
Ann. Inst. Statist. Math. 

Vol. 44, No. 3, 593-603 (1992) 

EFFICIENCY OF CONNECTED BINARY BLOCK DESIGNS 
WHEN A SINGLE OBSERVATION IS UNAVAILABLE 

SUBIR GHOSH 1., SANPEI KAGEYAMA 2 AND RAHUL MUKERJEE 3.* 

1Department of Statistics, University of California, Riverside, CA 92521-0138, U.S.A. 
2Mathematics Education~ Faculty of School Education, Hiroshima University, 

Minami-ku, Hiroshima 734, Japan 
3Indian Institute of Management, Joka, Diamond Harbour Road, 
Post Boz No. 16757 Alipore Post Office, Calcutta 700027, India 

(Received June 11, 1990; revised June 7, 1991) 

A b s t r a c t .  In this paper the problem of finding the design efficiency is con- 
sidered when a single observation is unavailable in a connected binary block 
design. The explicit expression of efficiency is found for the resulting design 
when the original design is a balanced incomplete block design or a group di- 
visible, singular or semiregular or regular with A1 = 0, design. The efficiency 
does not depend on the position of the unavailable observation. For a regular 
group divisible design with A1 > 0, the efficiency depends on the position of the 
unavailable observation. The bounds, both lower and upper, on the efficiency 
are given in this situation. The efficiencies of designs resulting from a balanced 
incomplete block design and a group divisible design are in fact high when a 
single observation is unavailable. 

Key words and phrases: Balanced incomplete block design, connectedness, 
efficiency, group divisible design, robustness. 

1. Introduction 

The  unavai labi l i ty  of da t a  is c o m m o n  in scientific exper iments .  In s tat is t i -  
cal planning, it is never possible to ant ic ipa te  beforehand  which observat ions  are 
going to  be  unavai lable  dur ing the  exper iment .  In  case of unavai labi l i ty  of  da ta ,  
the  exper imenter  can not  redo the  exper iment  wi th  a different design because  it 
costs money, t ime  and effort. However,  the  exper imente r  m a y  be interested in 
knowing whether  all the inferences the  exper imente r  originally p lanned to  do can 
even be possible in this s i tua t ion  and,  moreover,  the efficiency of the  resul t ing 
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design relative to the original design. These facts, which are very common in real 
life, motivate the research in this paper. Balanced incomplete block and group 
divisible designs are known to have many optimal properties in the class of incom- 
plete block designs to draw inferences on every possible comparison of treatment 
effects. This paper demonstrates that balanced incomplete block and group di- 
visible designs remain quite efficient in terms of drawing inferences on treatment 
effects comparisons when a single observation is unavailable. 

We consider a connected binary incomplete block design d with v treatments, 
b blocks, the common replication r for all treatments and the constant block size k 
(_< v). Let N (v × b) be the incidence matrix of the design d. We assume that the 
design d is robust against the unavailability of any single observation (see Ghosh 
(1982a)) in the sense that when any single observation is unavailable, the resulting 
design do remains connected. The total number of observations under d is equal 
to bk (= vr). There are bk possible cases of a single unavailable observation. 
We now consider a situation where a single observation is unavailable and the 
resulting design is do. We assume without loss of generality that the unavailable 
observation is corresponding to the treatment 1 and the block 1. It is known that 
if the original design d is a balanced incomplete block (BIB) or a group divisible 
(GD) design then d is robust against the unavailability of any single observation 
(see Ghosh (1982a), Ghosh et al. (1983)). For other pertinent research done in 
the area, see the References. In this paper we study the efficiency of the resulting 
design do relative to the original design d. Our study goes in detail for BIB and 
GD designs. Let C and Co be the C-matrices in the adjusted normal equations 
under d and do, respectively (see Dey (1986), p. 43). Let ~p(C) and ¢(Co) be the 
sum of the inverse of the nonzero characteristic roots of C and Co, respectively. 
The efficiency of do relative to that of d is defined as 

(1.1) E -  ¢(C) ~b(Co) x 100. 

The closer the value of E to 100, the higher the efficiency of do. Throughout the 
paper we abbreviate characteristic root by CR and characteristic vector by CV. 

