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Abstract .  It has been shown that the unconditional maximum likelihood 
estimator of the common odds ratio, risk ratio and risk difference parameters 
are inconsistent in sparse statification. Under a Poisson sparse-data model, the 
maximum likelihood estimator for the rate difference, which is the difference of 
the disease incidence rates among the exposed and the unexposed, is also shown 
to be biased. The sparse-data asymptotic bias of the maximum likelihood 
estimator is evaluated numerically and compared with that of the weighted 
least squares estimators. 

Key words and phrases: Bias, epidemiologic methods, follow-up studies, Pois- 
son observations, sparse-data. 

i. Introduction 

In many epidemiologic studies, we often encounter stratified tables that  are 
'sparse', in which a large number of cell frequencies are small or zero. Breslow 
(1981) showed the asymptotic bias of the unconditional maximum likelihood esti- 
mator of the common odds ratio in his sparse-data large sample theory. Greenland 
and Robins (1985) studied the estimation of effect parameters from sparse follow- 
up data and showed the asymptotic bias of the maximum likelihood estimator of 
the common risk ratio and difference which are ratio and difference between two 
binomial proportions. They also studied the estimation of ratio and difference 
between two Poisson rates, the rate ratio and difference, in sparse stratification. 
While the maximum likelihood estimator of the common rate ratio is consistent 
in sparse-data, they failed to show any results concerning the consistency of the 
maximum likelihood estimator of the common rate difference. 

From the general theory of the maximum likelihood estimator (Andersen 
(1970)), it can be expected that the maximum likelihood estimator of the common 
rate difference is inconsistent in sparse-data, we know little about the sparse-data 
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performance of it. Through numerical evaluation, this note shows the bias of 
the maximum likelihood estimator of the common rate difference under a Poisson 
sparse-data model. The asymptotic bias in the weighted least squares estimators 
is also calculated and compared to that of the maximum likelihood estimator. 

2. Numerical evaluations 

Consider a series of K pairs of independent Poisson observations (xk, Yk) with 
m e a n s  ( r t k r l k ,  m k r o k  ) for k = 1 , . . . ,  K. In follow-up studies of dynamic popula- 
tions, xk and Yk denote the number of persons contracting the disease under study 
out of nk exposed and mk unexposed fixed person-time at risk, and rlk and r0~ 
are the incidence rates of the exposed and the unexposed in the k-th stratum. We 
assume that the rate difference/~ = rlk -- rOk is the preferred effect measure and 
remains constant across strata. The maximum likelihood estimator ~ML for fi is 
obtained based on the unconditional distribution of (xk, Yk): 

(2.1) pr(x, y [nk, ink) = [nk(~ + rok)] z e_n~(~+~ok ) (mkrok) ~ e_mkrok 
X! y! 

with the K nuisance parameters rok. The maximum likelihood estimate is only 
defined as the iterative solution of a set of K + 1 equations (Rothman and Boice 
(1982)). 

Three closed-form rate difference estimators are available as an alternative to 
the maximum likelihood estimator. The weighted least squares approach (Grizzle 

et al. (1969)) yields an estimator ~w of ~ defined by 

k k 

- k / m  2~-1 and ~k = Xk/nk  y k / m k .  Rothman and Boice w h e r e  W k  = (Xk/n2k -k y / k} 
(1982) replace Wk with Wok = n k m k / t k  which is the inverse of the asymptotic 
variance of ~k at ~ = 0, to derive a null-weighted least squares estimator ~Wo. 
Here, tk = xk + Yk. A constant, usually 1/2, is added to xk and Yk, or tables 
with tk = 0 are thrown out to avoid division by zero. Analogous to the odds 
ratio and other effect measures, Greenland (1982) replace Wk with the standard 
weights Sk = n k m k / N k  to obtain the Mantel-Haenszel estimator ~MH, where Nk ---- 
nk + ink. 

Under large-stratum assumption that all the nk and m~ tend to infinity, all 
the above estimators are consistent asymptotically normal. On the other hand, 
under the sparse-data limiting model introduced by Breslow (1981), the weighted 
least squares estimators are biased, while the Mantel-Haenszel estimator is still 
consistent asymptotically normal (Greenland and Robins (1985)). The limiting 
model considered here is identical with that  used by Greenland and Robins. We 
could assume that (nk, mk, r0k) is one of a sequence of K independent identically 
distributed random vectors with positive components and finite covariance matrix, 
and K tends to infinity. 
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In numerical evaluation of the asymptotic means for ~ML, ~W and 6w0, the 
values of n, m and r0 were assumed to remain constant across strata. These 
assumptions are made for computational simplicity, so that the asymptotic means 
may be defined by only four parameters, n, m, 5 and r0. Under these conditions, 
6w converges to a real value 5w which is given by 

~w = E(W$)/E(W), 

where E denotes the exact expectation under the unconditional distribution (2.1). 
Similarly, the asymptotic mean 6Wo of 5Wo is defined. It is necessary that a 
constant is added to x and y and/or tables with t = 0 are thrown out in order for 
the sparse-data asymptotic means for 6w and 6w0 to exist. The asymptotic mean 
of the maximum likelihood estimator, ~ML, is determined as the solution of the 
limiting equation 

( 
E 5ML +~0(SML 

where ~o(6) is the maximum likelihood estimator of r0 under a specific 6 which is 
given by 

~o(5) = [t - N e  + v / ( t  - N S )  2 + 4 y N 6 ] / ( 2 N ) .  

