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A b s t r a c t .  In this paper we introduce a measure for the rate of generation of 
information about the failure time of a system using mutual information mea- 
sure. In the case of a system with multi-components what is really measured is 
the interaction between one component of the system and the rest. Our defini- 
tion of measure is only a slight variation of existing classical definitions in the 
information theory literature. We study properties of our proposed measure 
and calculate information for several hypothetical systems. 
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1. Introduction 

Reliabil i ty of m a n y  s tochast ic  sys tems depends  on several  character is t ics  t ha t  

are t ime  dependent .  Consider  a sys tem such t h a t  its reliabili ty depends  on k 
characterist ics.  Let  Xi(t),  i = 1 , . . . ,  k, denote  the  value of i - th  character is t ic  a t  
t ime  t, and  let -4i be the  corresponding permissible  set for the  i - th  character is t ic  a t  
t ime  t. For example ,  in engineering-systems,  failure might  occur  when accumula ted  
damages  to the  sys tem first exceed its known breaking  threshold.  

Consider  the  h i t t ing  t imes 

(1.1) Ti(Ai) = Inf{ t  > O: Xi(t)  E Ai}, i ---- 1 , . . . , k ,  

where Ai is the complement  of -4i with respect  to the  s t a te  space of Xi( t ) .  

The  r a n d o m  t ime  in (1.1) is clearly the first t ime  when the  i - th  character is t ic  
of  the sys tem is not  wi thin  permissible limits. One can also reformulate  Ti(Ai), 
i -- 1, . . . ,  k, in- te rms of a sys t em consisting of k componen t s  wi th  Ti(Ai) being 
the  failure t ime  of the  i - th  component ,  i -- 1 , . . . ,  k. T h r o u g h o u t  this pape r  we 
use the  second formulat ion.  

* This research was partially supported by the U.S. Air Force Office of Scientific Research 
Grant AFSOR-89-0402. 
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One of the most important problems in reliability is to size the amount of 
information that can be obtained about  any Ti(Ai), failure time of the component 
i, from the knowledge on behaviors of other components, that is, the behaviors 
of the processes Xl(t), X2( t ) , . . . ,  Xi - l ( t ) ,  X i + l ( t ) , . . . ,  Xk(t). Information about 
interaction between this component and the rest can help engineers to keep or 
redesign the component. 

Ever since the fundamental work of Shannon (1948) concerning the theory of 
information, many papers have been devoted to various areas of this theory. In 
particular, a significant number of works has been done in the following direc- 
tions: 1) studying the properties of the basic concepts of the theory of information 
and proving basic theorems; 2) calculating information content of discrete and 
continuous sources; 3) studying relationship between decision and estimation the- 
ory within the framework of the information theory. Among many such works 
we should call attention to the articles and books by Shannon (1957), Kullback 
(1968), Blahut (1987) and numerous references therein. 

In the present work we introduce a measure for the rate of generation of 
information about the failure time of any component say the component i, Ti(Ai) 
by a process X(O(t) = (Xl(t) , . . . ,  Xi-l(t),  Xi+l( t ) , . . . ,  Xk(t)). The proposed 
measure is an application of the "mutual information". Mutual information is 
well-known measure of information and it has many useful properties (see Pinsker 
(1964)). We give several properties of our measure. Sample calculations of the 
information rate for a Poisson shock model, a white noise model and bivariate 
processes are given. Throughout the paper we concentrate on the case when Ai 
is of the form Ai = {x : x > a~}, i = 1 , . . . ,  k. Similar results can be obtained for 
other cases. It should be emphasized that our goal in this work is not to come 
up with a new measure but try to modify slightly the existing measures in such a 
way that can be used in the area of "reliability". 

