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A b s t r a c t .  We consider the growth curve model with covariance structures: 
positive-definite, uniform covariance structure and serial covariance structure. 
Two types of prediction problems are studied in this paper. One is called the 
conditional prediction problem and the other is called the extended prediction 
problem. For both types of prediction problems, the mean squared error for a 
serial covariance structure is obtained for the estimates based on the conditional 
expectation; the mean squared error for an unrestricted covariance structure is 
compared with the mean squared error for a uniform covariance structure or 
a serial covariance structure. These results are exemplified by two sets of real 
data. 
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1. Introduction 

Since Po t thof f  and Roy (1964) first p roposed  a generalized mul t ivar ia te  anal-  
ysis of var iance model  (GMANOVA model  or a growth curve model) ,  Rao (1965, 
1987), Kha t r i  (1966), Grizzle and Allen (1969), Lee and Geisser (1972), Reinsel 
(1984a, 1984b), Lee (1988) and m a n y  other  au thors  have s tudied this model.  The  
growth curve model  is defined as 

(1.1) Y - -  A ~ B + 
N×p Nxk  kxq q×p Nxp'  

where Y is an observed r a n d o m  matr ix ,  A and B are known design matr ices  of 
ranks  k and  q < p, respectively, and  S is an unknown p a r a m e t e r  mat r ix .  Fur ther ,  
the  rows of e are independent  and identically d is t r ibuted  r a n d o m  vectors  wi th  
d is t r ibut ion  Np(0,  E). In mos t  appl icat ions of the  model ,  p is the  number  of t ime  
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points observed on each of the N subjects, (q - 1) is the degree of the polynomial, 
and k is the number of groups. 

Reinsel (1984a, 1984b), Lee (1988) and others studied two types of prediction 
problems. One is called the conditional prediction of the unobserved portion of 
a partially observed vector and the other is called the extended prediction of the 
future values of a given vector using its past observations. Reinsel (1984b) con- 
sidered prediction problems where the covariance matrix Z has a linear structure 
represented as 

1 

(1.2) E = E aiGi, 
i=1  

where the Gi are known symmetric matrices which are linearly independent, and 
the ai are unknown parameters. This covariance structure contains the unre- 
stricted covariance structure and the uniform covariance structure as special cases. 
However, Reinsel (1984b) did not treat the case when E has serial covariance struc- 
ture. On the other hand, Lee (1988) considered prediction problems where E has 
uniform covariance structure and a serial covariance structure. We also consider 
two types of prediction problems with specific covariance structure. 

Let y : p × 1 be (N + 1)-st vector of future observation drawn from the model 
(1.1); that is, #' =- E ( y ' )  -= A~'~B, where A1 is a known k x 1 vector, y is 
distributed as multivariate normal with unknown covariance matrix Z, and #1 is 
the transpose of #. Moreover, let y be partitioned as y = (y{, y~)l, where Yi is 
Pi × 1, (i = 1, 2) and Pl + P: = P. Lee and Geisser (1972), Lee (1988) and other 
authors considered the problem of predicting Y2, given yl and Y. This is the 
conditional prediction problem. 

Next, let yf  : m x 1 be a future observation whose previous p-dimensional 
observation is a vector of Y. Rao (1987) and Lee (1988) considered the problem 
of predicting yf, given Y. This type of prediction is called the extended predic- 
tion problem. To study this type of prediction, the covariance structure of YI is 
assumed similar to the case of the conditional prediction problem. We need some 
structure on E to predict yr. In this paper, three types of covariance structures 
are considered: that is, positive-definite covariance structure, uniform covariance 
structure and serial covariance structure. In particular, the last two covariance 
structures are useful for the growth curve model. 