2. Main results 

Let d be a connected binary block design and do be the resulting design when 
a single observation for treatment 1 in block 1 is unavailable. We first partition 
the incidence matrix of d for (treatment 1, block 1) and the remaining treatments 
and blocks as ;:] 
The incidence matrix of the design do is then 
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The matrices C and Co are then 

(2.1) 

1 [ 1 + u'u g' + u I N  *l ] 
C = r l v  - -k [ g + N * u  gg' + N * N * ' J  

Co= [ r - i  0' -ol) -1 0'  .lI 
We define w '  = (k(k  - 1))-1/2[(k - 1 ) , - g ' ] .  Clearly 

(2.2) C - Co = ww' .  

We observe that  "~ 3vw = 0 and w~w = 1, where j~ is a (1 x v) vector with all 
elements unity. 

THEOREM 2.1. The design d is robust against the unavailabilty of a single 
observation i f  and only i f  

(2.3) 1 - w~C+w > 0, 

where C + is the Moore-Penrose inverse of C. Furthermore, i f  (2.3) holds then 

(2.4) ¢(Co) = ¢ ( c )  + 
w ' C + C + w  

1 - w ' C + w "  

PROOF. Let D ( ( v - 1 )  x ( v - l ) )  be a diagonal matr ix whose diagonal elements 
are the nonzero CR's  of C. We write C = P t D P  where p p t  = Iv-1. We have 
C + = P ' D - 1 p .  There exists an l satisfying w = P ' l .  We get Co = P~AP 
and A = D -  W. Now, do is connected if and only if Rank Co = ( v -  1). 
Since Co is nonnegative definite, Rank Co -- (v - 1) if and only if IAI > 0. But  
IAI = IDI(1 - l 'D-11) and l 'D-11 = w ' C + w .  Hence do is connected if and only 
if (1 - w ' C + w )  > 0. If (2.3) holds then {A I > 0 and C + -- P ' A - 1 p .  

We have 

C + = p ' A - 1 p  

D_11ffD_1 ] 
= P'  D - '  + [ z t,-;briT j P 

C+ wvat C + 
= C + +  

1 - w ' C + w "  

Taking trace of the above, we get the equation (2.4). This completes the proof. 

Notice that  w ~ C - w  = w~C+w for any generalized inverse C -  of C because 
w belongs to the column space of C. 

THEOREM 2.2. A necessary and sufficient condition for # to be a common 
CR of C and Co with the same C V  x is that wt  x = O. 
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P R O O F .  W e  have 

C o s  = C x  - w w '  x = C x  - ( w '  x ) w .  

If w ' x  = 0 then Cox = C x  = # x .  If C x  = # x  = Cox then ( w ~ x ) w  = 0. Since 
w ¢ 0, we have w~x = 0. This completes the proof. 

THEOREM 2.3. The vector w is a C V  of C with the CR # i f  and only i f  
(# - 1) is a CR of Co with the C V  w.  

PROOF. If w is a CV of C with the CR p, then C w  = # w .  Now 

Colt] ~ C~o - -  WWt ~O 

= p w  - w,  (since w l w  = 1.) 

= i)w. 

Thus (# - 1) is a CR of Co with the CV w. The rest is similar. This completes 
the proof. 

COROLLARY 2.1. I f  w is a C V  of C then Co and C have (v - 1) CR's  in 
common. 

PROOF. Notice tha t  all CV's x of C except w can be chosen to satisfy 
w ' x  = O. The rest is obvious from Theorems 2.2 and 2.3. This completes the 
proof. 

Theorems 2.2, 2.3 and Corollary 2.1 imply tha t  if w is a CV of C with the CR 
# then (i) there are (v - 1) C a ' s  in common for C and Co and (ii) the remaining 
CR of Co is ( # -  1). 

Suppose tha t  the matr ix  C has two nonzero CR's, namely ttl and #2. We 
denote V1 = {x  I C x  = pax ,p1  ~ 0} and V2 = {x I C~  = #2x,#2 ~ 0}, 
dimV1 = Pl, dimV2 = P2, Pl +P2  = (v - 1). We consider the si tuation where w 
is not a CV of C. Then w does not belong to V1 and V2. We denote Vlw = {x } 
C x  = , lX, / . t l  ~ 0,'WtX = 0} and V2w = { x  I C x  = #2x,#2 ¢ O , w ' x  = 0}. Now 
w is not a CV of C and w ' x  = 0 imply dim Viw = (Pl - 1) and dim V2~o = (P2 - 1). 
We know tha t  0 is a CR of both  C and Co. The following result now follows from 
Theorem 2.2. 

