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A b s t r a c t .  Let {(X~, ~)} be a sequence of independent random vectors where 
Xi, conditional on ~,  has the probability density of the form f ( x  I Oi) = 
u(x)C(Oi)exp(-x/~i)  and the unobservable t~ are i.i.d, according to an un- 
known G in some class 6 of prior distributions on O, a subset of {0 > 0 I C(0) = 

( f  u(x) exp(-x/0)dx)-I > 0}. For a S ( X I , . . ,  X~, Xn+l)-measurable func- 

tion Cn, let Rn = E(¢n - On+l) 2 denote the Bayes risk of ¢~ and let R(G) 
denote the infimum Bayes risk with respect to G. For each integer s > 1 
we exhibit a class of S (X1 , . . . ,  Xn, Xn+l)-measurable functions Cn such that 
for 5 in [s-1,1], con -2~/(1+2~) < R ~ ( ¢ ~ , G ) -  R(G) < cln -2(~-1)/(1+2~) un- 
der certain conditions on u and G. No assumptions on the form or smooth- 
ness of u is made, however. Examples of functions u, including one with 
infinitely many discontinuities, are given for which our conditions reduce to 
some moment conditions on G. When O is bounded, for each integer s > 1 
£ ( X 1 , . . . ,  Xn, X~+l)-measurable functions ¢~ are exhibited such that for 6 in 
[2/s, 1], c'on -2~/(1+2s) <_ R(¢~, G) - R(G) ~_ c'l n -2~/(1+2~). Examples of func- 
tions u and class ~ are given where the above lower and upper bounds are 
achieved. 
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1. Introduction, notation and preliminaries 

In empirical Bayes (EB) context (as introduced by Robbins (1955) and later 
developed in great detail by Johns (1957), Robbins (1963, 1964), Samuel (1963), 
Johns and Van Ryzin (1971, 1972), among others), one considers a sequence of 
statistical problems having the same generic structure being possessed by what is 
called the component problem. In the component problem there are a parameter 
space O, a measurable space (O, ~) ,  where $" is the Borel a-field of subsets of 
O, a set G of all prior distributions on (O, f ) ,  a family of probability measures 
P = {P(" I 0) I 0 E O} over a measurable space (X, B), where B is the Borel a-field 
of subsets of X, and there are an action space .4 and a loss function L > 0 on 
A × O. A (X, B)-measurable function ¢ into A, which decides about a 0 in O based 
on a random observation X from P(. I 0), results in a (O, $-)-measurable expected 
loss (risk) function R(¢, 0) = f L(¢(x), O)dP(x I O) and an overall risk (Bayes risk) 
against a G in G, R(¢, G) = f R(¢, O)dG(O). For a G in G, a procedure ¢ = ¢c  
which achieve the Bayes envelope against G, R(G) = mine R(¢, G), whenever the 
latter exists, is called Bayes optimal procedure versus G. 

In an EB context, G remains unknown at every stage in the sequence (and 
therefore the optimal procedure ¢c  is not available for use at any stage), and at the 
(n + 1)-st stage random observations X1 , . . . ,  Xn from the previous n stages and 
X~+I = X from the present stage, where Xi ~ P(. I 8i) and 8],82, . . .  i.i.d. ~ G, 
are used to exhibit a Cn(X) = Cn(X1 , . . . ,Xn ,X) ,  where ¢n is a (xn+I,Bn+I)-  
measurable function into ~4, such that Cn is, in Bayes risk, as good as ¢c  at least for 
large n. Such a function, called EB procedure, is said to be asymptotically optimal 
(a.o.) or a.o. with a rate n -~ for some ~/> 0 whenever R(¢n, G) - RiG ) = o(1) or 
O(n -~) as n ~ oc. We assume that in the component problem there is a a-finite 
measure # on (X, B) which dominates each P(. I 0), 8 E O, and is dominated by 
the Lebesgue measure on (X, B). Let p(x I 8) and uix ) denote the Radon-Nikodym 
derivatives dP(x l S)/d#(x ) and dtt(x)/dx respectively. 