In Section 2, we give the theoretical mean squared error (MSE) of prediction 
for the serial covariance structure, whereas Lee (1988) gave the empirical MSE's. In 
Section 3, we compare the positive-definite covariance structure with the uniform 
covariance structure and the serial covariance structure for the MSE's. In Section 
4, we apply our theoretical MSE and Reinsel's results (1984b) to the two sets 
of real data, dental measurement data and ramus height data, for both types of 
prediction, and make some comparisons between Lee's numerical results (1988) 
and our results. 
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2. MSE of the case for the serial covariance structure 

In this section, we derive the MSE of prediction (up to order n - i )  for a serial 
covariance structure.  The serial covariance s tructure takes the form 

(2.1) E = a2G(p)  = a2(pl i -J l ) ,  i , j  = 1 , 2 , . . . , p ,  

where a > 0 and [p] < 1 are unknown. Anderson (1971) has obtained the maxi- 
mum likelihood estimators (MLE's) / )  and 62 in a t ime series setting, and Azzalini 
(1984, 1987) has derived the MLE's  for the growth curve model for an AR(1) co- 
variance structure. Lee (1988) and Fujikoshi et al. (1990) have also obtained the 
MLE's  for a growth curve model with serial covariance structure. In what  follows, 
we use the MLE's  -~, 62 and / )  of S, au and p, respectively, based on Y which are 
given as the solutions of the following equations (see, e.g., Fujikoshi et al. (1990)): 

(2.2) 

~_ = ( A ' A ) - I A ' y ~ - I B ' ( B F , - 1 B ' ) - I  ' 

62 n = ~ { p ( 1  -/)2)}-1(a/)2 - 25/)+ c), 

(p - 1)a/) 3 - (p - 2)5/) 2 - (pa + c)/) + pb -- O, 

where E = 62G(/)), a - -  t rD1R,  b = t rD2R,  c - -  t rD3R,  R = n - I ( y - A ~ B ) ' ( Y  - 
A~-B) ,  D1 = diag(0, 1 , . . . ,  1, 0), D~ = I v and 

1 0 ' .  
D 2 - - ~  " .  "'. 1 " 

--. 1 0 

In order to consider the conditional prediction of Y2, given Yl and Y, we 
part i t ion the mean vector # and covariance matr ix  E as 

#5 ' \E21  E22 ' 

respectively, corresponding to the part i t ion (y~, y~)' of y. We consider a condi- 
tional predictor ~)2 of Y2 as 

(2.4) ~2 = 92 + ~ lZ11~(y1  - Pl) ,  

where the symbol ^ on the right-hand-side denotes the maximum likelihood esti- 
mator  of the model based on Y. To s tudy the MSE of the prediction of Y2 for the 
serial covariance structure, note that  

y2 - y~ = ( - ~ 1 ~ ; ~  ~p2)(y - , )  + ( - ~ 1 ~ 1 1  ~p2)(u - ~),  

the conditional expectat ion of (Y2 - ~/2)(Y2 - i/2)' given Y is 

El (y2  - ~/2)(Y2 - Y2)' [ Y] = hi(~,) + h2(E,/2), 
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where 

(2.5) 
h l ( ~ )  : ( -~21~111  I p 2 ) ~ ( - ~ 2 1 ~ 1 1 1  Ip2)/, 
h 2 ( ~ , ~ t ) - ~  ( - ~ 2 1 ~ 1 1  Ip~)(/.t- ~ $ ) ( ~ - ~ ) ' ( - ~ 2 1 ~ 1 1 1  Ip2)/, 

and Ip is the identity matr ix of order p. Denote this conditional expectat ion by 

h(E,/2). Then, 

(2.6) E[h(E,/2)] = E[hl (E)] + E[h2(E,/2)]. 