COROLLARY 2.2. I f  w is not a C V  of C then the number of  common CR's  
of C and Co is (v - 2). 

Let the columns of P~ be an orthonormal basis for V/, i = 1, 2 and P '  = [P~, P~]. 
We have p p i  = I(v-1). Note that  w belongs to the column space of PI. We 
write w = P' l .  Let D((v  - 1) × (v - 1)) be a diagonal matr ix  with the first Pl 
diagonal elements are #1 and the remaining P2 diagonal elements are tt2. We have 
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C = P ' D P  and  w w '  = P ' l l ' P .  We denote A = D - l l ' ,  l '  = (l~, l~), where 
/1(Pl × 1), /2(P2 × 1). Thus Co = P ' A P  and l~ll + l~12 = l ' l  = w ' w  = 1. Now 

( 2 . 5 )  0 = ICo - 8Ivl = [D - l l '  - 0 I (~_1) [ ( -8 )  

= ° I  , 

11(-o) 
= ( . 1  - o ) ~ - 1 ( . ~  - o)  ~ - 1  

• [ ( m  - o ) ( # ~  - o)  - ( ~ 2  - o ) l I~x  - ( ~ l  - o ) g t ~ ] ( - o ) .  

The matr ix  Co has nonzero CR's  as #1 with multiplicity (Pl - 1), ~2 with multi- 
plicity (P2 - 1) and the remaining two nonzero CR's  01 and 02 are solutions of the 
equation 

( 2 . 6 )  0 ~ - 0 ( , ~  + ~ 2  - 1) + ( g l , 2  - , 2 t i l l  - , l g h )  = 0 .  

We therefore get 

(2.7) ( 0 1  + 0 2 )  = ( / q  + P 2  - 1 ) ,  

0 1 0 2  ~-  # i /Lt2  - -  # 2 / ~ / i  - -  # 1 ~ / 2  

= # l [ Z 2  - -  # 2  - -  ( # 1  - -  ~ 2 ) / 2 / 2  • 

3. BIB design 

In this section, we take the design d to be a BIB design (v, b, r, k, A) (see Dey 
(1986), p. 32). It is well known tha t  the matr ix C has CR's  as 0 with multiplicity 
1 and A r k  -1  with multiplicity (v - 1). We now have another  proof of the  following 
known result (see Whitt inghill  (1989))• 

THEOREM 3.1. For a B I B  design (v, b, r, k, A), w is the C V  o f  C wi th  the 
C R  A v k  -1 .  The  C R ' s  o f  Co are A v k  -1 wi th  mul t ip l ic i ty  (v - 2 ) ,  ()~vk -1  - 1) with  

mul t ip l ic i t y  1 and 0 with mul t ip l ic i t y  1. 

PROOF. It is easy to see that  w is a CV of C with the CR A v k  - i .  Now 
by Theorem 2.3, (Avk -1 - 1) is a CR of Co with the CV w. Again by Corollary 
2.1, Co and C have (v - 1) CR's  in common. The common CR's  are therefore 
Avk  -1  with multiplicity (v - 2) and 0 with multiplicity 1. The rest is clear. This 
completes the proof. 

We get ¢ ( C )  = (v - 1)k(Av) - i  and 9(Co)  = (v - 2)k(Av) -1 + (Avk - i  - 1) - i .  
For a BIB design, it can be seen that  1 - w ' C + w  = 1 - k / A v  > 1 - k / v  > O. 
Hence (2.4) is true. 

We define E0 = (v - 1)(Avk - i  - 1). We have the efficiency of do relative to 
tha t  of d as 

( 3 . 1 )  E = ( I + E ~ I )  -1 × 100 .  
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Notice tha t  E >_ 90 if and only if E0 _> 9, 80 _ E < 90 if and only if 4 _< E0 < 9 
and 75 _< E < 80 if and only if 3 <_ E0 < 4. Thus the value of Eo is the indicator 
for efficiency. Out  of 91 BIB designs listed in Raghavarao ((1971), pp. 91-94), 88 
designs (Series 4-91) have E > 90, 2 designs (Series 2 and 3) have the values of E 
between 80 and 90 and only the first design in the Series has 75 as the value of E. 