2. Preliminaries 

In this section we summarize several well-known results that are used in the 
next section. Most of the results can be found in Pinsker (1964). If (f~x, Bx, Px) 
and (~y, By, Py) are two probability spaces induced by random variables X and 
Y respectively, then the product of these spaces (fix x fly,  Bx × By) is the space of 
points (c, d), c E ~ x ,  d E ~ y ,  together with the minimal a-field over the intervals 
C × D which are all pairs (c, d) with c E C and d E D, and the C E Bx and D E 
By. Clearly, the pair of random variables X and Y can be interpreted in a natural 
way as a single random variable with values in ~tx × fly.  We will write this new 
random variable as (X, Y). The distribution of the pair Px, Y(') is a probability 
measure in ~ x  x ~ y  which we shall call the joint distribution of X and Y. We 
also define the product probability measure by Px x Py (C x D) = Px (C)Py (D). 
The information of these random variables is defined by 

(2.1) 
Px,r(c  × 

I(X, Y) = s u p ~  Px,y(Ci x Dj) log Px(Ci)Py(Dj) ' 
i,j 



INFORMATION THEORY AND FAILURE TIME 465 

where the sup is taken over all possible subsets {Ci} of the space f ×  and all 
possible subsets {Dj} of the space f~y. The number H(X) = I(X, X) = sup [ -  
~~i Px (Ci)log Px(Ci)] is called the entropy of the random variable X. 

Let Px1 and Px2 be the probability measures defined on the ~ i  and let {Ei} 
be partition of f x .  We define the entropy Hpx2(Px1 ) of PX1 with respect to Px2 
by 

(2.2) HPx2 (PX1) - - ~  sup E PxI(Ei)log 
i 

Pxl(E ) 

where the supremum is taken over all partitions of 12x. Obviously, I(X, Y) = 
Hpx × Py (Px,Y). 

In obtaining the value of the information, the following result due to Gelfand 
et al. (1956) plays an important role. 

THEOREM 2.1. (1) If the distribution Px x y is not absolutely continuous with 
respect to the distribution Px x Py(.), then I(X, Y) = oc. (2) If the distribution 
Px x Y (" ) is absolutely continuous with respect to Px x Py , then 

(2.3) 

~- ~ X  X~'~y 

(log ax,y(x, y) )Px,y(dx, dy) 

ix,y (x, Y)Px,Y (dx, dy), 

where ax,y(x,y) is the density function of Px×r(') with respect to Px × PY(') 
and ix,y(x, y) --- log ax,y(X, y). 

In many cases it is easy to obtain the form of ix,y(x,y). If spaces f~x and 
fly contain countably many points xl, x2 , . . . ,  and Yl, y2 , . . . ,  then 

(2.4) 

ix,y(x~,yj) = log Px,y(xi,yj) and 
Px 

Px,y(z ,yj) 
I (X ,Y)  -- E Px,y(xi,yj)log 

~,j Px(xi)PY(Yj) 

However, if the distributions Px('), PY(') and Px,Y(') are given in-terms of den- 
sities Px( ') ,  PY(') and Px,Y(') respectively, then 

(2.5) 

, px,y(x, y) and ix,y(×, y) = ,og px(x)py(y) 

f~ . p×,y (x, y) (dx)pny (dy), I (X ,Y)  = (px,y(x,y))log ~ - ~ ) # n x  
x X~y 

where Pax('), Pay( ' )  and Pax × #ny( ' )  are measures defined on ( f x , B x ) ,  
( f y ,  By) and ( f x  × fY ,  Bx  × By) respectively. For example if X and Y are 
finite dimensional spaces then Pax and #~v are Lebesgue measures. 
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Let X, Y and Z be random variables taking values in the measurable spaces 
(~X, BX), (~Y, By) and (~z, Bz) respectively. We define 

PY×ZDx(E × F × N) = ~ Pyix(F I x)Pz,x(N I x)Px(dx) 
J l t  X 

and the average conditional information of the pair Y and Z given X as 

(2.6) E(I(Y, Z I x)) = Hpr ×z,x (Px,Y,Z), 

where Hpy×zjx is given by (2.2). 
In the case where Px,Y,z are absolutely continuous with respect to the measure 

PY×ZIX, 

(2.7) E(l(Y, ZlX))= fnx[f .fnzpy, zlx(Y, ZlX) 
PY, Zlx(Y, z Ix) ] X log pylz(Y ] x)Pzl~(Z ] X) px(z)dzdydx, 

where Py, zlz is the conditional density function of Y and Z given X = x, PYIx is 
the conditional density function of Y given X = x, Pzl~ is the conditional density 
function of Z given X = x, and px is the density function of X. Similarly, the 
average conditional entropy of Pz with respect to Px and the a-algebra ~ x  is 

where 

(2.8) 

E(Hpx(Pz l ~2x)) = Hpx(.l~x)(Pz ), 

Px(E × F l~x )  = fE (gx (g  l ~x)Pz(dwz x gtx)). 