The expectat ion in (2.6) is the MSE of the prediction of Y2 by y2. In order to 
compute  the expectat ion E[h(E,/~)], we define 

U = ( A ' A ) - I / 2 A ' ( Y  - A ~ B ) ,  

V ~--- k / ~ ( Y ] - I / 2 s Z - 1 / 2  - Ip), 

where S = n - lY ' ( IN  -- A(A'A)-IA~)Y and n = N - k. Then, U and V are inde- 
pendent,  the rows of U are dis tr ibuted as Np(O, E), and the limiting distr ibution 
of V = (v~j) is normal with mean zero and Var(vi~) = 2, Vat(vii)  = 1, i ~ j .  
Moreover, the ½p(p + 1) elements are independent in the limiting distribution. It 
is well known that  

(2.7) 
! / 

E[X'WX] = (tr W)E + ( l n W l n ) A A  , 

where X'  -- (X1, . . . ,  Xn), X1 , . . . ,  Xn, are independent  Np(A, E) random vectors 
and W is any n × n symmetr ic  matr ix and in  = ( 1 , . . . ,  1)', n × 1 vector. Pu t t ing  
W = U'U and using the formula (2.7), we can easily obtain, up to order n -1,  

(2.8) E[h2(E,/2)] = K ( E )  + 0(n-3/2), 

where 

K(Z) = X1(A'A)-1A1(-E21E11 Ip2)B'(BZ-1B')-1B(-E21E[J Ip2)' 

for k x 1 vector A1 and any p x p non-singular matr ix Z. Note that  K(Z) ,~ O(n-1) 
under the usual assumption of WA = O(n). In order to calculate the MSE of 
prediction up to order n -1, we use the following stochastic expansion of the MLE 

represented in term of V: 

(2.9) # = p + r t -1 /2p l  + Op(n-1), 

where 

Pl = --{(P -- 1)r0"2}-1{(  ?" -- p2 )pa l  -- ~'bl -~- pCl}, 
al = tr  E1/2D1E1/2V, bl = tr  E1/2D2E1/2V, 

Cl = t rEV,  r = p -  ( p -  2)p 2. 
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Noting E21E1~ = (0, ~), ~f = (/~, f~2,..., ~2), ,  and using E[p 2] = p(1 - p 2 ) 2 / { ( p _  
1)r}, we can easily obtain 

1 p ( 1 - p 2 ) 2 a 2  
(2.10) E[hl(E)] = ~22.1 7 t -  - - "  • D + 0(n-3/2), 

n ( p -  1)r 

where E22.1 = E22 - E21El-~E12 and 

D = 

1 
2p 

3p 2 

kp2pp~-I 

2p 3p 2 - . -  p2p p2-1 \ 

4p 2 6p 3 . . .  2p2pP2 

6p 3 9p 4 • .. - . 

" ! " *  . 

2p2pp2 p2 p2(p2-1) 

Consequently, the MSE of the prediction of//2 by ~/2 is obtained as follows: 

1 p ( 1 - p 2 ) 2 a 2  
(2.11) E[h(E,/2)] -- E22-1 + - "  

n ( p -  1)r 
• D + K(E)  + 0(n-3/2). 

Next, we consider the extended prediction y/ ,  given Y. To make this type of 
prediction, assume that y :  has the same covariance structure as Y. Then, a predic- 
t o r /~ /o f  y :  is defined by the same way as f/2. The MSE of the extended prediction 
can be obtained in a similar way of calculating the MSE of the conditional predic- 
tion for the serial covariance structure. However, the positive-definite covariance 
structure is not explicitly extendable to the future values of the cases observed. 
Thus, only the MSE of the conditional prediction is considered in Section 3. 

3. Comparison of MSE's 

We compare the positive-definite covariance structure with uniform covari- 
ance structure and serial covariance structure in terms of asymptotic expansion of 
MSE's, up to order n -1. The uniform covariance structure takes the form 

(3.1) E = a2[(1 - p)Ip + plpl'p], 

where (z > 0 and - 1 / ( p -  1) < p < 1 are unknown. Reinsel (1984b) has obtained 
an approximation including the term of order n - 2  for prediction square error 
matrix in the growth curve model for more general covariance structure (1.2) 
that  includes as special cases positive-definite covariance structure and uniform 
covariance structure. Using his results, up to order n -1, the MSE's of prediction 
with positive-definite covariance structure and uniform covariance structure are 