4. GD design 

In this section we take the design d to be a GD design (v = mn,  b, r, k, A1, A2). 
(See Dey (1986), p. 166.) It is well known tha t  the matr ix  C for d has CR's  
as 0 with multiplicity 1, #1 = [r(k - 1) + A1]k -1 with multiplicity (v - m) and 
#2 = A2 vk-1 with multiplicity (m - 1). For a connected GD design, we have 
0 <_ w ' C + w  = l 'D-11 <_ [Min(# l ,#2 ) ] - l / ' l  = [Min(#l,#2)] -1, since l ' l  = 1. For 
a connected GD design, A2 > 1 and hence #2 > 1. It can be seen tha t  #1 > 1 
except for the semi regular GD design with parameters  v = b = 4, m = n -- 2, 
r = k = 2, A1 = 0 and A2 = 1. It then follows tha t  1 - w I C + w  > 0. Theorem 
2.1 can now be used in calculating ¢(C0). Let .In be an (n × n) matr ix  with all 
elements unity. We now denote W u = [I,~ - m - l J m ]  ® [I~ - n - l j ~ ] ,  W °1 = 
[m-lJm] ® [In - n - lJ~]  and W 1° = Jim -- m- lJ ,~]  ® [n- lJ~] ,  where ® denotes 
the Kronecker product.  It is easy to check tha t  C = # I [W 11 + W °1] + #2W 1°. It 

# - 1 ,  n - 1  follows tha t  C + = # i l [ w U + w ° l ] + # ~ 1 W  1°. Let Pl = 1 P2 -- [#21_#~-1] 
and Pa = [ - v - 1 , 2 1 ] ;  V1 : . 1 2 ,  72 = n - l [ / t 2 2  - " i  2] and 73 = [--V-1~t22]" It 
follows tha t  C + = plI.~ ® In + p2I.~ ® Jn + P3Jm ® Jn and C+C + = "71Im ® In + 
72I~ ® J~ + %Jm ® J~. 

Suppose tha t  the unavailable observation is for the t rea tment  1 of group 1 
occurring in block 1. Furthermore the first block of d where the unavailability of 
observation occurs, contains ai  t reatments  from group i, 1 < i < m. We denote 

m 2 fli = n - a i  and A = (k - a l )  2 + Y~i=2 hi" We write without  loss of generality 
tha t  g = [ j a l _ l ,  0 1 " I  /3~,Ja2,:1 0 ' ~ , . . .  ,3~m,0Z~]" ' '. It then follows from (2.4) tha t  

(4.1) ~(C0) - -  ~d (C)  -~ [k(Jg - 1)~'1 q- ")'2A][~(]~ - 1)(t - P l )  - p 2 A ]  - 1  

: - - 1 ) , {  + ( m  - 1 

+ [ k ( k  - 1 ) ( # 1  q - # 2  --  1)] 

• [k(k - 1)#2(#1 - 1) + (#2 - # l ) n - l A ]  -1. 

Although we do not use Corollary 2.2 to calculate ¢(C0), it is useful in knowing 
tha t  there are (v - 2) common CR's of C and Co. 

Table  1. T h e  values of A for various t ypes  of  GD designs.  

t y p e  p a r a m e t e r s  values of  a ' s  A 

s ingular  r = A1, k - -  n c  c~1 . . . . .  a c  = n ,  Olcq-1 . . . . .  O~m = 0 ( k  - n ) k  

semiregular  r > A1, r k  = vA2 a l  . . . . .  a m  = m - l k  k 2 ( m -  1)m - 1  

regular  r k  > vA2, and  a l  . . . . .  ak  = 1, a k + l  . . . . .  a m  = 0 k ( k  - 1) 

r > A 1 ,  ),1 = 0  
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Table 2. E values for s ingular  GD designs. 
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No. E No. E No. E No. E No. E No. E 