3. Definition of the information rate 

Let Xi(U, V] be the random variable consisting of the family of random vari- 
ables Xi(t), U < t <_ V, i = 1, 2 , . . . ,  k. Then, we have the following definition: 

DEFINITION 3.1. The rate of generation of information about the failure time 
of any component say i (Ti(ai)) by the process X(i)(t) -- (Xl ( t ) , . . .  ,Xi-l(t) ,  
Xi+l ( t ) , . . . ,  Xk(t)) is 

(3.1) ](Ti(ai), X(i)(t)) = v-.cclim VI(Ti(ai), X(i)(O, V]), 

where I (X ,Y)  is defined by the equation (2.1), Ti(ai) -- Inf{t : Xi(t) > ai} 
and X(i)(0, V] -- (XI(0, Y] , . . . ,  Xi - l (0 ,  V], Xi+l(O, Y] , . . . ,  Xk(0, V]). The pro- 
posed measure is an application of the mutual  information measure which is 
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defined by the equation (2.1).  We say (Ti(ai),X(i)(t)) is information stable if 
[(Ti(ai), X(i)(t)) = O. 

Several comments are in order with regard to (3.1). First, in general the 
equation (3.1) is difficult to compute. But, if {X(O(t)}, t = 1, 2 , . . .  be discrete 
parameter  process (I believe that  this is true in many practical situations or at 
least this is the way that  most processes are observed), then the equation (3.1) 
reduces to 

(3.2) i(Ti(ai), X(i)(t)) = lira 1-I(Ti(ai),X(i)(1), . . . ,X(i)(n)).  
n----*oo n 

Second if X(i)(t) = X (i) = ( X I , . . . ,  Xi-1,  X i + l , . . . ,  Xk), X(i)(t) is not dynamic, 
then the equation (3.1) reduces to 

(3.3) f(T~ (ai), X (~) (t)) = _r(Ti(a~), X(~)). 

If we have a system consisting of k components such that  Xj,  j -- 1 , . . . ,  k, j ¢ i, 
is the life-time of component j ,  then the equation (3.3) measures the interaction 
between life-time of component i and life-times of the remaining components. 

The number [t(Ti(ai)) -- I(Ti(ai),Xi(t)), i = 1,. . .  ,k, is called the relative 
entropy of the random variable T~(ai). 

The following theorem gives several properties of our definition. These prop- 
erties are similar to properties of "mutual information". 

THEOREM 3.1. a) 0 < [(T~(ai),x(i)(t)) < co. 
b) / f  Xi(t) is independent of Xzl ( t ) , . . . ,Xtm(t ) ,  where A = {Xl,(t);i = 

1 , . . . ,  m} is a subset of { X l ( t ) , . . . ,  Xi- l ( t ) ,  Xi+l( t ) , . . . ,  Xk(t)},  then 

[(Ti(ai), X(O(t)) = i(Ti(ai), X (A) (t)), 

where ft is the complement of A with respect to {X l ( t ) ,X2 ( t ) , . . . ,X i - l ( t ) ,  
x~+l (t) , . . . ,  xk (t)). 

c) Suppose X~(t) is a subordinate to the random process Xj  (t), 1 < l, j <_ k. 
(A random variable X is said to be subordinate to the random variable Y,  if Y is 
everywhere dense in the random variable (X, Y). A random variable X which is a 
measurable function, X = f (Y), of a random variable Y is obviously subordinate to 
Y.  If  Xt = {Xl(t); t  >_ 0} and Xj  = {Xj( t ) ; t  > 0}. Then we say that the random 
process Xl(t) is subordinate to Xj  (t) if the random variable Xl is subordinate to 
the variable Xj.)  Then, 

I(Ti(ai), Xj(t))  >_ I(Ti(ai), Xl(t)). 

d) /jr I(Ti(ai), Xt(t)) - I(Ti(ai), Xj(t))  < ~, then i(Ti(ai), Xl(t)) - i(Ti(ai), 
x~ (t)) < ~. 

e) i (T~(ai) ,C(t)X(~)( t))  = i(T~(ai),X(~)(t)),  where C(t )  is some known 
function of t. 
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PROOF. The proof of these properties follows from the corresponding prop- 
erties of mutual information (see Pinsker (1964) for properties of mutual informa- 
tion). 

