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A b s t r a c t .  Posterior mode estimators are proposed, which arise from sim- 
ply expressed prior opinion about expected outcomes, roughly as follows: a 
conjugate family of prior distributions is determined by a given variance func- 
tion. Using a conjugate prior, a posterior mode estimator and its estimated 
(co-)variances are obtained through conventional maximum likelihood compu- 
tations, by means of small alterations to the observed outcomes and/or  to 
the modelled variance function. Within the conjugate family, for purposes 
of inference about the regression vector, a reference prior is proposed for a 
given choice of linear design of the canonical link. The resulting approximate 
reference inferences approximate the Bayesian inferences which arise from a 
"minimally informative" reference prior. A set of subjective prior upper and 
lower percentage points for the expected outcomes can be used to determine 
a conjugate family member. Alternatively, a set of subjective prior means 
and standard deviations determines a member. The subfamily of priors de- 
terminable by percentage points either includes or approximates the proposed 
reference prior. 

Key words and phrases: Conjugate prior, contingency tables, exponential fam- 
ily, frequency counts, generalized linear model, Jeffreys prior, logistic regres- 
sion, multinomial outcome, minimally informative prior, nonlinear regression, 
quasi-likelihood, reference prior, regression, variance function. 

1. Introduction 

This  p a p e r  discusses the Bayesian analysis of the  generalized linear model  
wi th  special  emphas is  on (1) finding an analog to  Jeffreys '  prior,  (2) techniques 
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for choosing subjective priors, and (3) an approximation to the Bayesian approach 
which can be easily computed. 

Consider the simple experiment of observing y successes out of a small number 
k of independent Bernoulli trials for estimating an unknown success rate 7r or its 
logit 0 = logier/(1 - 7r)]. When it can be calculated, the MLE is 0 = log[y/(k - 
y)] = log[~/(1 - #)]. The estimated variance of 0 obtained through a standard 

information calculation is ~ ( 0 )  = 1/[k~(1 - #)]. Given w > 0, if we think of 
y +_ w/2 as an altered number of successes from k + w trials, the altered MLE 
is 0 = log[(y + w / 2 ) / ( k  - y + w/2)], with similarly estimated variance ~--~(0) = 
1/[(k + w)~(1 - ~)], where ~ = 1/[1 + exp(-0)]  = (y + w / 2 ) / ( k  + w). 0 is of course 
the case w = 0. 

The function MSE(O)  = Eo[O - O] 2 is identically infinite for the case w = 0, 
and plotting MSE(O)  vs 0 for each of several values of w > 0 shows dramatic 
improvement as w increases. From a sampling theory standpoint this militates 
against the use of very small w, and against the MLE 0 in particular. 0 with 
w = 1 is the Cox (1970) empirical logistic transform referred to in Dobson ((1983), 
Example 8.3), who reports that w = 1 minimizes the bias of 0 and uniquely 
produces bias = o(1/k  2) whereas other values produce o(1/k).  

is also the Posterior Modal Estimator (PME) from a d0-density proportional 
to eel/2/(1 + co) ~, which, in terms of 7r, is the symmetric Dirichlet (w/2 ,w/2)  
distribution. As such, using the 0 from a very small w represents, in a sense, 
prior near-certainty that 7r is extremely close to 0 or 1, an unlikely attribute 
of almost any scientist conducting such an experiment. With w = 1, 0 is the 
PME from Jeffreys' prior d0-density. If prior information is not strong, w = 1 
(which attributes prior probability 0.025 to each of the situations ~r < 0.006 and 
~r > 0.994) is proposed as a general-purpose "reference" value. The intent of the 
term "reference" is merely that w = 1 may conveniently be used as a value to whose 
consequent inferences other inferences may be referred for a standard comparison. 