$1 80.0 $25 98.5 $49 99.6 $73 99.2 $97 99.8 S121 99.6 
$2 92.9 $26 97,6 $50 99.7 $74 99.1 $98 97.7 $122 99,7 
$3 95.7 $27 95.0 $51 96.3 $75 99.4 $99 99,0 S123 99.8 
$4 96.9 $28 97.5 $52 98.4 $76 99.6 S100 92.9 S124 99.9 
$5 97.6 $29 98.0 $53 90.9 $77 99.5 S101 97.6 
$6 91.7 $30 98.8 $54 96.9 $78 99.6 S102 98.5 
$7 96.7 $31 98.9 $55 98,1 $79 99.7 S103 99.0 
$8 97.9 $32 95.7 $56 98.7 $80 99.7 S104 99.2 
$9 95.5 $33 98.3 $57 99.0 $81 99.7 S105 99.3 

S10 98.1 $34 98.9 $58 99.0 $82 95.5 S106 97.2 
S l l  97.1 $35 97.3 $59 97.3 $83 98.2 S107 98.9 
S12 98.8 $36 98.9 $60 98.8 $84 98.8 S108 99.3 
S13 98.0 $37 97.7 $61 96.4 $85 98.5 S109 99.3 
S14 98,6 $38 98.3 $62 98.6 $86 98.4 S l l 0  98.7 
S15 98.9 $39 99.0 $63 98.8 $87 99.3 S l l l  99.4 
S16 99.2 $40 99,3 $64 99.1 $88 97.3 Sl12 98.5 
S17 99.3 $41 99.2 $65 99.1 $89 98.9 Sl13 99.4 
S18 92.9 $42 98.8 $66 98.1 $90 99.3 Sl14 99.1 
S19 97.1 $43 99.2 $67 98.9 $91 98.6 Sl15 99.6 
$20 98.2 $44 99.1 $68 99.2 $92 99.4 Sl16 99.4 
$21 87.5 $45 99.4 $69 98.8 $93 99.5 S l17  99.5 
$22 95.7 $46 99.3 $70 99.5 $94 99.4 Sl18 99.3 
$23 97.4 $47 99.5 $71 98.5 $95 99.6 $119 99.7 
$24 98.1 $48 99.6 $72 99.4 $96 99.8 $120 99.6 

Table 3. E values for semiregular  GD designs. 

No. E No. E No. E No. E No, E 

SR1 50.0 SR26 95.5 SR51 99.6 SR76 99.6 SR101 99.3 
SR2 83.3 SR27 98.2 SR52 95.8 SR77 99.5 SR102 99.5 
SR3 90.0 SR28 97.3 SR53 97.5 SR78 99.6 SR103 99.6 
SR4 92.9 SR29 98.9 SR54 98.2 SR79 99.7 SR104 99.8 
SR5 94.4 SR30 98.2 SR55 98.6 SRS0 97.2 SR105 99.8 
SR6 80.0 SR31 98.7 SR56 98.3 SR81 98.3 SR106 98.9 
SR7 92,9 SR32 99,1 SR57 99.0 SR82 98.8 SR107 99.2 
SR8 95.7 SR33 99.3 SR58 97.8 SR83 99.1 SR108 99.4 
SR9 90.0 SR34 99.4 SR59 99.1 SR84 98.9 SR109 99.5 

SR10 96.2 SR35 95.7 SR60 98.7 SR85 99.3 S R l l 0  99.8 
S R l l  94.1 SR36 94.4 SR61 99.4 SR86 99.4 
SR12 97.6 SR37 96.7 SR62 99.4 SR87 99.6 
SR13 96.2 SR38 96.7 SR63 99.5 SR88 99.7 
SR14 97.3 SR39 97.6 SR64 99.6 SR89 99.8 
SR15 98.0 SR40 98.2 SR65 97.4 SR90 98.1 
SR16 98.5 SR41 94.1 SR66 96.7 SR91 98.6 
SR17 98.8 SR42 97.7 SR67 98.0 SR92 99.0 
SR18 75.0 SR43 98.6 SR68 98.0 SR93 99.2 
SR19 91.7 SR44 97.1 SR69 98.6 SR94 99.4 
SR20 95.0 SR45 98.8 SR70 99.0 SR95 99.5 
SR21 96,4 SR46 98.3 SR71 98.9 SR96 99.7 
SR22 97.2 SR47 99.2 SR72 98.7 SR97 99.7 
SR23 90.9 SR48 99.2 SR73 99.2 SR98 99.8 
SR24 96.6 SR49 99.4 SR74 99.3 SR99 98.8 
SR25 97.9 SR50 99.5 SR75 99.0 SR100 99.1 
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Table 4. E values for regular  GD designs wi th  ),l = 0. 