Suppose {X (i) (t)}, t = 1, 2 , . . .  be discrete parametr process. Then clearly the 
parameter V, which is given in the equation (3.1), is an integer. In this case we 
have the following theorem. 

THEOREM 3.2. Ira) X(i)(n) is a Markov process and b) the joint conditional 
density function of Ti(ai) and X (i)(n) given X (i) (j), j = 1 , . . . ,  n - 1, is equal to 
the joint conditional density function of T~(ai) and X(i)(n) given X(i)(n - 1). 
Then, 

i(Ti (as), X (0 (t)) = limo~ 1 [I(Ti (as)) - EH(Ti  (ai) I x(O (n))], 

where I(Tda~)) = - f fw~(~,)(u) log fT~(~,)(u)du and fT,(a~) is the density function 
of Ti(ai). 

PROOF. From the equation (3.2), 

f(Ti(ai), X(i)(t)) = lim l I (T i (a i ) ,  X(i) (O,  n]) .  
n--~ ¢x) n 

Now, 

(3.4) I(T  n]) 
= 

= - j fT~(a~)(U)log fT,(a,)(u)du + E(I(Ti(ai) I X(O(1))) 

n- -1  

+ Z E(I(Ti(ai),  X( i ) ( j  + 1) I x(i)(1), . . .  , X(i)(J))) • 
j = l  

Let us consider the l-th term on the right side of (3.4). Using the definition of 
conditional information, conditional entropy, and assumptions a and b, 

(3.5) E(I(Ti  (ai), X (i) (1 + 1) I x(i)  (1) , . . . ,  X (i) (1))) 

= - E ( S ( T i ( a i )  I X(i)( l + 1))) + E(U(Ti(ai)  [ X(i)(l))). 

Combining equations (3.4) and (3.5) we get the result. 

THEOREM 3.3. Let {Xi(t)} be a discrete time process, t = 1 ,2 , . . . ,  with 
values in the measurable space (~x~, Bx~) and let Xi(1), X, (2) , . . .  be independent. 
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Then, 

(3.6) 

lim 1 {Fi = -  - l(ai)logF~l(ai). . _ _ . .  n---+ ~ n 

n--1 [ 

+ }2 
j = l  

+ E Fi,j+l(ai)'"Fi,l-l(ai)F'il(ai)logFi,j+l(ai) , 
/=j+2 

where Fij(ai) = P(Xi( j )  > ai) and Fij(ai) = P(Xi( j )  <_ ai). 

PROOF. We will prove this theorem for the case that Xi(t) has a finite state 
space. Similar arguments can be used for other cases. 

We consider the relative entropy of Ti(ai) defined by 

ffI(Ti(ai)) = l im l I (Ti(ai )  , ( X i ( 1 ) , . . . , X i ( n ) ) ) ,  
n - - +  O 0  n 

n--1 where I(Ti(ai), (Xi(1) , . . . ,  Xi(n))) = I(Ti(ai), Xi(1)) + Ej=I E(l(Ti(ai), X i ( j  + 
1) I Xi(1) , . . .  ,Xi(j))).  Now, 

(3.7) I(Ti(ai),Xi(1)) 

= E 
tlEl2x~(1) 

P(Ti(a 0 = 1, Xi(1) = ll) 

P(Ti(ai) -- 1, Xi(1) = 11) 
× log P(Ti(ai) -- 1)P(Xi(1) = 11) 

o o  

+ E P(Ti(aO = n, Xi(1) =/1)  
n~2 

P(Ti(ai) = n, Xi(1) = ll) 1 
x log P(Ti(ai) -- n)P(Xi(1) = I,) 

J 

= - / [p~' (~)  log F~ 
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Also, let us consider the l-th term on the right side of the equation (3.4), (second 
part), 

E(I(Ti(ai), Xi(1 + 1) I X~(1),..., Xdl))) 