We further propose that  for convenience inferences be based on "standard" 
maximum quasi-likelihood estimates (MQLE) and information calculations ap- 
plied to the posterior dO-density, rather than based on the exact posterior distri- 
bution. This procedure, when applied to the simple binomial case, produces the 
asymmetric approximate 68% confidence or credibility interval, 

1 1 

1 + exp(-{/} - [ ~ ( 0 ) 1 / 2 } )  
< T r <  

1 + e x p ( - ( 0  + [~r(0)]1/2})" 

In what follows we shall extend the proposal of a reference PME 0 of the 
canonical parameter 0 and of ~'~(0) to apply to a generalized linear model with 
any variance function v(tt) that is either multinomial, or univariate quadratic, i.e., 
v(#) = r + sit + t# 2, and to an independent set of samples with canonical links 
0i -- ~i + x ~ .  /3 will be the parameter of interest. The canonical parameter or link 
function 0 = O(/~) is defined through dO~d# = l /v(#) .  For example if v(#) is the 
binomial(k) variance function #(k  - # ) / k ,  0 < # < k, then 0 = log[tt/(k -/~)]. (In 
the case of a multivariate observation, v(#) is a matrix and the weight function 
1/v(#)  becomes the inverse or a pseudoinverse v(#) - . )  
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In Section 2 we propose a conjugate family of distributions based on the quasi- 
likelihood function for a generalized linear model with a quadratic variance func- 
tion. For the given variance function, a Jeffreys-like prior is also proposed which 
is either a member of the conjugate family or else is approximated by the family. 
Section 3 discusses how informative conjugate priors might be specified in prac- 
tice. The full versatility of generalized linear modelling is realized only when we 
consider sub-full linear designs for the canonical parameter vector 8 = [81, 82,.. .it .  
The methods of Section 2 are extended to this situation in Section 4. In Section 
5 several examples are given including r × c contingency tables. 

2. Quasi-likelihood, conjugate families and Jeffreys priors 

2.1 Quasi-likelihood 
The quasi-likelihood concept may be thought  of as an extension of the notion 

of the log-likelihood function of a distribution of exponential type. It may also be 
described as a framework for fitting to data models which specify only first and 
second moments,  in which the variance of each observation Yi is a known function 
v(pi) (or perhaps = Cv(pi) with ¢ > 0 unknown) of expectation Pi. The quasi- 
likelihood function L(8, y) determined by a given variance function v(#) is based 
on dL(O(#) I y)/d# = v ( # ) - ( y - # ) .  The only multivariate model we shall consider 
here is that  of a multinomially distributed observation, e.g., a trinomial(k) obser- 
vation [Yl, Y2] t where Yh - - - -  observed frequency in category #h .  Detailed accounts 
of quasi-likelihood modelling and of properties of maximum quasi-likelihood es- 
t imates may be found in Wedderburn (1974), McCullagh (1983) and McCullagh 
and Nelder (1983). 

In terms of 8, L looks like 

(2.1a) 

or else 

(2.1b) 

L(8 [ y) = yS - b(8) 

L(8, ¢ [ y) = [y8 - b(8)]/¢ 

for a model with var(y) = v(#), 

for vat(y) = ¢ v ( , ) ,  

with the unknown dispersion parameter ¢. Here b(8) is defined through 
db(O(#))/d# = v ( / . t ) - l p .  (In the logistic trinomial case y = [yl,Y2]' in (2.1a), 
and y8 becomes y'O.) (2.1a) implies var0(y) = d2b(8)/d82 while (2.1b) implies 
varo(y) = Cd2b(8)/d82. Table 1 lists the common quadratic variance functions 
and related entities, may be verified from the foregoing definitions, and appears 
to a large extent in Tables 2.1 and 8.1 of McCullagh and Nelder (1983). 

2.2 Conjugate families, and reference priors for one observation 
There is a vast literature concerning minimally informative reference priors 

for a given subparameter of interest. Recent expositions in Box and Tiao (1973), 
Bernardo (1979), Berger (1985) and Chang and Eaves (1990) are but a few ref- 
erences. When the quasi-likelihood (2.1a) is a log-likelihood Jeffreys' prior is a 
reference prior in the established sense. Thus for general quasi-likelihoods of the 
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Table 1. Common quadratic variance functions v, their canonical parameters 8, and b(O). 