Empirical Bayes estimation problem where O, .4 and X are subsets of the real 
line, L(8, a) = (8 - a) 2 and p(. I 8) is of the form p(x I 8) = C(8) exp(Sx), (i.e. 
the EB squared error loss estimation (SELE) for the usual Lebesgue exponential 
family f ( x  I 8) = u(x)C(8)exp(Sx)),  has been considered by Maritz (1969), Han- 
nan and Macky (1971), Yu (1971), Maritz and Lwin (1975), Lin (1975), O'Bryan 
and Susarla (1976) and Singh (1976, 1979), among others. EB SELE involv- 
ing some non-regular family of densities has been considered, among others, by 
Fox (1978), Prasad and Singh (1990) and Singh and Prasad (1991). In this pa- 
per we consider SELE in an equally important exponential family, but has re- 
ceived very little attention, if at all, in the EB context, namely the family, with 
P(" I 8) given by p(x ] 8) = C(8)exp( -x /8 )  with O being a subset of the natu- 

ral parameter space {8 > 0 I ( f  exPi-x /8)dp(x))  -1 > 0}, and X and A being 
subsets of the real line. This family includes the usual simple scale exponen- 
tial density f ( x  I 0) = u(x)p(x [ 0) = 0 - l e x p ( - x / 8 ) I ( x  > 0), and the gamma 
density f (  x 18) = (r(~))-lx~-10-~exp(-x I 8)!(x > 0 ) ( m o s t  widely used 
for statistical modellings in engineering, medical sciences, demography, reliabil- 
ity theory and survival analysis). The N(0, 0/2)-density with X = y2 where 
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Y ~ N(0, 0/2) also falls in this category. For integers s > 0 we exhibit EB esti- 
mators ¢n = ¢n (X1 , . . . ,  Xn, X) such that for 5 in [s -1, 1], 

(1.1) cn -28/(1+2~) < R(¢n, G) - R(G) <_ ctn -2(58-1)/(1+28), 

where c and c' are positive constants, the r.h.s, inequality holds for n > 1 uniformly 
in G satisfying certain conditions, and the 1.h.s. inequality holds at each degenerate 
G and for all n sufficiently large. If O is bounded, then for integers s > 0 we have 
estimators ¢n such that for 6 in [s -1, 1], 

(1.1)' cn -28/0+28) <_ R(¢n, G) - R(G) < ct n -268/(1+28). 

We have made no assumption on the form or on smoothness, of whatsoever nature, 
on u. Thus ¢n are exhibited with rates arbitrarily close to O(n-1).  As noted in 
Singh (1976, 1979), a rate O(n -1) has not yet been established in any EB problem 
involving a Lebesgue density whatever may be G. However, a rate of the order 
O(exp(-cn))  for some constant c > 0 is established by Liang (1988) for a two- 
action linear loss hypothesis testing problem involving discrete exponential family. 

In Section 2 we give a class of EB estimators ¢n. In Sections 3 and 5 we 
obtain respectively the upper and lower bounds in (1.1). In Section 4 we give 
examples of some important families, including one with u having infinitely many 
discontinuities, where conditions for (1.1) and (1.1)' are satisfied. We conclude the 
paper with a few remarks and some further results in Section 5. 

2. Proposed class of EB estimators ¢n 

2.1 Introduction and reduction of problem 
Throughout the remainder of this paper, we assume that X and .A are subsets 

of the nonnegative real line, O is a subset of {0 > 0 [ C(O) = ( f  exp( -x /O)d#  

• ( X ) )  - 1  > 0}, L(O, a) = (0 - a) 2, p(x [ O) = C(O)exp(-x/O),  u(x) = d#(x) /dx,  
f ( x  I O) = u(x)p(x I O) and G is the class of all probability measures G on (O, Y) 
for which ¢G exists and R(G) < oc. Since in the EB context, 01 , . . . ,  0n, 0n+l -- 0 
are i.i.d, with a common distribution G in G, and X 1 , . . . ,  Xn, Xn+l = X are i.i.d. 
with common marginal p.d.f, f ( x )  = f f ( x  ] O)dG(O), the Bayes optimal estimator 
versus G in the EB context at (n+l ) -s t  stage, n _> 1, remains the same as in any one 
component problem, i.e. ¢G(X1, . . . ,  Xn, X) = E(O I X1, . . . , X,~; X)  = E(O [ X)  -- 
Ca(X)  for n > 1. Further, with p(.) = f p ( .  [ O)dG(O) and f( . )  = f f ( .  [ O)dG(O), 
it is easy to see that 

(2.1) Co(x) = E(O [ X )  = ¢ ( X ) / p ( X )  

with ¢ defined by 

// ( 2 . 2 )  = p,  

where E stands for the expectation operator, (here and wherever possible) the 
argument of integration is indicated by omission and the ratio 0/0 is defined to 
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be 0. Further, it is well known (e.g. see Singh (1979), Lemma 2.1) that if ¢G 
exists and R(G) < oc, then for any $ ( X 1 , . . . ,  Xn, X)-measurable mapping ¢* = 
¢*(X1, . . .  ,X~,X) into A, 

(2.3) R(¢*, G) - R(G) = E(¢* - Ca) 2. 

It may be noted that E(02) < c~ is sufficient for the finiteness of R(G) and for 
(2.3), but not necessary (e.g. see Remark 2.1 of Singh (1979)). 