= E E P(T~(a~) --- n, Xi(j) -- x(j);j  = l , . . . , l  + l) 
n=l+l 

x [log(P(T~(ai) = n, Xi(l + 1) --- x(l + 1) [ 
Xi(1) -- x (1) , . . . ,  Xi(1) = x(1))/ 
P(Ti(ai) = n I Xi(1) = x(1) , . . . ,  Xi(1) = x(1)) 

x P(Xi(l + 1) - x(l + 1) t X~(1) = x(1) , . . .  ,X~(1) = x(l)))][ , ,  

where the summation is taken over f~x~(l+l) x f~x~(1) x . . .  x f~x~(1), 
f 

= - I Fi,z+l (ai)Fa (ad. . .  Fil (ai) log F~,l+l (ad + (log F~,l+l (ad) (3.s) 

× . 

\ n = / + 2  

Combining (3.7) and (3.8) we get that 

(3.9) I(T~(ai),Xdl), . . . ,Xi(n)) 

= - { [Fi, (ai) log Fil (ai) 

+ [ ~n~=2Fil(ai)'" Fi,n-l(ai)Fi,n(ai)] logFil(ai)] n--l{#_~ 
+ 

+(~_=j~+2F~,J+~(a~)'"F~j-l(a~)F~(a~))l°gF~,J+~(a~)}} • 

Suppose Fij(t) = P(Xi(j) < t) = F(t) and 0 < F(ai) < 1. COROLLARY 3.1. 
Then~ 

[I(T~(a~) ) = -F(a~) log F(a~). 

THEOREM 3.4. Let X (O(t) be a discrete time process, t = 1, 2 , . . .  with values 
in the measurable space (f~x(,), Bx(~) ) and let X (i) (1) , . . . ,  X (~) (n) , . . .  be condition- 
ally independent given Ti(ai). Then, 

](Ti(ai), X(i)(t)) = lim 1 I(Ti(ai), X(i)(j)) + H(X(i)(1) . . . .  , X(i)(n 
n--.~ rt [_j= l 
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PROOF. Use the fact that for a sequence of random variables X, 
Y1,. . . ,  Yn,.. • such that  II1, Y2,. •., yn are conditionally independent given X, we 
have 

n 

E ( I ( X , ( Y 1 , . . . , Y n ) ) )  = ~ I (X ,  Yi) + H(Y1 , . . . ,Yn ) .  
i = 1  

4. Examples 

Example 1. A device is subjected to shocks occurring randomly in time ac- 
cording to a homogeneous Poisson process (HPP) with intensity )~ (for the def- 
inition of HPP see Barlow and Proschan (1981)). The i-th shock causes a ran- 
dom amount Y~ of damage, where I/1, I/2,... are independently distributed with 
common distribution function F.  The device fails when the total accumulated 
damages exceed a specified threshold, say a, that is the failure time of the device 
is T(a) = Inf{t : y~,N__(:) y~ > a}. 

Suppose that the counting process {N(t)} was observed at discrete time points, 
t = 1, 2 , . . . ,  (N(0) = 0), and our goal is to obtain the amount of relative informa- 
tion about T(a) by the process {Y(t); t = 1, 2,. . .}.  

THEOREM 4.1. The relative information about T(a) by {N(t) ; t  = 1,2, . . .}  
is [(T(a), N(t)) = b, where 

f 
b = lim ( 

h l = O  h ,~  = O  k = O  

x log~F(k+h l+ ' "+h~- l ) ( a )  g(u) du -~lv. 7-7-~nv. , 
k = O  " " 

g(u) = (hi - k)(u)h~-k-l(1 -- U) k -- k(u)h~-k(1 - U) k-1 and F (m) is the m-fold 
convolution of F with itself. There are situations that b can not be computed. In 
those situations we recommend to use appropriate approximations. 