No. E No. E 

R18 87.5 R l13  98.6 
R23 95.0 R l14  96.9 
R29 94.4 R l16  98.7 
R34 95.0 R125 99.0 
R36 96.9 R128 99.2 
R38 97.4 R129 99.3 
R39 97.7 R130 99.3 
R40 98.0 R144 97.4 
R41 98.4 R147 98.8 
R54 90.0 R153 98.7 
R55 96.2 R154 99A 
R57 97.6 R161 99.6 
R70 96.7 R162 99.7 
R75 98.4 R,163 99.7 
R77 98.6 R183 99.6 
R79 97.7 R191 99.7 
R81 97.9 R199 99.5 
R86 98.0 R201 99.8 
R88 98.8 R202 99.8 
R90 99.0 
R91 99.1 
R92 99.2 
R93 99.3 

R106 98.1 
R l12  96.7 

Table 5. Bounds  on E values for regular  GD designs wi th  A1 > 0. 

No. lower upper  No. lower upper  No. lower upper  

R1 79.0 87.5 R26 92.7 97.9 R59 94.8 96.3 
R2 80.0 92.3 R27 94.9 95.7 R60 95.1 97.4 
R3 88.2 84.6 R28 92.7 98.3 R61 95.1 98.0 
R4 80.1 94,7 R30 95,9 96.9 R62 96.8 97.3 
R5 80.0 96,1 R31 96.1 97.7 R63 95,1 98.5 
R6 90.7 92.9 R32 96.5 97.4 R64 95.0 98.8 
R7 88.9 92.1 R33 96.2 98.2 R65 97.7 98.0 
R8 79.8 97.1 R35 97.1 97.7 R66 94.9 99.0 
R9 91.1 94.6 1:t37 97,5 98.0 R67 97.9 98.4 

R10 91.9 93.2 R42 84.4 89.0 R68 97.8 98.2 
R,11 79.5 97.7 R43 94.2 95.5 R69 95.6 97.5 
R12 91.2 95.7 R44 93.9 95.5 R71 97.1 97.6 
R13 91.3 94.1 R45 94.4 96.5 R72 97.5 98.1 
R14 79.3 98.1 R46 95.6 96.1 R73 97.2 98.2 
R15 91.2 96.6 R47 94.4 97.2 R74 97.8 98.3 
R16 94.1 95.0 R48 96.2 96.6 R76 97.7 98.9 
R17 93.2 94.7 R49 94.4 97.7 R78 98.5 98.6 
R19 92.0 94.4 R50 96.2 97.2 RS0 98.0 98.9 
R20 92.8 95.1 R51 96.6 97.1 R82 98.4 98.7 
R21 92.5 96.2 R52 96.7 97.1 R83 98.5 98.8 
R22 92.6 97.2 R53 94.3 98.0 R84 98.5 98.9 
R24 94.3 95.2 R56 96.9 98.0 R85 98.5 99.1 
R25 93.3 96.8 R58 97,5 97.8 



EFFICIENCY OF BLOCK DESIGNS 

Table 5. (Continued). 
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No. lower upper No. lower upper No. lower upper 

R87 98.7 98.9 R123 98.2 99.3 R157 99.2 99.5 
R89 98.9 99.0 R124 99.0 99.3 R158 99.2 99.5 
1%94 91.5 93.3 R126 99.2 99.4 1%159* 99.6 99.6 
R95 96.3 97.1 R127 99.3 99.4 R,160* 99.6 99.6 
R96 96.8 96.9 R131 99.4 99.5 R164 98.1 98.2 
R97 95.6 96.0 R132" 99.5 99.5 R165" 98.5 98.5 
R98 97.4 97.7 R133 94.7 96.5 R166 96.4 97.9 
R99 97.4 97.8 R134 96.0 96.3 R167 98.5 98.9 