1 
(3.2) E2~.1 + -piE22.1 + K(E)  

n 

and 
1 

(3.3) E2~.1 + - • 
n 

2pls2(1 - p)2a2 

p(p-  1){1 + (Pl - 1)P} 3 lp :1 '  
+ K(r0, 
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where s = 1 + (p - 1)p, respectively. 
As the criterion for a comparison of two covariance structures,  the quant i ty  

n( t r  F1 - trF2) 

is considered where F1 is the subst i tut ion of uniform covariance structure or serial 
covariance structure into the MSE of prediction with positive-definite covariance 
structure and F2 is the MSE of prediction with uniform covariance s tructure or 
serial covariance structure. 

First, we make a comparison between positive-definite covariance s tructure 
and uniform covariance structure. In this case, we had only to compare P1~22.1 
(having uniform covariance structure) with [2pls2(1 - p ) 2 a 2 / { p ( p -  1)(1 + (Pl - 
1)p)}3] • lp21p2 since E22.1 and K(E)  are common terms from (3.2) and (3.3). 

Let Qp,u be the difference between the term piE22.1 in (3.2) having uniform 
covariance structure (3.1) and the term [2pl s 2 (1 - p)2a2 / {p(p_  1)(1 + (Pl - 1)p) }3]. 
lp21p2 in (3.3); tha t  is, 

Qp,u = plE22.1(having uniform covariance structure) 
2pls2(1 - p)2cr2 

- p(p - 1)(1 + (Pl -- 1)P) 3 " lp21;2 

_ pl(1 - p)a 2 
- p(p - 1){1 + (Pl - 1)P} 3[(f3 - f 2 )  Ip2 + (f2 - f l ) "  lp2 lp2], 

where 

f l  = 2S2(1 -- P), 

f2 = P ( P -  1 ) p { l + ( p l  - 1)p} 2, 

f 3 = p ( p  - 1 ) ( l + p l p ) { l + ( p l  - 1)p} 2. 

We note tha t  Qp,u is positive-definite. For p = 2, we have Qp,u = a 2 ( 1 -  p2)p2 > 0 
if p ¢ 0. For p _> 3, the two distinct eigenvalues of the matr ix  (f3 - f2) • Ip2 + 
(f2 - f l ) "  lp21' are f3 - f2 and f3 - f l  + (p2 - 1)(f2 - f l )  which can be shown P2 
to be positive by elementary calculations. This also shows tha t  our criterion is 

(3.4) 
pip2(1 - p)a 2 

trQp,u 
p ( p -  1){1 + (Pl - 1)P} 3(f3 f l )  > 0. 

Second, we make a comparison between positive-definite covariance s tructure 
and serial covariance structure. In order to discuss the same si tuation as the 
above case, we compare the quant i ty  (3.2) having serial covariance structure with 
the quant i ty  

1 p(1 - p2)2a2 
(3.5) E22.1 + - "  • D + K(E) ,  

n ( p -  1)r 

given in (2.11). From the above, we only need compare piE22.1 (having serial 
covariance structure) with [p(1 - p2)~a~/{(p - 1)r}]. D in (2.11). 
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Let Qp,~ be the difference between the term piE22.1 in (3.2) having serial 

covariance s t ructure  (2.1) and the term ~v(1 - p 2 ) 2 a 2 / { ( p -  1)r}]. D in (2•10); tha t  
is~ 

Qp,s = p1E22.1( having serial  covariance s t r u c t u r e ) -  

= pl(1 - p2)o-2 

lp 1 + p 2  

x p2 p(1 + p 2) 

/ 1 
2p 

p(1 - p2)2o-2 
- ( p -  1)r 3P2 

\p2pP2 -1 

p(1 - p2)2o-2-D 

(p- 1)r 

p2 ...  pp -i \ 
p(1 + p2) . .•  pp2-2(1 + p2) 

/ 
l + p 2 + p  4 . . .  