PROOF. 

where 

By the definition (3.2) we get 

i (T(a),  N(t)) = lim l I(T(a),  (N(1), N ( 2 ) , . . . ,  N(n))),  
n----*oo Tb 

(4.1) I(T(a),  (N(1) , . . . ,  N(n))) 

= I(T(a),  N(1)) 
n - 1  

+ ~ E[ I (T (a ) ,N( j  + 1) [ N ( 1 ) , . . . , N ( j ) ) ]  
j = l  

/7 = - fr(~) (t) log fr(~)(t)dt - E(H(T(a)  I N ( n ) , . . . ,  N(1))). 
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Now, 

P ( T ( a )  > t I N ( i )  = li, i = 1 , . . . , n )  IN(t) ) 
= P { E Y ~  <_ a l N ( i ) = l i , i =  1 , . . . , n  

\ i = 1  

= E F ( k ) ( a ) P ( N ( t )  = k i N ( i )  = l i , i  = 1 , . . . , n )  
k=O 

= ~ F(k+"-l)(a) ( t -  (i - 1 ) )k( i -  t) h'-~ 
k=0 

(hi = li - l~- l , lo  = O,i = 1 , . . . , n )  

= E(F(k+z '~)(a)( )~( t  - n)) k e x p ( - 1 ( t -  n)))  1 
k=O 

if i - l  < t < i  

if t > n .  

(It is a s sumed  tha t  (0) ° = 1.) Consequen t ly  the  dens i ty  func t ion  of  T(a)  given 
N ( i )  = li, i = 1 , . . . , n ,  is 

(4.2) f ( t  l N ( i  ) = l~,i = 1 , . . . , n )  

~=oF (k+l~- l ) (a) (h i~  
\ k /  

x[(hi  - k)(i  - t ) h i - k - l ( t  - -  i +  1) k 
= ~ - k ( i -  t ) h~ -k ( t - -  i +  1)k-1], 

F(k+l~)(a) 1 

X [)~k+l(t -- r~) k exp(--)~(t - n)) 
- A k k ( t  - n) k-1 exp ( - )~ ( t  - n))],  

if i - l < t < i  

if t > n .  

Using the  equa t ion  (4.2) the  second t e r m  in the  equa t ion  (4.1) can  be  wr i t t en  as 

(4.3) - E ( H ( T ( a )  I N ( i )  = li, i = 1 . . . .  , n)) 

. . . .  ( f ( t l g ( 1 )  = h i , N ( 2 )  
h i=0  h2=0 h,~=0 

- N ( 1 )  = h ~ , . . . , N ( n )  - N ( n -  1) = h n ) )  
"2 

× l o g ( f ( t  I N ( 1 )  = h l , . . . , N ( n )  - N ( n -  1) = hn) )d t  I 
A 

x ( (exp( -n)~) )~  h~+h2+'+h'~) hi!h2!- ' . ,  h~! 
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: E "'" E F<k+hl+'"+h~-l)(a) 
h i : 0  hn=O i=1 1 \ k = 0  

x ((hi - k ) ( i -  t) h~-k-1 x ( t -  i + 1) k - k ( i -  t)h~-k(t-- i + 1 ) k - l ) )  
Y 

x logEF(k+h~+'"+h~-l)(a ) ( ( h ~ - - k ) ( i - - t ) h ~ - k - l ( t - - i + l ) k  
\ k=0 

- k(i - t)h~-k(t -- i + 1) k - l )  ~lli ~ :-h-~.v 

+ E "'" F(k+h~+...+h~)(a ) 1 
h i = 0  h,~=0 n k=0 k.T 

z [)~k+l (t - n) k exp ( -A( t  - n)) - )~kk(t - n) k-1 exp(- ,k( t  - n))] 

[5 x log F(k+h~+'"+h~)(a) 
[. k=0 

x ~ [Ak+l ( t  -- n) k exp(--)~(t - n)) -- ,~kk(t -- n) k-1 

-n))] 1 exp( -A( t  X 

.1 

From (4.3) it is clear tha t  

lira - 1 E ( H ( T ( a )  ] N(i) = li, i - -  1 , . . . ,n ) )  

= lim -1 " "" E F(k+h~+"+h~-~)(a) 
n---,oo rt 1 

h~=0 h~=0  i----1 \ k=0 

x ((hi - k ) ( i -  t ) h~ -k - l ( t - - i+  1) k -- k ( i -  t)h~-k(t-- i+  1)k-1) )  
] 

( h~__oF(k+h~+'"+h~-~)(a)(~ ) t)h~ - k - I  Z log ((hi - k ) ( i -  ( t - i +  1) k 