Name v(#) 0 = O(/z) b(O) 
normal 1 /Z 82/2 

Poisson # log(/z) exp(0) 

binomial(k) ~t - / z2/k  log[#/(k - #)] k log(1 + e 0) 

gamma #2 - 1//z - log(-- 8) 

neg. binom.(k) #+/z2/k log[#/(k+/z)]  - k l o g ( 1 - e  O) 
1 , 

trinomial(k) diag(/z) - ~/Z/Z [log(/zl//z3), log(#2/U3)]' klog[1 + exp(01) + exp(02)] 

Table 2(a). v-conjugate distributions in terms of/Z, expressed as functions proportional to d/z- 
densities. 

Name of model v(/z) fnc.prop, to d/z-density /z-distribution family 

normal 1 exp[-(A/2)(/z - a/A)2] normal 

Poisson # #~ - 1 exp (-)~#) gamma 

binomial(k) /Z _/z2/k /z,~-l(k _/z)k;~-,¢-I Dirichlet 

gamma /Z2 /Z - ;~- 2 e x p ( -  ~//z) inverse gamma 

neg. binom.(k) /Z +/z2/k /Z~(/Z + k) k)'-'~-I - -  
quadratic r + s/z -b t/z 2 - -  

1 , 
/Zl /~2 trinomial(k) diag(/z) - -  ~/Z# tel--1 ~2--1 Dirichlet 

.(k - m - ~2) :~k-m-'~2-1 

Table 2(b). Quadratic variance functions V and their conjugate reference parameters. 

Name v(#) ~ 

normal 1 0 0 

Poisson tt 1/2 0 
binomial(k) # - / z 2 / k  1/2 1/k 
gamma /Z2 0 - 1 

neg. binom.(k) # +/z2/k 1/2 -1 / k  
quadratic r + s# + t# 2 s/2 - t  

1 
F ~ 

trinomial(k) diag(#) - ~ ## L 1/2 j 

fo rm (2.1a)  we p r o p o s e  a J e f f r e y s - t y p e  p r io r  c a l c u l a t e d  f rom t h e  q u a s i - l i k e l i h o o d ,  

as  a re fe rence  pr ior .  F o r  (2 .1b)  we p r o p o s e  m u l t i p l y i n g  t h i s  p r i o r  b y  d¢/d~. 
A d 0 - d e n s i t y  t h a t ,  for some  a a n d  A, is p r o p o r t i o n a l  to  exp[~0  - Ab(0)], wil l  

b e  ca l l ed  a v-conjugate d0-dens i ty .  T a b l e  2(a)  l i s ts  t h e  c o r r e s p o n d i n g  d i s t r i b u t i o n s  

of  # u n d e r  t h e  c h a n g e  of  v a r i a b l e  0 --~ #. N o t e  t h a t  v (# )  = r + s #  + t #  2 does  n o t  

g e n e r a l l y  l e ad  to  c losed  e x p r e s s i o n s  for b(O) or  t h e  c o r r e s p o n d i n g  dens i t i e s .  
W e  ver i fy  b e l o w  t h e  fo l lowing p r o p o s i t i o n :  

PROPOSITION 2.1. Jeffreys' dO-density is v-conjugate if and only if it arises 
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from a quadratic (or multinomial) variance function v(#). We shall term the ~ and 
A thus arising from a given v(#) as the reference parameters for v(#). The refer- 
ence parameters of quadratic variance functions are listed in Table 2(b). Since 
Jeffreys ' prior is proportional to root-quasi-information b(2)(0) 1/2, v-eonjugacy 
means that for some a and A, (1/2)log[b(2)(0)] -- const + a0 - Ab(9). Substi- 
tuting 0(#)  for 9 and taking d/d# immediately gives v (1) (#) = 2(a - A#), so that 
v(#) -- r + 2 a p - A #  2 is quadratic. Conversely if, for some s and t, v (1) (#) = s+2t#, 
then (d/d#)log(v(p)) = (s + 2tp)/v(#) = (d/d#)[sO(#) + 2tb(O(#))] shows that 
log[b(2)(0)] = const + sO + 2tb(9), so that Jeffreys' prior is v-conjugate. 