• • . ,  ' 

. . . . . .  1 + p 2 + .  +p2(p2-1) 

2p 3p 2 . . .  p2p p2-1 \ 
4p 2 6p 3 . . .  2p2pP~ 

6p 3 9p 4 . . .  • . 
• • • .  " 

. . . . . . . . .  p~p2(p~- l ) 

Then, the criterion is easily obtained as 

(3.6) tr  Qp,8 = 
0-2 

r (p  - 1)(1 - p2)[rpl(p  - 1){p2(1 - p2) _ p2 + p2(p2+l)} 

- p { 1  + p2 _ p2(p2+l) _ p2p2(p2( 1 _ p2) + 1)2}] > 0. 

Furthermore,  it is conjectured that  Qp,8 > 0. However, its proof  has not been 
established for general values of p and pl .  

In general, it is known that  if the s t ructure  of E is known to be serial covariance 
s t ructure  or uniform covariance structure,  then it is be t te r  to use it from the 
start .  However, our results (3.4) and (3.6) show how much gain is obtained by 
using uniform covariance s tructure and serial covariance structure,  respectively. 
Furthermore,  we note tha t  these simple covariance s tructures have some merit in 
comput ing MLE's  and handling extended prediction of y f  (see, e.g., Lee (1988)). 

4. Examples 

We apply the results of Section 3 to two da ta  sets. One is the dental mea- 
surements da ta  on 11 girls and 16 boys, at ages 8, 10, 12 and 14 years. Each 
measurement  is the distance, measured in ram,  from the center of the p i tu i tary  
to the pteryomaxil lary fissure. The other  is the ramus height data,  measured in 
rnm,  on 20 boys at ages 8, 81, 9 and 9½ years• These da ta  sets are discussed by 
Rao (1987), Lee (1988) and many other  authors.  

Similar to Lee (1988), we consider the mean squared deviation (MSD) of the 
last observation of a partially observed vector; tha t  is, Pl = 3 and P2 = 1 for 
conditional prediction• Our MSD is defined as the square root  of the es t imated 
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Table 1. T h e  M L E ' s  in den ta l  and  r a m u s  data .  

Denta l  m e a s u r e m e n t  

d a t a  

1 

2 

3G 

4B 

5B 

R a m u s  height  d a t a  6 

Serial s t ruc tu re  

p = 4  p = 3  

~2 ~ ~2 ~ 
P P 

4.8907 0.6071 5.1148 0.5706 

4.8067 0.7682 4.8416 0.7315 

4.6591 0.8957 4.4492 0.8663 

5.1724 0.4429 5.6262 0.4105 

4.9329 0.6804 5.1380 0.6450 

6,5354 0.9526 6.2846 0.9447 

Uni fo rm s t ruc tu re  

p = 4  p = 3  
^ .a2 ~2 p p 

4.9052 0.6178 4.9872 0.5881 

4.6798 0.7017 4.6161 0.7143 

4.4704 0.8680 4.1602 0.8530 

5.2041 0.4701 5.5557 0.4517 

4.8334 0.5887 4.9504 0.6288 

6.2855 0.9447 6.2375 0.9199 

Note: 1 is t he  MLE ' s ,  w i th  girls and  boys hav ing  

MLE's ,  wi th  individual  20 excluded.  3G is the  M L E ' s  

t he  M L E ' s  of boys  wi th  individual  20 excluded.  

identical  covariance s t ruc ture :  2 is the  s ame  

of girls. 4B is t he  M L E ' s  of  boys,  and  5B is 

Table 2. T h e  MSD's :  Lee 's  values and  our  values.  