) ]  ] _ .Ahl+"'+hnl 

(Note tha t  the second t e rm in equation (4.3) goes to zero as n --~ oo. We use the 
n fact if al ,  a2 , . . ,  be a sequence of non-negative numbers  such tha t  a~ = ~ i = 1  a~i, 

where the a~i, i = 1 , . . . ,  n; n = 1, 2 , . . .  are non-negative and bounded such tha t  
limi,n,~-i-.oo a~i -- a, then lim~__.oo(a~/n) = a.) The first t e rm in the equation 
(4.1) can be wri t ten as 

- It(a) (t) log Ir( )(t)dt 
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: 

o o  

× log E F(k)(a))~e-~t()~t) k - )~k tk - l ke -~ t ] ]  ] 
k = 0  -ki l l dt • 

As n --* ~ ,  - ( l / n ) f o  fT(a)(t) lOgfT(a)(t)dt  ~ O. Therefore, 

i ( T ( a ) , N ( t ) )  = lim - 1 E ( H ( T ( a )  I N( i )  = l i , i  = 1 , . . . , n ) )  = b. 
n-* ~ n 

COROLLARY 4.1. Suppose F(J)(a) = 1, j = 0, 1 and = 0 for  j > 1. Then 
[(T(a) ,  N( t ) )  = O, that is, T(a)  and N( t )  are information stable. 

Corollary 4.1 simply tells that  for the system which satisfies the assumptions 
of this corollary, observing only N(t )  at discrete time points does not give any 
information about the failure time of the system. 

Example 2. Consider a white noise process X(t), t -- 0, 1 ,2 , . . .  such that  
X ( t )  is normally distributed with mean zero and variance 1. (The process X ( t )  is 
said to be a white noise process if X(0), X(1) , . . .  are independent and have com- 
mon distribution function.) From Corollary 3.1, [-I(T(a)) -- - ~ ( a ) l o g  @(a), where 
• (a) is the cumulative distribution function of a standard normal distribution. Ta- 
ble 1 gives [I(T(a))  for several values of a. From Table 1 it is clear that we have 
maximum relative entropy whenever we want to hit 0. That is, given that X ( t )  is 
observed at discrete time points we have maximum relative uncertainty about a 
system failure whose failure time is T(0) and minimum relative uncertainty about 
a system whose failure time is T(-3) .  

Table 1. 

a [I(T(a)) 
-3 .0092 
-2 .086 
-1 .29 

0 .35 
1 .15 
2 .02 
3 .0013 

Example 3. Consider a bivariate process { ( X ~ , Y ~ ) ; n  > 1} such that  
(X1,Y1), (X2,Y2),... are independent with common joint distribution function 
H(x ,  y) = P(X~ < x, Yi <_ y). Let F(x)  = P ( X i  <_ x), G(y) = P(Yi  < y), h(x,  y) 
be the joint density function of Xi and Yi, W(x, y) = fx c~ h(z ,  y)dz,  W ( x ,  y) = 
f ~  h ( z , y )dz ,  U(x ,y )  -- P ( X  > x I Y -- y) and U(x ,y )  -- P ( X  < x I Y = Y). 
Define T(x)  = Inf{n _> 1 : Xn > x}. Then we have the following theorem. 



INFORMATION THEORY AND FAILURE TIME 475 

T H E O R E M  4.2 .  

](T(x),  {Yn}) -- 0, 

that is T(x)  and {Yn} are stable. 

PROOF. From Definition (3.1) we get tha t  

(4.4) [ (T(x) ,  {Y~}) = lim 1-I(T(x), (Y1, . . . ,Y~))  
n---~ oo n 

= l i m l [  ~ - ~ P ( r ( x ) = j ) n - - + o o  --n - 
j=l 

x log(P(T(x) = j)) - E (H(T(x )  I Y1, . . . ,  Yn)) 1 • 

The first t e rm in the equation (4.4) can be wri t ten as 

(4.5) - E P(T(x)  = j) log P(T(x)  = j) 
j=l 

= - log ~'(~) - F (x )  log F(~)  = ~e(x) log ~e(~) + Y(x) log F(~)  
~(~) f'(x) 

