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Abstract. It has been shown that the unconditional maximum likelihood
estimator of the common odds ratio, risk ratio and risk difference parameters
are inconsistent in sparse statification. Under a Poisson sparse-data model, the
maximum likelihood estimator for the rate difference, which is the difference of
the disease incidence rates among the exposed and the unexposed, is also shown
to be biased. The sparse-data asymptotic bias of the maximum likelihood
estimator is evaluated numerically and compared with that of the weighted
least squares estimators.
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1. Introduction

In many epidemiologic studies, we often encounter stratified tables that are
‘sparse’, in which a large number of cell frequencies are small or zero. Breslow
(1981) showed the asymptotic bias of the unconditional maximum likelihood esti-
mator of the common odds ratio in his sparse-data large sample theory. Greenland
and Robins (1985) studied the estimation of effect parameters from sparse follow-
up data and showed the asymptotic bias of the maximum likelihood estimator of
the common risk ratio and difference which are ratio and difference between two
binomial proportions. They also studied the estimation of ratio and difference
between two Poisson rates, the rate ratio and difference, in sparse stratification.
While the maximum likelihood estimator of the common rate ratio is consistent
in sparse-data, they failed to show any results concerning the consistency of the
maximum likelihood estimator of the common rate difference.

From the general theory of the maximum likelihood estimator (Andersen
(1970)), it can be expected that the maximum likelihood estimator of the common
rate difference is inconsistent in sparse-data, we know little about the sparse-data
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performance of it. Through numerical evaluation, this note shows the bias of
the maximum likelihood estimator of the common rate difference under a Poisson
sparse-data model. The asymptotic bias in the weighted least squares estimators
is also calculated and compared to that of the maximum likelihood estimator.

2. Numerical evaluations

Consider a series of K pairs of independent Poisson observations (zx, yx) with
means (ngrig, Mirox) for k = 1,..., K. In follow-up studies of dynamic popula-
tions, zx and yi denote the number of persons contracting the disease under study
out of n; exposed and my unexposed fixed person-time at risk, and r1x and rog
are the incidence rates of the exposed and the unexposed in the k-th stratum. We
assume that the rate difference § = ri;x — 7ox is the preferred effect measure and
remains constant across strata. The maximum likelihood estimator 5ML for 6 is
obtained based on the unconditional distribution of (x, y):

2.1)  pr(z,y | ng,me) = i ;T——*Ok)]z g8 For) (mk;'o__k)y g kTOk
with the K nuisance parameters rgr. The maximum likelihood estimate is only
defined as the iterative solution of a set of K + 1 equations (Rothman and Boice
(1982)).

Three closed-form rate difference estimators are available as an alternative to
the maximum likelihood estimator. The weighted least squares approach (Grizzle

et al. (1969)) yields an estimator dw of 8 defined by
bw = ZWkSk/ZWks
k k

where Wy, = (zx/n2 + yx/m2)~* and bx = x/nk — yk/mx. Rothman and Boice
(1982) replace W}, with Wy, = ngmy/tx which is the inverse of the asymptotic
variance of &; at § = 0, to derive a null-weighted least squares estimator Swo-
Here, tx = ) + yx- A constant, usually 1/2, is added to z; and yg, or tables
with ty = 0 are thrown out to avoid division by zero. Analogous to the odds
ratio and other effect measures, Greenland (1982) replace Wy with the standard
weights Sy = ngmg /N to obtain the Mantel-Haenszel estimator SMH, where N}, =
Nk + Mk-

Under large-stratum assumption that all the ny and my tend to infinity, all
the above estimators are consistent asymptotically normal. On the other hand,
under the sparse-data limiting model introduced by Breslow (1981), the weighted
least squares estimators are biased, while the Mantel-Haenszel estimator is still
consistent asymptotically normal (Greenland and Robins (1985)). The limiting
model considered here is identical with that used by Greenland and Robins. We
could assume that (nk,mk,rox) is one of a sequence of K independent identically
distributed random vectors with positive components and finite covariance matrix,
and K tends to infinity.
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In numerical evaluation of the asymptotic means for dyy, dw and 5w0, the
values of n, m and 7y were assumed to remain constant across strata. These
assumptions are made for computational simplicity, so that the asymptotic means
may be defined by only four parameters, n, m, § and r9. Under these conditions,
bw converges to a real value éw which is given by

8w = E(W6)/E(W),

where E denotes the exact expectation under the unconditional distribution (2.1).
Similarly, the asymptotic mean éw, of 3w0 is defined. It is necessary that a
constant is added to z and y and/or tables with ¢ = 0 are thrown out in order for
the sparse-data asymptotic means for bw and 6W0 to exist. The asymptotic mean
of the maximum likelihood estimator, &y, is determined as the solution of the
limiting equation

E (____m ) =n
OmL + Fo(6mL) '

where 7(6) is the maximum likelihood estimator of 7o under a specific § which is
given by

7o(6) = [t — N6+ 1/(t — N&)2 + 4yN6]/(2N).