Condi t iona l  predic t ion Ex t ended  predic t ion 

Serial s t r uc t u r e  Uni fo rm s t ruc tu r e  Serial s t r uc tu r e  Un i fo rm s t r u c t u r e  

r 

Lee's  Our  Lee 's  Our  Lee 's  Our  Lee 's  Our  

value value value value value value value value 

Denta l  m e a s u r e m e n t  MSD1 2.3643 1.8004 2.2353 1.5851 - -  1.9042 - -  1.6557 

d a t a  MSD2 1.3542 1.4340 2.1955 1.3765 - -  1.5342 - -  1.3388 

MSD3 1.9990 1.7310 2.1788 1.5709 - -  1.8385 - -  1.6415 

MSD4 1.2704 1.4188 2.1483 1.3700 1.8961 1.5160 2.3108 1.3347 

Note: MSD1 is the  MSD,  wi th  girls and  boys  hav ing  identical  covariance s t ruc ture :  MSD2 is 

t he  s ame  MSD,  wi th  individual  20 excluded.  MSD3 is t he  MSD,  wi th  girls and  boys  hav ing  different 

covariance s t ruc tures :  MSD4 is t he  s ame  MSD, wi th  indiv idual  20 excluded.  

Table 3. T h e  MSD's :  Lee 's  values and  our  values.  

Condi t ional  predic t ion E x t e n d e d  predic t ion  

Serial s t r uc t u r e  Uni fo rm s t ruc tu r e  Serial s t ruc tu re  Uni fo rm s t ruc tu re  

Lee 's  Our  Lee 's  Our  Lee 's  Our  Lee 's  Our  

value value value value value value value value 

R a m u s  he igh t  d a t a  MSD6 0.5178 0.7833 1.4690 0.9535 0.5180 0.8284 1.3398 0.8259 
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MSE based on (3.3) or (3.5). In the case of the dental measurement, the design 
matrix B is 

(1 1 1 1) 
(4.1) B - -  3 - 1  1 3 ' 

and the design matrix A is a vector 127 if girls and boys are assumed to be one 
group. On the other hand, if both girls and boys are assumed to be two groups with 
common covariance matrix, the design matrix A is a 27 × 2 matrix composed of 11 
(1, 0) rows, followed by 16 (0, 1) rows. Moreover, if girls and boys are assumed to 
be two groups with different covariance matrices, the design matrix A is a vector 
111 for girls and a vector 116 for boys. For the ramus height data, the design 
matrix B is the same as (4.1) and the design matrix A is a vector 120. 

For extended prediction, we consider the MSD of the last observation; that is, 
p -- 3 and m = 1. Then the design matrix B for both data sets is the first three 
columns of B, as given in (4.1). 

In the following, we deal with serial covariance structure and uniform covari- 
ance structure. The MLE's which we used are presented in Table 1. Our MSD's 
are computed up to order n -1. To compare the numerical results of Lee (1988) 
with our results, we need to state our results for dental data. As these values are 
considered up to order n -1 and contain the term K(E) ,  they are influenced by the 
group to which the observation belongs. If girls and boys are assumed to be two 
groups with different covariance matrices, our results are defined as the weighted 
mean values of a girl's MSD and boy's one. Our MSD's are summarized in Tables 
2 and 3 with the numerical results of Lee (1988). When p = 4, under the cases 1, 
2, 3G, 4B, 5B and 6 in Table 1, respectively, the values of the likelihood ratio (LR) 
statistic for testing serial covariance structure are 19.6, 17.8, 7.7, 11.2, 12.7 and 9.5. 
Recently, Lee (1991) has also computed the LR ratio statistics on cases 3G and 6. 
The same values of the LR statistic for testing uniform covariance structure are 
8.5, 19.5, 6.7, 6.0, 14.6 and 39.6. The upper 5% point of a chi-squared distribution 
with 8 degrees of freedom is 15.5. From these tables, it seems that the empirical 
MSD's (Lee's results) are more optimistic than our results for the serial covariance 
structure. On the other hand, it seems that our results are more sensitive than 
the empirical MSD's when the uniform covariance structure is accepted. 
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