Thus, in view of (2.3), the search for an a.o. estimator reduces to the search for 
a mean square consistent estimator of ¢c,  which, in view of (2.1), can be achieved 
if p and ¢ are estimated appropriately. 

2.2 Estimation of ¢ and p 
For an event A, let I(A) denote the indicator function of A. Since ~b(x) = 

E[I(X >_ x, u(X) > O)/u(X)], we propose to estimate ¢ by its natural estimator 

n 

(2.4) = n -1   [z(xj > x, (xj) > 
j = I  

To estimate the p-density p, we take the estimators for a #-density considered 
in Singh (1974, 1978b, 1981), which we re-introduce briefly for the convenience of 
our readers as well as to facilitate our proofs here. Let s > 0 be a fixed integer and 
let/C~ be the class of all Borel-measurable real valued bounded function functions 
K vanishing off (0, 1) such that f yiK(y) = 1 or 0 according as i = 0 or 1 , . . . ,  s -  1. 
(For examples of such functions, see Singh (1977a, 1979).) Then for K in K:s, the 
estimators of p from Singh (1974, 1978b) are given by 

(2.5) pn(x) = (nh) -1 ~ [K ( X ~ -  x )  I(u(Xj) > O)/u(Xj)] 
j = l  

where 0 < h = h(n) ~ 0 as n ~ oc is the usual window-width function used 
in kernel type density estimators. It follows from Singh's general results applied 
to our special density p that pn are mean square as well as strongly consistent 
estimators for p. Though speed of convergence for the mean square consistency of 
Pn can be obtained from Singh (1974, 1978b) but, since we are dealing with a very 
special density p(x) = f C(O) exp(-x/9)dG(9), we can give a more specific bound 
for the mean square errors of Pn in Theorem 2.1 below. Let M denote the bound 
for K in pn, and for an ~ > 0 let 

(2.6) 

u~(x) = inf{u(t) I x < t < x + e}, v~(x) = p(x)/u~(x), 

p~S)(x) = sup{p (s)(t) I x < t < x + e} and 

// = 

Remark 2.1. Since p(x) is a decreasing function of x, from Theorem 2.9 of 

Lehmann (1959), p!S)(x) < E(O -s I X = x)p(x) for all e > 0. 
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THEOREM 2.1. For every 0 < t < 2, 

(2.7) 
(2.s) 

E]¢n - ¢ ] t  < (n-lw)t/2 and 
t-1 t s_(s)~t EIPn - PIt < 2 M [{h "h ~ + { n - l h - l v h }  ~/2] 

where the argument x in ¢~, pn, ¢, p, w, Ph and Vh i8 indicated by omission. 

PROOF. Since Cn is an unbiased estimator of ¢ and var(¢n) = n -1 var[I(X1 
_> x, U(Xl) > O)/u(X1)] is bounded by n -1 f~(1/u2(y)) f (y)dy = n-lw(x) ,  (2.7) 
follows from Hblder inequality. Further from the arguments used for (3.6) of Singh 
(1977a) it follows that  

(2.9) ]Ep,~ - p[ < MhSp (s) 
- -  h " 

Also, since X1, . . . ,  Xn are i.i.d, with p.d.f, f -- up, 

(2.10) var(p,~) = (nh2)-lvar [K ( X l h X )  I(u(XO > O)/u(X1)] 

< n - l h  -1 / K2(y)(p(x + hy)/u(x + hy))dy 

< n - lh - lM2vh  

since p(.) is a decreasing function. The proof of (2.8) is complete by cr-inequality 
followed by (2.9), H61der inequality and (2.10). [] 

Taking t = 2 in Theorem 2.1, we see that ¢~ is mean square error (and hence 
in probability) consistent estimator of ¢, and if h --* 0 and nh ~ c¢ as n ~ ~ ,  
then same holds with p~ as an estimator of p. 

Throughout the remainder of this paper we take s > 1 a fixed integer, and for 
a positive constant 0 < co < 1, we take h = co n-1/(1+2s). 

2.3 Empirical Bayes estimators Cn 
Since Cn and pn are consistent estimators of ¢ and p respectively, from (2.1) 

it is natural to estimate CG by Cn/Pn. However, to ensure the existence of our 
estimator, our proposed EB estimator in the (n+  1)-st component problem is given 
by 

(2.11) Cn(X) = [¢n(x)/p.(X)]clh-1 

where cl > 0 is an arbitrary finite constant and JaiL is defined as - L ,  a or L 
depending on whether a < - L ,  lal < L or a > L. 
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3. An upper bound for [R(¢n, G) - R(G)] and rates of asymptotic optimality 

3.1 The main result 
In Theorem 3.1 below we obtain an upper bound for R(¢n, G) - R(G) which 

holds uniformly in G E 6 satisfying certain conditions. First we state without 
proof the following lemma due to Singh (1974, 1977b), which facilitates the proof 
of Theorem 3.1. 