R100 97.5 98.1 R135 97.7 98.4 R168 96.7 98.7 
R101 97.9 98.0 R136 98.2 98.3 R169 99.0 99.1 
R102 97.6 98.4 R137 96.0 96.8 R170 99.0 99.1 
R103 98.1 98.2 R138 98.2 98.6 R171 99.1 99.2 
R104 92.3 95.8 R139 96.6 97.0 R172 97.8 97.9 
R105 96.8 98.2 R140 97.9 98.0 R173 97.3 98.6 
1%107 97.8 98.7 R141 98.5 98.6 R174 98.2 98.6 
1%108 98.4 98.6 R142 98.5 98.7 1%175* 98.4 98.4 
R109 95.9 96.4 R143 95.3 97.9 R176" 98.4 98.4 
R l l 0  98.3 98.5 R145 97.2 97.5 R177" 98.6 98.6 
R l l l  98.7 98.8 R146 98.0 99.0 R178 97.6 99.1 
Rl15 97.7 99.0 R148 98.8 98.9 R179 99.0 99.1 
Rl17 98.6 98.8 1%149 98.8 99.2 R180* 99.0 99.0 
Rl18 98.1 98.4 R150 99.0 99.1 R181" 99.5 99.5 
Rl19 98.2 98.8 R151 99.1 99.3 R182 99.3 99.4 
R120 98.2 99.0 R152 98.6 99.5 R184" 99.7 99.7 
R121 98.2 99.2 R155 99.1 99.2 R185" 99.7 99.7 
R122 98.9 99.0 R156 99.1 99.4 R186 98.6 98.7 

Table 5. (Continued). 

No. lower upper No. lower upper 

R187 97.9 99.0 R198 98.4 99.5 
R188 98.1 99.4 R200 99.4 99.5 
R189" 99.3 99.3 R203" 99.0 99.0 
R190 99.6 99.7 R204" 99.1 99.1 
R192" 99.8 99.8 R205" 99.1 99.1 
R193" 98.8 98.8 R206 98.6 99.4 
R194 99.0 99.1 R207 98.7 99.6 
R195 98.3 99.2 R208 99.5 99.6 
R196" 99,2 99.2 R209" 99.8 99.8 
R197" 99.2 99.2 

*Indicates designs for which lower and upper bounds coincide. 

For  r egu la r  G D  designs  w i th  Aa > 0, we now presen t  b o u n d s  A1 < A < 

A2 for va r ious  k. Not ice  t h a t  1 < a l  _< n,  0 < a i  _ n ,  i = 2 , 3 , . . . , m  a n d  

a2  + . . .  + a m  = k - a l .  We  d e n o t e  the  g rea t e s t  in tegers  in  ( m  - 1 ) - l ( k  - n )  a n d  

n- l ( k  - 1) by  u a n d  t, respect ively.  If  k _< n,  we have A >_ 0 a n d  if k > n t h e n  

A > (k -n )2+(m-1)u2+(2u+l ) [ (k -n ) -u (m_l ) ] .  Moreover ,  i f ( k - l )  > n ( m - 1 )  

t h e n  A _< n2(m-1)m a n d  if ( k - l )  < n ( m - 1 )  t h e n  A < ( k - 1 ) 2 + t n 2 + ( k - l - n t )  2. 
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It can be checked that the expression [ k ( k -  1)#2(#1 - 1 ) +  ( ~ 2 -  # l )n  -1A] is in fact 
positive for A = A1 = 0, A = A1 = ( k - n ) 2 + ( m - 1 ) u 2 + ( 2 u + l ) [ ( k - n ) - u ( m - 1 ) ]  
and for A = A2 = n2(m - 1)m, A = A2 = (k - 1) 2 + t n  2 + ( k  - 1 - nt)  2. We 
denote ¢1(C0) and ¢2(C0) as the values of ¢(C0) for A = A 1 and A = A2, 
respectively in (4.1). It follows that ¢2(C0) _< ¢(C0) _< ~1(C0) for A2 > A1 
and ¢1(C0) _< ¢(C0) _< Cs(C0) for As < A1. If E1 = ( ¢ (C) /¢ ~ (Co ) )  × 100 and 
E2 = ( ¢ ( C ) / ¢ s ( C o ) )  × 100, then the difference E1 - E2 becomes small as A1 
approaches As. 

We present in Tables 2-4, the E values for GD designs given in Clatworthy 
(1973), which are singular, semiregular and regular with A1 = 0. We also present 
in Table 5, the E1 and E2 values for regular GD designs with A1 > 0. We call the 
minimum of E1 and E2 as lower and the other as upper. 