Table 1 gives selected numerical evaluations for four values of 6 and two of ro. 
For the asymptotic means of 5w and 6Wo, treatments (1) adding 1/2 to x and y, 
(2) throwing out tables with t = 0 and (3) both (1) and (2) were tried. Results of 
(3) for 5w and (2) for 5wo, which are less biased than the other two modifications, 
are shown in Table 1. 

Unless n = m, the weighted least squares estimator 6w is biased even when 
6 - 0 and its bias tends to be negative except when the smallest cell expectation 
is smaller than 1. When 5 > 0, the bias in ~ML is g^enerally positive and stable 
regardless of the values of 6, while the bias in 6w and 6w0 is generally conservative 
and tends to be larger with increase in 6. The asymptotic mean of 6w is very 
sensitive to the exposure ratio, n/m. The performance of 5Wo is usually better 
than that of 6w. 

3. Example 

In this section I will illustrate aforementioned common rate difference estima- 
tors by using a study of arsenic exposure and respiratory cancer deaths in Montana 
smelter workers (presented in Breslow and Day (1987), Table 3.14). Table 2 sum- 
marizes the data stratified into 13 age and calendar-period categories. Table 3 
presents point estimates and 95% confidence intervals for 6. The approximate 
confidence intervals associated with four estimates are given as follows: for 'Max- 
imum likelihood', the score-based interval was calculated, which is given by the 
two appropriate solutions to 

[Ek xk / (5  + ~0k) - E k  ~k] 2 = 3.S4. 
Ek[(5 + ~0~)/-k + ~ok/mk] -1 
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Table 3. 
years. 

TOSIYA SATO 

Estimates of the common rate difference and 95% confidence intervals, per 1000 person- 

Full tables results Collapsed tables results 

5 95% C.I. ~ 95% C.I. 

Maximum likelihood 5.94 (3.26, 9.43) 5.65 (2.99, 9.26) 

Mantel-Haenszel 5.90 (3.20, 9.37) 5.82 (3.13, 9.28) 
Weighted least squares 3.41 (1.16, 5.66) 5.60 (3.55, 7.66) 
Null-weighted least squares 2.92 (1.53, 4.32) 4.93 (3.69, 6.17) 

For 'Mantel-Haenszel', the Fieller-like interval (Sato (1990)) which is the two so- 
lutions to the quadratic equation 

SkSk - 5 Sk) 2 

Pk + Ek Qk 
= 3.84, 

where Pk = nkmk(mk -- n k ) / N  2 and Qk = nkmk/N~.  And for 'Weighted least 
squares' and 'Null-weighted least squares', 

5w + 1.9611/~-~Wkk 

(change W to W0 for the null-weighted least squares method). In the calculation of 
weighted least squares estimators, the same treatments mentioned in the previous 
section have done. 

The left-half of Table 3 presents the K = 13 tables analysis given in Table 
2. While the maximum likelihood and the Mantel-Haenszel methods gave close 
point estimates and confidence intervals, the weighted least squares methods gave 
smaller point estimates. A referee suggested a modification of the weighted least 
squares methods that one could collapse together all tables with approximately 
the same exposure ratio (nk/mk) and that calculate ~w and ~wo. Seeing expo- 
sure ratios in Table 2, I tentatively collapsed tables (1) age (40-49, 50-59) and 
periods (1938-1949, 1950-1959), (2) age (60-69, 70-79) and periods (1938-1949, 
1950-1959) and (3) periods (1960-1969, 1970-1977). The right-half of Table 3 
gives the results from the collapsed K -- 3 data. This modification gives an incon- 
sistent estimate of 5, except when all exposure ratios are exactly the same value 
in collapsed tables. However, the maximum likelihood and the Mantel-Haenszel 
estimates changed only a little, and the weighted least squares estimates improved 
dramatically. While the suggested modification works well for the point estimate, 
it appears to give narrow confidence intervals in both weighted least squares meth- 
ods. 
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4. Discussion 

Similar to the results of the other effect measures (Breslow (1981), Greenland 
and Robins (1985)), the weighted least squares estimators for the common rate 
difference are biased severely under the Poisson sparse-data model. The maximum 
likelihood estimator is also biased in sparse-data, however (~ML performed better 
than ~w or ~w0- The bias in (~ML is usually less than 0.5 per 1000 person-time 
denominator under the range of selected parameter values. 

The Mantel-Haenszel estimator is the only currently available rate difference 
estimator which is consistent in sparse-data (Greenland and Robins (1985)) and 
easily calculable confidence interval method is available. However, (~MH is some- 
times very inefficient in large-strata even when 5 = 0. Hence Greenland and Robins 
suggest that its use might be limited to sparse-data. In large-strata, though the 
calculation is somewhat complicated, the maximum likelihood estimator associ- 
ated with the score-based confidence interval may be used. 

We need further study to compare mean squared errors between the Mantel- 
Haenszel and the maximum likelihood estimators, and performances between the 
Fieller-like and the score-based confidence interval methods under both sparse- 
data and large-strata settings. 
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