LEMMA 3.1. For every pair (Y, Y') of random variables and for real numbers 
y ¢ O ,  y ' , O < L <  oc andO< 7<_2, 

(3.1) E (  Y ' -  . ~ I A L ) 7 < 2 1 y l  - ~ { E I Y ' - y ' I ~ + ( ~  + L )  7 E , Y - y l  "y} ~-  _ 

THEOREM 3.1. For an integer s >_ 1 and for some A in [(2/s), 2] and a finite 
ko, let ~ be the class of all probability measures G on (O, jr) such that 

( A O )  /O~dG(O) < ko, 

/ f ~  ~ ~/2 
(Ai) / ~]x (p/u)) p ' -~(x)u(x)dx<ko,  

(h2) /pl-X(x)(p~S)(x))Xu(x)dx <_ ko for some e > 0 and 

(A3) ./'u[;~-2(x)u(x)pl-(X/2)(x)dx <_ ko for some e > O, 

then there exists a finite constant c' such that 

(3.2) sup{R(¢n, G) - R(G)} ~ c'n -(~s-2)/0+28) 
GE~ 

for each n > 1. 

Remark 3.1. Since Theorem 3.1 deals with a general Lebesgue exponential 
family u(x)C(O) exp(-x/O)I(x > 0), with no assumptions whatsoever on the form 
or smoothness of u, it is difficult to see how (A1), (A2) or (A3) relate to any 
moment condition on G. We conjecture that no specific moment conditions on G 
can be provided underwhich results of the sort (3.2) hold for the general function u. 
We will see later that for some most widely used exponential families, (A0)-(A3) 
reduce simply to some moment conditions on G. 

PROOF OF THEOREM 3.1. With cl as in (2.11), let An = clh -1. It is easy 
to see that (2.1) and (2.11) followed by (3.1), (2.7) and (2.8) give, for 0 < A <_ 2, 

(3.3) ElCn - ¢cI2I(¢~ ~ An) 

p--~ - P AAn I(V <_ Anp) 

2 - ) ,  - ) ,  - 1  ) , /2 <_ 2A n p [(n w) 

+ (2An))'2)'-lM)'{(hSP(h~)))' + (n-lh-lvh)M2}] 
,x/2ll = c2n-(As-2)/(l+2s)~3-)~{wA/2 -}- (p(hs)) A .q-V h JJ 
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since A n : Cl h -1  and h = Co n-1 / ( l+2s) .  Consequently, for 0 < A < 2, 

(3.4) E I ¢ . ( X )  - ¢c(X)I2I(¢G(X) < An) 

= c2n-(~-2)/(1+ 2~) [E{p-;~(X)w~/2(X)} 

+ E{p -~ (X)(p(h ~) (X)) ~ } + E{p -  ~ (X)(Vh (X)) ~/2 }]. 

Now, since X has the unconditional p.d.f, up = f ,  it can be easily verified that  
the quanti ty in the square bracket on the r.h.s, of (3.4) reduces to sum of the 
three integrals in (A1), (A2) and (A3) above by choosing Co < e. Hence, from our 
hypotheses (A1)-(A3), the 1.h.s. of (3.3) is no more than c3n -(~-2)/(1+2s) for a 
finite constant c3. 

Now, since ¢~ < An, H51der inequality followed by Markov inequality gives 

(3.5) E I ¢ ~ ( X )  - ¢c(X)12I(¢c(X) > An) 
<_ E¢~(X)I(¢c(X) > An) 
~ (E(¢G(X)) 2tl ) 1//~;1 {E(¢G(X))<)~s-2)t2 }l/t2A-~(~,~-2) 

where tl  > 1, t2 > 1 are such t h a t  t l  1 -I- t21 --  1. Taking A > (2/s) and tl = )~s/2 
in the above inequality and noting that  An = clh -1, we see from (A0) that  the 
r.h.s, of (3.5) is no more than c'3 n-(:~8-2)/(1+2s) for some finite constant c~. Thus 
we concluded that  

(3.6) E I ¢ ~ ( X )  - ¢ c ( X ) l  2 _ cln-(~s-2)/(1+2s) 
for some finite constant c'. Now the proof of theorem is complete from the identity 
(2.3). [] 

3.2 Examples and subtheorems 
We now give examples of some important  exponential families where all con- 

ditions of Theorem 3.2 reduce to some moment conditions on G. We first prove 
the following lemma. 

