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A b s t r a c t .  In previous papers, the consequences of the "presence of fuzziness" 
in the experimental information on which statistical inferences are based were 
discussed. Thus, the intuitive assertion ((fuzziness entails a loss of information)) 
was formalized, by comparing the information in the "exact case" with that 
in the "fuzzy case". This comparison was carried out through different crite- 
ria to compare experiments (in particular, that based on the "pattern" one, 
Blackwell's sufficiency criterion). Our purpose now is slightly different, in the 
sense that we try to compare two "fuzzy cases". More precisely, the question 
we are interested in is the following: how will different "degrees of fuzziness" 
in the experimental information affect the sufficiency? In this paper, a study 
of this question is carried out by constructing an alternative criterion (equiv- 
alent to sufficiency under comparability conditions), but whose interpretation 
is more intuitive in the fuzzy case. The study is first developed for Bernoulli 
experiments, and the coherence with the axiomatic requirements for measures 
of fuzziness is also analyzed in such a situation. Then it is generalized to other 
random experiments and a simple example is examined. 

Key words and phrases: Blackwell's sufficiency, fuzziness, fuzzy information, 
random experiment, probability of a fuzzy event. 

1. Preliminary concepts 

The essential element in statistical problems is the random experiment, tha t  is 
a process by which an observation is made, resulting in an outcome tha t  cannot  be 
previously predicted. In addition, it is often assumed tha t  the experiment can be 
repeated under more or less identical conditions and there is statistical regularity. 
In such a situation, the components  of a model for a r andom experiment are: (i) the 
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identification of all experimental outcomes; (ii) the identification of all observable 
events; (iii) the assignment of probabilities to these events. 

According to the ability to observe the experimental outcomes, the traditional 
approach often admits that the observer is able to perceive the outcome after each 
experimental performance with exactness, and the observable events are state- 
ments regarding the experimental outcome, so that after the experiment has been 
conducted one can answer YES or NOT to the occurrence of each of those state- 
ments. The model associated with this "traditional experiment" is then given by 
a probability space (X,/3x, Po), 0 E O, where X is the sample space (or set of all 
possible exact outcomes), ~x is the a-field of all events of interest (so that, each 
observable event may be mathematically identified with a measurable subset of 
the sample space X), and O is the state or parameter value governing the experi- 
mental distribution Pe. Furthermore, it is usually supposed that X is a set of real 
numbers and/~x is the smallest Borel a-field on X (in other words, the elementary 
observable events are all the singletons of exact outcomes). 

1.1 Comparing traditional experiments through sufficiency 
Given two experiments, E = (X, ~x, Po), O E O, F -- (Y,f~y, Qo), 0 E O, 

whose distributions are governed by the same state of nature or parameter value 
O, the idea of comparing such experiments was introduced by Bohnenblust, Shap- 
ley and Sherman, in a private communication whose basic results are collected by 
Blackwell (1951), and developed into a theory by Blackwell (1951, 1953). Many 
preference relations to compare experiments have been then examined and con- 
nected with the previous ones (see, for instance, papers referenced in Lehmann 
(1988)). 

Among all the relations, the one based on Blackwell's sufficiency has become 
the "pattern criterion". Thus, it has a desirable intuitive meaning and it has been 
considered plausible, in all the studies concerning the topic, that any other prefer- 
ence relation has to agree with Blackwell's one (when applicable). Consequently, 
to ensure the suitability of new comparison criteria, it is very usual to analyze the 
implications of the sufficiency in terms of them. 

Blackwell's (1951, 1953) method for comparing experiments states that 

DEFINITION 1.1.1. The experiment E is sufficient for the experiment F if 
there exists a nonnegative function h on X × Y, so that  the density function 
associated with Qe with respect to a a-finite measure v on/~x × f3y is given by 

go(y)=fh(x,y)fo(x)d~(x),  for all 0 c O ,  y E Y  
J x  

where 

yh(X, y)dv(y) = 1, for all x e X 

and h is integrable with respect to x (re(x) being the density function associated 
with Pe with respect to the a-finite measure v). 

