounds presented in Table 5 for
these designs can in fact be attained depending on the unavailable observation.
We now consider the remaining 133 designs in Table 5 with A; > 0 and k > 3. The
lower and upper values in Table 5 are very close for these 133 designs. Moreover,
these lower and upper values are 90 and above for all 133 designs except for the
design numbered R42. The lower values for all designs in Table 5 are greater than
80 except for a few very close to 80.

5. Conclusion

There are many robustness properties of designs. BIB designs and GD designs
are known to be robust against the unavailability of any observation in the sense
that the resulting design is connected. In this paper we establish another robust-
ness property of BIB designs and GD designs against the unavailability of a single
observation and in terms of efficiency in the sense that the efficiency is fairly high
for most resulting designs.
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