LEMMA 3.2. For all k > 0 and for all (1 + k) -1 < t < 1, 

(3.7) ( l o C I )  <_ (EX )t + l. 

o o  c ~  t 
PROOF. Writing f0 f t  a s I l + I 2 ,  w h e r e I l - f 0  l f t  a n d / 2 = f ~  f , w e s e e  

by H51der inequality that  I1 _< ( f01 f ) t  _< 1 and 

I2 =/1 z-kt(xkf)t  <_ xkf  < (EXk) t since 1 > t > (1 + k) -1.  [] 
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3.2.1. 

Example 3.1. Our first example is a simple, but  quite widely applied, expo- 
nential family, namely, f ( x  I O) = O-le-X/OI(x > 0, 0 > 0) where the conditions 
of Theorem 3.1 simply reduce to two moment  conditions on G. 

SUBTHEOREM 3.1. Let ~ be the class of all probability measures G on (0, ,~),  
where 0 is a subset of (O, oc), such that for some integer s > 1, (2/s)  < A < 
2(1 - s -1)  and a finite ko, 

(3.8) / O~SdG(O) <_ ko and / O-2S-ldG(O) <_ ko. 

If the c-finite measure # on (X, B), where X = (0, oc), is itself the Lebesgue 
measure on X,  then 

(3.9) sup(R(¢~ ,  G) - R(G)) <_ kin -(~-2)/(1+2s) 
GEG 

for some finite constant kl. 

PROOf.  Notice that  if # is the Lebesgue measure on (0, co), then dlz(x) = dx, 
u(x) = 1, C(O) = ( f ~  exp(-x/O)dx) -1 =/9 -1 and for 0 in O, 

(3.10) f ( x  { O) = p(x { O) = 0 -1 exp( -x /O)I (x  > 0). 

Hence f(x) = p(x) = f p(x I O)dC(O). Now, since f: '  p = f exp(-x/O)dC(O), by 
Hhlder inequality, for a = As/(1 + As), 

. P (f )l-a ~ < pC~(x) 0 a/(1-a) exp(-x/O)dG(O) <_ pa(x)(EO:'~) 1-c'. 

Therefore, in view of (3.8) the integral in (A1) is bounded  by a constant  t imes 

(3.11) f o ~ P l - ~ O - ~ / 2 ) = f o ~ p  t 

where t = 1 - A(1 - a/2) = 1 - A(As + 2)(2 + 2As) -1. Since 1 < t -1 < (1 + As) 
from the condition on A and the identity E X  ~s = O(EOAS), the integral in (3.11) 
is finite by Lemma 3.2. Also, since 

Ip¢')(t)l = f o-'-" exp(-x/O)da(O), 

by Hhlder inequality 

p~S)(x) = ( /  O-(2s+n)dG(O)) l /2f l /2(x) .  
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Therefore in view of (3.8) to see (A2) holds, it suffices to show that  f p l -~ /2  < ~ .  
But  this as well as (A3) follows from Lemma 3.2 since 1 < /~ < 2 - (2/s)  and 
E X  ~ = O(EO~8). Hence by Theorem 3.1 we get (3.9). [] 

3.2.2. 

Example 3.2. Here we give an example of a scale exponential  family which 
has a variety of applications, part icularly in survival analysis, reliability theory, 
quali ty control, and statistical modellings in demographic and medical sciences. 

SUBTHEOREM 3.2. Let the a-finite measure # on (X, 13), where X = (0, oc), 
be such that the Randon-Nikodym derivation of g with respect to Lebesgue measure 
on rY is x~-l  I (x  > 0), for some 7 > 1, let ~ be the class of all probability measures 
G on (O, 9r), where 0 is a subset of (0, cx)), such that for some integer s > 1, 
(2/s)  < A < 2(1 - s -1) and finite ko, 

(3.12) 

f O~SdG(O) <_ ko, /O-7+l+~dG(O) <_ ko 

f O-~(~+~)dG(O) <_ ko if 1 < 7 -< 2, and 

f O-'Y(l+~)+~dG(O) <_ ko if 7 > 2. 

Then 

sup(R(¢~ ,  G) - R(G)) < kin -(~s-2)/0+28) 
GE6 

for some constant kl. 

PROOF. Since dlz(x)/dx is x "y-1 for some 7 > 1, u(x) = x'~-lI(x > 0), 
C(O) = ( f o  xn-1 exp(-x/O)dx) -1 = 0-~/F( 'y)  and 

(3.14) f(x I0) -- 1-- x' -lO-'Yexp(-x/O)I(x > O) for 0 E O. 