This preference relation has a very intuitive interpretation. Thus, since the 
function h (called stochastic transformation) does not depend on 0, the above 
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sufficiency condition indicates that an outcome from F could be generated from 
an observation on E and an auxiliary randomization according to h (in other 
words, to observe F does not add any probabilistic information about 8 to what 
is contained in E) .  

1.2 Modeling random experiments involving fuzziness 
In previous papers (Gil (1987, 1988a, 1988b), Gil et al. (1988)), we have an- 

alyzed an approach in which fuzziness is incorporated to the random experiment. 
The necessity for incorporating fuzziness to random experiments usually derives 
in practice from one of the two following sources of imprecision: 

(i) either the lack of precision in the observer report of experimental data  does 
not allow us to answer YES or NOT to the occurrence of events assimilable with 
measurable subsets of the sample space (and, consequently, we have to introduce 
a new type of events for which we can decide if each of them is true of false), 

(ii) or the events themselves, so that after the exact observation of the ex- 
perimental outcome is known, the observer cannot answer YES or NOT to their 
occurrence, but rather he can specify the degree with which each of them is true 
(or false). 

In both situations, to describe events associated with the random experiment, 
we can often use fuzzy subsets of the original sample space. 

A model for random experiments involving fuzziness starts with the mathe- 
matical identification of the available information or event (Okuda et al. (1978), 
Tanaka et al. (1979), Zadeh (1978)). Let E = (X,/3x, Pc), 0 C O. 

DEFINITION 1.2.1. A fuzzy event @ on X, characterized by a Borel-measur- 
able membership function #~ from X to [0, 1], where p~(x) represents the "degree 
of compatibility" of x with ~ (or degree to which ~ is satisfied when x is the 
outcome in the performance of E),  is called fuzzy information associated with the 
experiment E. 

Another relevant element to model the new situation is the assignment of 
"probabilities" to the observable (fuzzy) events. Zadeh (1968) suggested to quan- 
tify the "induced probability" of a fuzzy event as follows: 

DEFINITION 1.2.2. The probability of ~ induced by Pe is given by 

Po(e) = ~ #~(x)fo(x)du(x). 

According to Zadeh (1978), the value P0 (@) could be interpreted as the "degree 
of consistency" of the probability distribution P0 with the possibility distribution 
(Zadeh (1978)) associated with the membership function #~. 

Remark. The use of the preceding definition could be justified because of the 
two following reasons: (i) it is the most immediate extension from the non-fuzzy 
case, in which we replace the indicator function of a measurable exact observation 
or event by the membership function of a fuzzy observation or event; (ii) Zadeh's 
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definition is coherent with Le Cain's (1964, 1986) definition of the "probability" 
of bounded numerical functions in a single stage experiment. (Thus, Le Cam ex- 
tended the structure of a probability space to a weaker structure in which the class 
of indicator functions of the classical events associated with the experiment is en- 
larged to the class of bounded numerical functions from the space X. Whenever 
this last class contains the membership function of a given fuzzy event, the exten- 
sion suggested by Le Cam would coincide with the one in Zadeh's probabilistic 
definition.) 

In previous papers (Gil (1987, 1988a)), we discussed the consequences of the 
presence of fuzziness in the experimental information, by formalizing the idea that  
the "exact case" (in which fuzziness is completely absent) is "more informative" 
than the "fuzzy case". This formalization was carried out through different crite- 
ria to compare experiments, such as the one based on sufficiency (Blackwell (1951, 
1953)) and, consequently, those based on Shannon's information measure (Lind- 
ley (1956)), expected value of sample information (Raiffa and Schlaifer (1961)), 
Fisher's amount  of information (Stone (1961)), and others and represented an 
extension of studies from Ferentinos and Papaioannou (1979), Kale (1964) and 
Kullback (1968) for grouped data. 