The second te rm in the equation (4.4) can be wri t ten as 

E(H(T(x )  ] Y1 , . . . ,  Yn)) 
n 

= [ E P ( T ( x )  = j, Yx = y l , . . . , Y n  = Yn) 
J( Yl,...,yn) j = l  

× l o g P ( T ( x )  = j ] II1 = y l , . . . , y n  = y~)dy l . . 'dyn  

= ~-~ {FJ-I(x) (i~Yl/r(x,y) log~f(x,y)dy) 
j = l  

z ) + (j - 1 ) F J - 2 ( z ) F ( x )  W(x ,y ) logU(x ,y )dy  
OO 

j = n + l  

+ (j - n i 1)F j -1  (x)f '(x) log F(x) + FJ- l (x )F(x )  log/~(x) ~. 
J 
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Combining (4.4) and (4.5) we get that 

{Yn}) 

= lim --1 f f '(x) log/~(x)=+ F(x) log F(x) 
n [ F(x) 

f_~ IYd (x, y) log (f (x, y)dy + 

F(x) f?  + ~(x) ~ W(x, y)log U(n, y)dy 

+ nFn(x ) /?  

gn+ (x) 
+ 

W(x, y) log U(x, y)dy 

/~(x) logF(x) + Fn(x) logF(x)} = 0 .  

One application of Theorem 4.2 is that if we have bivariate random vector, 
where X has the cumulative distribution function F and Y has the cumulative 
distribution function Y. If we take a sequence of random sample from F and a 
sequence of random sample from G, then even though X and Y are dependent 
but still the rate of information about T(x), the first record value larger than x, 
by {Yn} is O. 

Example 4. Let X1,X2, . . .  and Y1, Y2,... be mutually independent random 
variables, the Xi having the common distribution F and Yi having the common 
distribution G. Let T(0) = Inf{n : X~ <_ Y~}. Then we have the following result: 

THEOREM 4.3. (a) I ( T ( O ) ,  {Y(n)})  = - w ,  (b) i (T(0) ,  {X(n)} )  = - a ,  where 
w = f F(y)(log F(y))dG(y) and a = f(G(y)log G(y))dF(y). 

PROOF. We will prove part (a). Similar arguments can be used to prove part 
(b). 

Using the definition (3.1) we get that 

(4.6) ](T(0), {Y(n)}) = n~c~lim --nl { E P(T(O) = j)logP(T(O) = j) 
j = l  

+ E[H(T(O) I Y1,..., Yn)] }. 

Given that R = P(X~ ~_ Yi) = f G(x)dF(x), G = 1 - G, i = 1 ,2 , . . . ,  the first 
term in the equation (4.6) can be written as 

c~ 

(4.7) E P(T(O) 
j -= l  

= j)  log P(T(O) = j) 
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o o  

= E P ( X 1  > Y 1 , . . . , X j - 1  > Y j - I , X j  <_ Yj)  
j = l  

x log(P(X1 > Y1,. . . ,Xj-1 > Yj-I ,Xj _< Yj)) 
o o  

~-- E ( 1 -  /~)J -1 /~log(1  -- R ) J - I R  

j = l  

= R(RlogR + (1 - R)log(1 - R)). 

The second term in the equation (4.6) can be written as 

(4.8) E(H(T(O) ]Y1,...,Yn)) 
o o  

= -~[wl + u] + E nR(1 - R)J-n-lw 
j = n + l  

OO 

+ E R(1-R)J-ll°gR 
j=n+l 

o o  

+ E ( J -  n -  1)R(1-  R) j- l log(1 - R) 
j = n + l  

1 1 
= - ~ ( w + u )  + nw + (1 - R) n l o g R +  (1 - R)n+l( log(1 - R ) ) ~ .  

c ~  

Here u = fo ( F ( y ) l o g F ( y ) ) d G ( y ) .  Combining (4.7) and (4.8)we get that 

[(T(0), {Yn}) = lim -II(T(O), (Y1,..., Y~)) = -w.  
n - - - ~ o o  7~ 

An application of Theorem 4.3 in reliability is that one can take Xi to be the 
strength of a system which is subjected to the stress Yi at discrete time point i, 
then T(0) is failure of the system. Theorem 4.3 says that the rate of information 
about failure time of the system from its strength and the stress are - a  and - w  
respectively. 
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