Thus u~(x) = inf~<t<x+~u(t) = x "y-1 and, since p(x) = f p(x I O)dG(O), by 
Theorem 2.9 of Lehmann (1959), 

(3.15) p~)(x)  = sup Ip (~)(t)l 
x<t<x+e 

= f 0 -'~-~ e x p ( - x  I O)dG(O) 

< for O < a <  1, 

by HSlder inequality. Later  we will take a in (3.15) equal to (7 - 1)/3' or (3' - 
2)/(3' - 1) depending on whether  1 < 7 -< 2 or 3' > 2. 
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Now consider 

(3.16) L~(p/u) = fx~yl-7 ( /  O-~ exp(-y/O)dG(O)) dy. 

Now for 1 < 7 -< 2, (3.16) is no more than 

xi-'~ / oi-'ye-X/°dG(O) 

< xl-~p"'(x)(E(O-~+(1-"')-l)) 1-"' for 0 < c~' < 1, 

by H61der inequality. Therefore, from (3.12) with a I -- As/(1 + As), the integral 
in (A1) for 1 < ~/< 2 is a constant  t imes 

(3.17) ff  f1-)~(1-c~'/2)u)~(1-c~')/2 <<_ I1 ÷ I2, 

where 11 and I2 are integrals over {x _< 1} and {x > 1} respectively, From Lemma 
3.2 I1 <_ f fl-,y+:~a'/2 < oc since with t -- 1 - £ + ( A a ~ / 2 )  = 1 -A(As+2) (2+2As)  -1,  
1 < t -1 < 1 + As from the condition on A that  1 < A < 2 - (2/s) ,  and EX ~s = 
O(EO ~'s) < oc. Since with this t and with 1 < 7 -< 2, ( 7 -  1 ) A ( 1 -  a ' )  _< 
2A/(2 + 2As) < At, u ~(1-"')/2 _< x ~t/2 for x _> 1. Therefore, for (2s) -1 _< ~ < 
{t(As + 1) - 1}/(tAs), 

Is ~_ (x~'t/2 f t) <_ (xXt/2 fnt f t(1-n)) 

/ f k 1-~t 
~ (EXA/2~)~t ~}  f t(1-~)/(1-~t)) 

which is finite by Lemma 3.2 since ( l + A s )  -1 < t ( 1 - ~ ) ( 1 - ~ t )  -1 < 1 and 
EX x2v = O(EO ~/2~) < oc (by 3.12) since (A/2~) _< As. 

Now for ~ > 2, f~  (p/u) < f~  y1-e f 0-~ exp(-y/O)dG(O)dy < p(x)x 2-~, 
and the integral in (A1) is 

(3.18) /fl-()'/2)(x). x)'/2dx = Ix + I2 

where I1 and I2 are integrals over {x < 1} and {x > 1} respectively. It is easy to 
see that  I1 <_ 1 and by H51der inequality, 

I2 <_ (fl~X-(l+~)) ~/2 (f~x(2+~):~/(2-:g f(x)) 1-~/2 

which is finite from (3.12) for a choice of ~ > 0 such that  (2 + ~)A/(2 - A) < As, 
since EX ~ < ~c whenever E(~ x~) < oc. 

Now to show that  (A2) holds, we notice from (3.15) and (3.12) tha t  the integral 
in (A2) is no more than a constant  times 

(3.19) /pl-~(1-~)u= f fl-~(1-~)u~(1-~) = /x~('~-l)(~-~)f 1-:~(1-~). 
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Taking a = (3' - 1)/3' or (3' - 2)/(3' - 1) depending on whether 1 < 7 -< 2 or 3' > 2, 
the finiteness of the integral on the r.h.s, of (3.19) can be shown by arguments 
similar to those used to show the finiteness of (3.18). Also, since u~(x) = u(x),  
the integral in (A3) is f f1-),/2, which is finite by Lemma 3.2. Hence by Theorem 
3.1 we get (3.13). [] 

3.2.3. 

Example 3.3. Our last but  not the least example will be a noncontinuous 
scale exponential family. In fact, the family we are going to consider now is similar 
to the one considered in Singh (1979) and has infinitely many discontinuities. 
Consider the a-finite measure # on (X, B) with 2d = (0, c~) whose Radon-Nikodym 
derivative u w.r.t, the Lebesgue measure on X is given by 

o c  

(3.20) u(x) = + 1)I(i  < x <_ i + 1 )  
i=O 

Notice that  C(O) = ( f o  u ( x ) e x p ( - x / O ) d x )  -1 is ( 1 - e x p ( - 1 / 0 ) ) / 0 ,  and the fam- 
ily of the conditional (on 0) p.d.f, in the component problem is 

(3.21) f(xle) = (1 - exp(-1/O))O -1 (i + 1)I(i < x < i + 1) e x p ( - x / O ) .  