The aim of this paper is to develop a similar s tudy by comparing through 
sufficiency two situations, associated with the same population, in both of which 
different "degrees of fuzziness" can be present. Broadly speaking, we want to 
formalize the idea that  the "sharper" an observation the "more informative" (ac- 
cording to sufficiency) it is. The comparison through sufficiency in the fuzzy case 
will not be as immediate to interpret as in the non-fuzzy case (since the frame- 
work of the first one not only contains probabilities, but  membership degrees). 
Nevertheless, we are next going to establish an equivalent criterion much easier to 
interpret when fuzziness is involved in random experiments. Such an equivalence 
allows us to connect sufficiency and fuzziness (as intended, for instance, by Klir 
and Folger (1988)), under some conditions. 

2. Equivalent comparison of experiments involving fuzziness 

To connect fuzziness in the experimental observations or events with the prob- 
abilisitic notion of sufficiency, it should be first noted that  the degree of fuzziness 
of a fuzzy set is usually expressed (Klir and Folger (1988)), in the most natu- 
ral way, in terms of the lack of distinction between the set and its complement, 
since the less a set differs from its complement, the fuzzier it is. (Although the 
definition of the complement of a fuzzy set is not unique, we herein will employ 
that  most commonly used, the fuzzy set @c described by the membership function 
#~(x)  -- 1 - #~(x), for all x E X.) Then, the degree of fuzziness of the fuzzy in- 
formation ~ could be interpreted as the lack of distinction in the fuzzy 2-partition 
(Bezdek (1987)), X = {@, g~}- 

On the other hand, on the basis of this fuzzy 2-partition and Zadeh's prob- 
abilitistic definition, (Definition 1.2.2) it is possible to induce a new probability 
space, g = (X, ~(X), Pe), 0 C O (where ~-(X) = parts of X), which may be regarded 
as a "probability space induced by X". 
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Let E = (X,/3x,Po), 0 E O, be a random experiment and let ~ and ~' de- 
note two fuzzy observations associated with E.  Let £ = (X, gr(X),P0), $'  = 
(X,.T(Xt),Po), 0 ~ O, where X = {~,~c}, Xt = {~,,~tc}. Then, the notion of 
sufficiency may be immediately applied as follows: 

DEFINITION 2.1. We will say that  $ is sufficient for C' if there exists a non- 
negative function h on ~( × X ~ such that  

= + 

P0(  'c) = + c, 

where h(~, ~') + h(~, ~,c) = 1, h(~ c, ~') + h(~ c, ~,c) = 1. 

Obviously, the conditions concerning P0 (e') and 79o (~,c) are equivalent (so, we 
could remove one of them in the above definition). 

As we have previously commented, the interpretation of this definition is not 
intuitive. 

On the other hand, the question of how to measure the fuzziness of a particular 
fuzzy observation (or, in general, of a fuzzy subset) has been exhaustively studied 
in the literature of Fuzzy Sets Theory (see, for instance, Klir and Folger (1988)). 
Formally, 

DEFINITION 2.2. A measure of fuzziness is a real function f defined on ~ ( X )  
(set of all fuzzy subsets of X) satisfying the following requirements: 

Axiom 1. f(~) = 0 if and only if ~ is a crisp set. 
Axiom 2. If ~, ~' E ~ ( X )  and ~ is "sharper" than ~', then f(~) _< f(~'). 
Axiom 3. f(~) assumes the maximum value if and only if ~ is "maximally 

fuzzy". 
The notions "sharper" and "maximally fuzzy" above are usually interpreted 

as follows: 
(1) ~ is intended as "sharper" than ~t if #~(x) <_ #~,(x) for #~,(x) <_ 1/2, and 

#~(x) >_ #~,(x) for #~,(x) > 1/2, for all x C Z .  
(2) ~ is intended as "maximally fuzzy" if and only if #~(x) -- 1/2, for all 

x E X .  

As the two fuzzy observations we have just compared in Definition 2.1 are 
associated with the same experiment (and, consequently, with the same proba- 
bilistic information), the comparison via sufficiency must be mainly dependent on 
the membership functions of those observations. We are now going to formalize 
this assertion. Thus, we first consider the simplest case in which the referential 
experiment is Bernoulli. 