In Table 2, all designs except those numbered S1 and $21 have E values greater 
than 90. For designs numbered S1 and $21, E values are greater than or equal 
to 80. In Table 3, all designs except those numbered SR1, SR2, SR6 and SR18 
have E values higher than 90. For designs numbered SR2 and SR6, E values are 
greater than or equal to 80. The design SR1 had E value 50 and the design SR18 
has E value 75. In Table 4, the design numbered R18 has E value 87.5 and all 
other E values are higher than 90. In Table 5 the designs, numbered R1-R37, 
have k = 2, A1, A2 > 0. For these designs, we have 2 = k <_ n and this implies 
A1 -- 0 which corresponds to a l  = 2 and ai -- 0 for i = 2 , . . . ,  m. This is indeed 
possible because A1 > 0. Also, 1 = (k - 1) < n ( m -  1). The greatest integer in 
n - l ( k  - 1) is 0. Hence As = (k - 1) 2 + tn  2 + (k - 1 - n t )  2 ---- 2. This corresponds 
to the situation with a l  = 1, exactly one among a s , . . . ,  am is 1 and the rest are 
zero. This is again possible because A2 > 0. The bounds presented in Table 5 for 
these designs can in fact be attained depending on the unavailable observation. 
We now consider the remaining 133 designs in Table 5 with )h > 0 and k >_ 3. The 
lower and upper values in Table 5 are very close for these 133 designs. Moreover, 
these lower and upper values are 90 and above for all 133 designs except for the 
design numbered R42. The lower values for all designs in Table 5 are greater than 
80 except for a few very close to 80. 

5. Conclusion 

There are many robustness properties of designs. BIB designs and GD designs 
are known to be robust against the unavailability of any observation in the sense 
that the resulting design is connected. In this paper we establish another robust- 
ness property of BIB designs and GD designs against the unavailability of a single 
observation and in terms of efficiency in the sense that the efficiency is fairly high 
for most resulting designs. 

Acknowledgements 

The paper is a product of Professor Sanpei Kageyama's visit during 1989- 
90 to the University of California, Riverside, USA and to the Indian Statistical 
Institute, Calcutta, India. Authors are thankful to two referees (particularly the 



EFFICIENCY OF BLOCK DESIGNS 603 

s e c o n d  referee)  for d i l i g e n t l y  go ing  over  t h e  m a n u s c r i p t  a n d  m a k i n g  sugges t i ons  

on  i m p r o v i n g  t h e  p r e s e n t a t i o n .  

REFERENCES 

Baksalary, J. K. and Tabis, Z. (1987). Conditions for the robustness of block designs against the 
unavailability of data, J. Statist. Plann. Inference, 16, 49-54. 

Bose, R. C. and Shimamoto, T. (1952). Classification and anlaysis of partially balanced incom- 
plete block designs with two associate classes, J. Amer. Statist. Assoc., 4'7, 151-184. 

Clatworthy, W. H. (1973). Table of two-associate-class partially balanced designs, Applied Math- 
ematics Series, 63, National Bureau of Standards, Washington D.C. 

Dey, A. (1986). Theory of Block Designs, Wiley, New York. 
Ghosh, S. (1982a). Robustness of BIBD against the unavailability of data, J. Statist. Plann. 

Inference, 6, 29-32. 
Ghosh, S. (1982b). Information in an observation in robust designs, Comm. Statist. Theory 

Methods~ 11~ 1173-1184. 
Ghosh, S., Rao, S. B. and Singhi, N. M. (1983). On a robustness property of PBIBD, J. Statist. 

Plann. Inference, 8, 355-363. 
Kageyama, S. (1990). Robustness of block designs, The Proceedings of R. C. Bose Symposium 

on Probability, Statistics and Design of Experiments, 425-438, Wiley Eastern~ New Delhi. 
Mukerjee, R. and Kageyama, S. (1990). Robustness of group divisible designs, Comm. Statist. 

Theory Methods, 19, 3189-3203. 
Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments, 

Wiley, New York. 
Whittinghill, D. C., III (1989). Balanced block designs robust against the loss of a single obser- 

vation, J. Statist. Plann. Inference, 22, 71-80. 