SUBTHEOREM 3.3. For an integer s > 1 and for 1 < A < 2 - (2/s),  let ~ be 
the class of all probability measures G on (O, 9 v) with 0 a subset of (0, cxD) such 
that f O~SdG(O) < oo and f O-2S-idG(O) < oo. Then for the a-finite measure # 
on X with d# (x ) /dx  given by (3.20), 

sup(n(¢., G) - R (G) )  = 0 ( n - ( ~ - 2 ) / ( 1 + 2 ~ ) ) .  
GG6 

PROOF. Proof follows by arguments similar to those given for the proof of 
Subtheorem 3.1. [] 

4. A lower bound for [R(¢n, G) - R(G)] and the best possible rate of convergence 

In this section we will show that the rate of asymptotic optimality of (~n 
obtained in the previous section is not far away from the best possible rate that 
one can expect with Cn, especially for large s. In fact, we will show that for large 
n, R(¢n, G) - R(G) >_ cin  -2s/(l+2s) at every G degenerate at a point in O. 

THEOREM 4.1. Let G be a degenerate distribution with total mass at an ar- 
bitrary but fixed point 0 in O. Let Cn be as given in Theorem 3.1 with h = 
Co n-1/(l+2s). Let there exist an q > 0 and l > 0 such that Lebesgue-inft<t<l+~ u(t) 
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and Lebesgue-supl<t<t+n u(t) are respectively positive and finite. Then for all n 
sufficiently large 

(4.1) R(¢n, G) - R(G) > c'n -2~/(z+2~) 

for some constant c ~. 

PROOF• Throughout  this proof let ca,c2, . . ,  s tand for finite positive con- 
stants and denote f( .  [ 0) and p(. [ 0) respectively by f and p. Since 0 is in 
O, 

(4.2) 0 < inf p(t) < sup p(t) < c~. 
l<t<l+n l<t</+, 

Since G is degenerate at 0, ¢6 - 0 and by (2.3) 

(4.3)  ( R ( ¢ ~ ,  C)  - n(a)) 1/~ 
> E { l C n ( X )  - 01I(I < X < t + ( 7 / 2 ) )  

>_ E{I( l  < X < 1 + r//2)} 

f0 ~-° 
• Px[¢n(X)  - Opn(X) > tlpn(X)l]dt } 

for some (known or unknown finite) 13 > 0, where Px  stands for the conditional 
probability on the Borel field generated by {X1 , . . . ,  X~} given X. 

Now for 0 < t </3  - 0, I < x < l + (V/2) and for j = 1 , . . . ,  n, define Yj by 

u(X~)~(x) = II(xj > x,~(xj) > O) 
t .  

0] 
where K is the kernel appearing in the definition of p~. Note that  Y1, . . . ,  Y~ are 
marginally i.i.d, since X1 , . . . ,  Xn are so. Let #0 and ag denote respectively the 
mean and variance of Y1. Then in view of (4.2) it can easily be checked (e.g. see 
pp. 79-80 of Singh (1974)) that  for 1 < x < 1 + (7/2) and for all n sufficiently 
large, 

(4.4) l t 0=  { f x ~ p ( y ) - O f K ( y ) p ( x + h y ) d y - t f ' K ( y ) ' p ( x + h y ) d y }  

~ --C l ( h  s -~ t )  

and 
(4.5) ~ >_ c2h -1. 

Now, note that  Px=x[¢~(x) - Opt(x) > ttp~(x)l ] >_ P x = x [ Y ~ Y j  > 0] >_ 
Px=~ [Y]~(Yj - # 0 )  > Cl(h ~ + t)] from (4.4). Therefore, it follows from Lemma 3 
on p. 47 of Lamperty (1966) that  for all ( > 0 and for all n sufficiently large 

(4.6) Px=~[~n(X) - Opn(x) > t,pn(x),] > exp { nc2(h~ + t)2(1 + ~)} 
- 2a~ 

> exp{-canh(h ~ + t)2}. 
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Therefore, with the transformation (canh)l/2(h ~ + t) = v we get from (4.6), 

(4.7) ~0 f~-0 9fa a' Px=x[¢n(X) - 0pn(x) > t[pn(x)l]dt >_ (c3nh) -1/2 e-~2dv 

where a = (c3nh)l/2h 8 and a' -- (c3nh)l/2(hS+ ~ - 0 ) .  Since from the definition of 

h, a = c~/2 and a' --, c~ as n -* co, the integral on the r.h.s, of (4.3) converges to a 
constant uniformly in l < x < 1 + (~/2). Therefore, from (4.3) for all n sufficiently 
large 

(4.8) (R(¢n,G) - R(G)) 1/2 >_ ch(nh)-l /2EI(l  < X < l +  (r]/2)). 