2.1 Suffciency and fuzziness in Bernoulli experiments 
In particular, when E = (X, 3x ,  P0), ~ C O, is a Bernoulli experiment, it in- 

volves only two outcomes (often coded by the real values 0 and 1). The probability 
measure is then defined by P0(0) = 1 - 8 ,  P0(1) -- 0, O C [0, 1]. Many experiments 
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are of this type: a vaccine is effective or it is not; a patient has a symptom or does 
not have it; a pathological condition is present or absent. 

A fuzzy observation or event ~ associated with the Bernoulli experiment E 
may be described by means of a pair (#o, #1), where #0 = #~(0) and #1 = #~(1). 
The induced "probability" in this case would be given by P~(~) = #o + 0(It1 - # o ) .  
Examples of fuzzy observations or events associated with a Bernoulli experiment 
are, for instance, the following ones: a given patient sometimes cannot be diag- 
nosed as having a particular malady or not, but having it with a specified degree; 
some organisms cannot be classified as belonging to a certain species or not, but 
rather belonging to it with a specified degree. 

The following theorem establishes an equivalent criterion to Blackwell's suffi- 
ciency, under comparability conditions and for Bernoulli experiments. 

THEOREM 2.1. Let E = (X, /Jx ,Ps) ,  0 E O, be a Bernoulli experiment and 
let ~ and ~' denote two fuzzy observations associated with E.  Let E = (X, ~'(X), Pe), 
E' = (X',,~(X'), 7)e), ~ e O, where X = {e, ~c}, X' = {~', ~,c}. Then, if $ and E' 
are comparable, we have 

E is sufficient for C' i f  and only if 

(2.1) I , i  - -< 1 ,1  - , o l  

(where #o -= #~(0), #1 = #~(1) and #~o = #~,(0) and #~ = tte,(1)). 

The interpretation of this alternative comparison is obvious, since it means 
that #~ "discriminates" more between 0 and 1 than #~,. We are now going to 
connect it with the measurement of fuzziness. 

To examine the relationships between sufficiency and fuzziness (in the sense of 
Definition 2.2) we have previously to assume some particular constraints. Although 
theoretically we have 0 _< #0 ~ 1, 0 _< #1 _~ 1, we can often constraint our study 
to cases in which 0 < #0 _< 1/2 and 1/2 < ~t I ~ 1 (or 1/2 < #0 _< 1 and 
0 _< Pl _< 1/2). Thus, in the observation from a Bernoulli trial, one could: (a) 
obtain quite fuzzy information so that the outcomes 0 and 1 are equally compatible 
with the information (that could be often represented by #o = ttl = 1/2); (b) 
obtain fuzzy information so that 0 is less compatible with the information than 1 
(that could be often represented by 0 _< #0 < 1/2 and 1/2 < ~1 <~ 1); (C) obtain 
fuzzy information so that 0 is more compatible with the information than 1 (that 
could be often represented by 1/2 < #o _~ 1 and 0 _~ Pl < 1/2). 

On the basis of Theorem 2.1, and under the preceding assumptions, the follow- 
ing results state that the comparison of fuzzy observations by means of the notion 
of sufficiency is coherent with the axiomatic requirements that every measure of 
fuzziness must satisfy. 

THEOREM 2.2. Let E = (X, ~x,  Pe), ~ E O, be a random experiment and let 
and ~t denote two fuzzy observations associated with E.  Let E = (X, IF(X), 7~e), 

E' = (X' ,~(X') ,Pe),  0 E O, where X = {~,~c}, X, = {~,, ~,c}. Then, i f sgn{#~(0)-  
1/2} ~ sgn{#~(1) - 1/2}, and sgn{#~,(0) - 1/2} ~ sgn{#~,(1) - 1/2}, we have 
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(i) if ~ is a crisp set, then g is sufficient for $~, whatever the fuzzy set ~t may 
be (that is, exact experimental information is always sufficient for fuzzy experi- 
mental information); 

(ii) if ~ is sharper than ~t, then g is sufficient for St; 
(iii) if ~t is maximally fuzzy, then g is sufficient for gt (that is, fuzzy experi- 

mental information is always sufficient for uniformly fuzzy information). 