Table 1 gives selected numerical evaluations for four values of § and two of rg.
For the asymptotic means of 8w and w,, treatments (1) adding 1/2 to z and y,
(2) throwing out tables with ¢ = 0 and (3) both (1) and (2) were tried. Results of
(3) for 6w and (2) for éw,, which are less biased than the other two modifications,
are shown in Table 1.

Unless n = m, the weighted least squares estimator dw is biased even when
6 = 0 and its bias tends to be negative except when the smallest cell expectation
is smaller than 1. When § > 0, the bias in 6y is generally positive and stable
regardless of the values of 6, while the bias in éw and éw, is generally conservative
and tends to be larger with increase in 6. The asymptotic mean of bw is very
sensitive to the exposure ratio, n/m. The performance of dw, is usually better

than that of 5W‘
3. Example

In this section I will illustrate aforementioned common rate difference estima-
tors by using a study of arsenic exposure and respiratory cancer deaths in Montana
smelter workers (presented in Breslow and Day (1987), Table 3.14). Table 2 sum-
marizes the data stratified into 13 age and calendar-period categories. Table 3
presents point estimates and 95% confidence intervals for . The approximate
confidence intervals associated with four estimates are given as follows: for ‘Max-
imum likelihood’, the score-based interval was calculated, which is given by the
two appropriate solutions to

e e/(6 + Fox) — D ne)>
> [(6 + For) /ruk + For/mui] =t 3.84.
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Table 3. Estimates of the common rate difference and 95% confidence intervals, per 1000 person-
years.

Full tables results Collapsed tables results

6 95% C.I 8 95% C.L
Maximum likelihood 5.94 (3.26, 9.43) 5.65 (2.99, 9.26)
Mantel-Haenszel 5.90 (3.20, 9.37) 582 (3.13, 9.28)
Weighted least squares 3.41 (1.16, 5.66) 5.60 (3.55, 7.66)

Null-weighted least squares 2.92 (1.53, 4.32) 4.93 (3.69, 6.17)

For ‘Mantel-Haenszel’, the Fieller-like interval (Sato (1990)) which is the two so-
lutions to the quadratic equation

(Xk Skbk = 63, Sk)?
6 Zk P, + Zk Qk

= 3.84,

where P, = ngmi(mi — ni)/N? and Qr = ngmi/NZ. And for ‘Weighted least
squares’ and ‘Null-weighted least squares’,

bw + 1.96 /I/ZWk
k

(change W to W, for the null-weighted least squares method). In the calculation of
weighted least squares estimators, the same treatments mentioned in the previous
section have done.

The left-half of Table 3 presents the K = 13 tables analysis given in Table
2. While the maximum likelihood and the Mantel-Haenszel methods gave close
point estimates and confidence intervals, the weighted least squares methods gave
smaller point estimates. A referee suggested a modification of the weighted least
squares methods that one could collapse together all tables with approximately
the same exposure ratio (ng/m;) and that calculate by and dw,. Seeing expo-
sure ratios in Table 2, I tentatively collapsed tables (1) age (40-49, 50-59) and
periods (1938-1949, 1950-1959), (2) age (6069, 70-79) and periods (1938-1949,
1950-1959) and (3) periods (1960-1969, 1970-1977). The right-half of Table 3
gives the results from the collapsed K = 3 data. This modification gives an incon-
sistent estimate of 6, except when all exposure ratios are exactly the same value
in collapsed tables. However, the maximum likelihood and the Mantel-Haenszel
estimates changed only a little, and the weighted least squares estimates improved
dramatically. While the suggested modification works well for the point estimate,
it appears to give narrow confidence intervals in both weighted least squares meth-
ods.
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4. Discussion

Similar to the results of the other effect measures (Breslow (1981), Greenland
and Robins (1985)), the weighted least squares estimators for the common rate
difference are biased severely under the Poisson sparse-data model. The maximum
likelihood estimator is also biased in sparse-data, however bur, performed better
than bw or dw,. The bias in Sy is usually less than 0.5 per 1000 person-time
denominator under the range of selected parameter values.

The Mantel-Haenszel estimator is the only currently available rate difference
estimator which is consistent in sparse-data (Greenland and Robins (1985)) and
easily calculable confidence interval method is available. However, bmu is some-
times very inefficient in large-strata even when § = 0. Hence Greenland and Robins
suggest that its use might be limited to sparse-data. In large-strata, though the
calculation is somewhat complicated, the maximum likelihood estimator associ-
ated with the score-based confidence interval may be used.

We need further study to compare mean squared errors between the Mantel-
Haenszel and the maximum likelihood estimators, and performances between the
Fieller-like and the score-based confidence interval methods under both sparse-
data and large-strata settings.
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