Since 0 is in O, the proof of the theorem is now complete since the expectation on 
the r.h.s, of (4.8) is strictly positive in view of (4.2) and our choice of I and ~?. [] 

Remark 4.1. The assumptions of Theorem 4.1 are fairly mild in the sense 
that these are satisfied for every choice of 1 and 77, as long as these are positive 
and finite, in a number of exponential families, including those given in Examples 
3.1, 3.2 and 3.3 

5. Concluding remarks and some further results 

We have given a method to construct a class of EB estimators Cn for the family 
u(x)C(0) exp( -x /0 )  which are a.o. and achieve the rate of convergence arbitrarily 
close to their best possible rates obtained in Section 4. In fact, we have exhibited 
EB estimators a.o. with rates arbitrarily close to O(n-1). Section 4 shows that 
the rate O(n -1) can not be achieved by our estimators. In fact, a rate of the 
order O(n -1) has not yet been established for any EB procedures, whatever may 
be the component problem, in any Lebesgue-exponential, nonexponential regular or 
irregular family. 

Since pn in (2.5) consistently estimates p, another version of estimators of 
¢(x)  = f ~ p ( t ) d t ,  worth utilizing in estimation of ¢ c  = C/P, are ¢*(x) = 

f ~  pn(t)dt and ¢** = f~+k~ p~(t)dt where 0 < kn --~ 0 as n -~ co. Singh (1978a, 
1980) has considered estimators ¢** with kn ~ h -1 and has proved mean square 
and strong consistencies. It can be shown by arguments similar to those of Singh 
(1979) and of the proof of Theorem 3.1, that under conditions analogous to those 
of Theorem 3.1, the estimators ¢* and ¢**, resulting from the replacement of ¢~ 
in (2.11) by ¢* and ¢~* (with k~ ,~ h -1) respectively, are also a.o. with the same 
rate as achieved in (3.2) by Cn. 

Instead of Cn in (2.11), let us consider q~n = ¢,~/i5n where ihn is Pn or 5n for 
some positive 6n(--* 0) depending on whether IPnl > 5n or IP,~I <- 5n. Then from 
(2.1), E(¢~ - CG) 2 <_ 2(~-2{E(¢,~ - ¢)2 + ¢~E(i5~ _p)2}, which in turn is no more 
than 25n2{E(¢n - ¢)2 + ¢~E(pn _p)2} + 2P[lpn] _< 5n]. In view of the consistency 
properties (Theorem 2.1) of ¢,~ and pn as estimators of ¢ and p respectively, and 
in view of the identity (2.3), the following theorem can be easily proved. 
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THEOREM 5.1. Let u~, v~ and p! ~) be as defined in (2.6). Let ~ be the set of all 
probability measures on (@, ~ )  such that for prior distributions in G, E w ( X )  < oc 

and for some ~ > 0 and integer s > O, f{(u(t)/u~(t))+p~S)(t)}¢2(t)dt < oc. Then 

choosing h ~ n -1/(1+28) and ~ ,.~ h ~, (R($n, G) - R(G)) -- o(1) for all G in ~. 

The condition fp!S)~2 in the above theorem is not needed if p is assumed to 
satisfy s-th order Lipschitz condition, because then, it can be shown that  E(pn ( x ) -  
p(x)) 2 is a constant times max{V~(x), 1}h 28. It can be checked by arguments 
similar to those used in Section 3 that the conditions of Theorem 5.1 are satisfied 
for the a-finite measure it and u in Examples 3.1, 3.2 and 3.3. 

Finally, if O is assumed to be a subset of (0, a) for some 0 < a < co, then 
our suggested EB estimators Cn, ¢~ and ~bn* would be respectively the restriction 
of ~n/Pn, Cn/Pn and ~b~*/pn to the interval (0, a) (i.e. take Ca equal to 0, Cn/Pn 
or a depending on whether Cn/P~ is _< 0, between 0 to a or _> a). Then using 
the identity (2.3) and inequality (3.1) with L = a, and (2.7) and (2.8) we get for 
O<A__2 ,  

R(On, G) - R(G) <_ 2p-~{a2-~ElCn - ~]~ + 2a2EIpn - p[~} 
= O(n-aS/(l+2s)) 

• { E p  + + 

from (2.7). And by arguments used in the proof of Theorem 3.1 it follows that 
under (A1), (A2) and (A3) with A in [2/s, 2], 

(5.1) R(¢., G) - R(C) = 

Thus with bounded parameter space O, ¢~ achieve almost the best possible rate 
O(n -28/(1+28)) by taking A equal to 2 or arbitrarily close to 2. It can be easily 
shown that for every family G of probability measures on (O, ~ )  with O, a subset 
of [00, 01], 0 < 00 < 01 < 0% and for every a-finite measure # on (X, B) with 
u(x) = d#(x)/dx vanishing off a finite interval, conditions for (5.1)are satisfied 
for A -- 2, thus giving examples where the best possible rates are indeed achieved. 
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