The result (ii) in Theorem 2.2 is now illustrated by means of an example: 

Example. Consider a population of mice, a fraction 0 of which has a character 
C. 

Assume that the character C may be recognized through two different symp- 
toms A and B, each one of which determines the presence of character C. 

However, suppose that  after examining each mouse for presence of C, the 
accessible mechanisms of detection of A and B do not allow us to state them 
exactly, but it is only possible to conclude ~ -- "the mouse has A quite sharply" 
or l) = "the mouse seems more or less to have B". If these imprecise propositions 
are assimilated with the fuzzy events characterized by the membership functions 
#a(1) = 0.9, #a(0) = 0.2, #8(1) = 0.6, #~,(0) -- 0.3 (quantifying the degree to 
which the available propositions agree with having or not each symptom, where 
0 = C is absent, 1 = C is present), and we are interested in drawing conclusions 
about 0, it is preferred to try to detect A than B. Thus, if we define h(5, b) = 
45/7, h(~ c, b) = 15/7, then P0(b) = h(~, l));o0(~) + h(gt c, [~)Po(hC), whence g = 
(A,.T(A),Po), 0 ~ O = [0,1] (A = {a, ac}),  is sufficient for g' = (/3,.T(/3),Po), 
0 e o = [0 ,1 ]  = 

2.2 Sufficiency and fuzziness in other experiments 
We are now going to extend previous results to the case of other random ex- 

periments. Difficulties in the extension of this study for other experiments arise 
because of the non-comparability of the fuzzy data, unless some restricted condi- 
tions are satisfied. Thus, the generalization of the present study to experiments 
like binomial, Pascal, Poisson, exponential or normal ones indicates that two fuzzy 
data associated with the same experiment become comparable only in a special 
situation (according to which the membership function has to be uniquely de- 
termined up to a particular linear transformation). We now illustrate such an 
assertion by examining the case of binomial experiments. 

Let E = ( X, fix, Po ), 0 E 0 be a binomial experiment, involving n + l  outcomes 
(assimilated with the real values 0, 1, 2 . . . .  , n). The probability measure is then 

defined by Po(k) = ( k ) Ok(1- o)n-k, k = O, 1 ,2 , . . . , n  and @ c [0,1 ]. Many 

experiments are of this type: to observe number of defective pieces in a sample of 
eighteen; to count the number of people having a certain contagious disease in a 
sample of twenty five people exposed to that  disease, etc. 

A fuzzy observation or event ~ associated with the binomial experiment E may 
be described by means of an (n + 1)-tuple (#o, #1, #2 , - - . ,  #n), where #k = #e(k). 
The induced "probability" in this ease would be given by Po(~) = ~ k  #kPo(k). 
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Examples of fuzzy observations or events associated with a binomial experiment 
are, for instance, the following ones: the number of defective pieces in the sample 
is moderate; there are many people in the sample having the contagious disease, 
etc. 

By using the inversion formula theorem of the Fourier integral (see Papoulis 
(1962)), we can obtain the following result, establishing conditions of applicability 
for the sufficiency criterion (comparability conditions) and extending the equiva- 
lent criterion in Theorem 2.1. 

THEOREM 2.3. Let E = ( X , ~ x , P e ) ,  8 E O, be a binomial experiment and 
let ~ and ~' denote two fuzzy observations associated with E.  Let $ = (X, ~(X), Pe), 
E' = (X', ~(X'), Pe), 0 e O, where X = {e, e~}, X' = {e', ~'~}. Then, 

(i) E and E' are comparable if and only if  there exist a, fl E [0, 1] (independent 
of 8) such that 

#~,(x) = ~ + (a - fl)tt~(x), for all x E X and, 

(ii) if  E and E ~ are comparable, then we have that E is suJficient .for Er if  and 
only if  

(2.2) I~'r - ~',1 < I ~  - ~sl, f o r a l l  r ,s  E {0, 1 , 2 , . . . , n }  

(where #k = #e(k) and p~ = pe,(k)). 

The preceding result could analogously be established for other random experi- 
ments. The connections with fuzziness stated in Theorem 2.2 are not so immediate 
to extend because of the difficulties in generalizing the conditions assumed before 
it. Nevertheless, due to the shape of membership functions that are employed in 
practice, when both, sufficiency and fuzziness comparisons are applicable, they 
lead usually to the same preference relation. 

3. Illustrative example 

To illustrate the results in Section 2, we are now going to consider the following 
situation: 

Example. Suppose that the time of attention (in minutes) to a concrete game 
in a population of ten-year-old children has an exponential distribution with un- 
known parameter 0 (8 = inverse of the population mean time). A psychologist 
wants to draw conclusions about 8, but as the loss of interest in a game does not 
usually happen in an instantaneous way, he cannot measure the time of attention 
exactly. Assume that he expresses the perception of the outcome after a measure- 
ment by means of propositions such as "too much time", or "around 20 minutes", 
or '% moderate time". 

The imprecision associated with these propositions is non-probabilistic in na- 
ture (since it means uncertainty regarding concepts or definition of events, not re- 
garding occurrence of exact events), but it could be easily characterized by means 
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10 20 30 

Fig. 1. 

X 
(minutes) 

Membership function of the fuzzy information ~ = "around 20 minutes". 

of fuzzy events. So, the proposition ~ = "around 20 minutes" could be assimi- 
lated with the fuzzy information ~ characterized, for instance, by the membership 
function #~(x) = (x - 10)/10 if x E (10, 20], = (30 - x)/10 if x G (20, 30), = 0 
otherwise (see Fig. 1). 

Figure 2 shows some of the fuzzy observations or events that can be compared 
(and consequently, whose complements can be also compared) with the fuzzy in- 
formation @ = "around 20 minutes" through Blackwell's sufficiency. For all of 
them ~ is sufficient. 

pt@ 

 iii !i!:, 
................ ¢ ~ : ~ ! ; ~  . :  i; ~ :i~: ~ @ / /  ................... 

I 

X 
10 20 30 (minutes) 

Fig. 2. Some fuzzy observations (~, ~/i and ~m) for which the fuzzy information ~ = 
"around 20 minutes" is sufficient. 

Figure 3 shows some of the fuzzy observations or events that  can be compared 
with the fuzzy information ~ --- "around 20 minutes" through fuzziness (in the 
sense of Definition 2.2). @ is sharper than each of them. 

Finally, Fig. 4 shows a situation in which both, sufficiency and fuzziness, are 
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~LL~,tt 

X 

(minutes) 

Fig. 3. Some fuzzy observations ($', and Srt) for which the fuzzy information $ = 
"around 20 minutes" is sharper than each of them. 

.5 

l I I 

10 20 30 

X 

(minutes) 

Fig. 4. A fuzzy observation (~l) for which the fuzzy information ~ = "around 20 min- 
utes" is sufficient and sharper than it. 

applicable and lead to coherent conclusions (~ sufficient for ~', and ~ sharper than 

4. Concluding remarks 

As in the non-fuzzy case, the inconveniences in connecting directly sufficiency 
and fuzziness (following the ideas in Theorem 2.2) for general experiments are due, 
in part, because of non-comparability problems. 

It should be hence interesting to analyze in the near future questions sim- 
ilar to those discussed in this paper, but based on comparisons avoiding non- 
comparability inconveniences (that is, establishing complete preorderings) such 
as those based on probabilistic information measures (for instance, the expected 
Shannon's amount of information, for a particular prior distribution) instead of 
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sufficiency, and the ones based on measures of fuzziness (such as the De Luca and 
Termini non-probabilistic entropy (1972)). 
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