Notice that  when a v-conjugate prior dO-density is used, the posterior will 
also be a v-conjugate dO-density. The effect upon the likelihood of the a in the 
conjugate prior is to replace y by y + a, whereas the effect of A is to alter the 
modelled variance b(2)(0) by the multiplicative factor (1 + A). Thus the use of 
v-conjugate priors is especially convenient and can be implemented with existing 
software. 

Example. Consider a random sample Yl, . . . ,Yn from a gamma family with 
known scale factor 1 and shape parameter a. Since p = a = v(#), this is a Poisson- 
type quasi-likelihood! The PME for O satisfys b'(9) = (~ + a /n) / (1  + A), so that  
O = log(~+ 1/2n). The estimated variance of 9 is ~r (9)  = In(1 + A)b"(9)] -1 = 
1/[nexp(O)]. Therefore the proposed 68% confidence interval for O = log(p) is 
log(~ + 1/2n) =t= [n~ + 1/2] -1/2, while for # its endpoints are [y + 1/2n] exp{+[n~ + 
1/2]-1/2}. Notice that  in this example the exact Jeffreys prior density with respect 
to d# is [ -d  2 log(F(#))/dtt2] -1/~, a considerably less tractable expression. 

3. Subjective prior distributions 

Other values of a and A than the reference values may be chosen, and used 
with equal convenience. Here we discuss the choosing of as and As as a means of 
expressing subjective prior opinion about the mean outcomes #. Two schemes are 
proposed, one based on a prior mean m = E(p) and standard deviation s -~ SD(p) .  
The second and more widely applicable scheme is based on prior upper and lower 
percentage points for p. 

3.1 Using a subjective prior mean and standard deviation of expected outcome 
For each of the variance functions named in Table 1, the 0-distribution pro- 

portional to exp[a9 - Ab(O)]d9 corresponds to the distribution of tt indicated in 
Table 3 (see also Table 2(b)). Calculation of the corresponding prior expectation 
E(#) and standard deviation s = SD(#) is therefore straightforward, s = SD(#) 
is shown in Table 3 and in all cases E(#) = a/A. The table may be used as follows: 
let m be a prior guess, however wild, at the value of p, and let s be a rough guess 
at how far wrong m might be. (This approach to choosing a and A is appropriate 
only if the scientist is indifferent as to the algebraic sign of p - m). m and s may 
be used as prior mean and standard deviation of # to determine adjustments to 
the observed outcomes and to the variance function, by solving m = E(#) and 
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s = SD(#)  = var(#) 1/2 for a and A, for each row of W. The solutions are shown 
in columns a and A. 

For the trinomial(k) parameter  # = [#1, #2, #3]' = k r ,  choices of var(#h) must 
satisfy var(rh)  = var(~l)E(rh)[1 -- E(rh)]/[E(~rl)(1 - E(r l ) ) ] ;  thus it is tha t  all 
three [ m h ( k -  m h ) -  s~]/kS2h coincide. For the variance functions shown in Table 
3, only the t-nomial(k) has reference values a and A which correspond to finite 
prior means and variances: for the t-nomial(k), a = [ 1 / 2 , . . . ,  1/2]', A = t/(2k),  
E(#h) = k / t  and var(#h) = (k2/ t2)[(2t-2)/( t+2)].  Berger (1985) and others have 
commented on the difficulty of obtaining reliable prior assessments of moments.  
Indeed, one may wish to consider a prior distr ibution whose mean and s tandard  
deviation are vaguely large. For this reason we now describe a more broadly 
applicable approach based on prior percentage points. 

3.2 Using subjective prior upper and lower percentage points of expected outcomes 
Assume the scientist can produce a subjective prior upper and lower 100(~% 

percentage point u and l, for the expected outcome p. Sensitivity of inferences 
to these two bounding parameters should generally be explored as part  of da ta  
analysis. We will now see how these two bounding parameters,  together with 
the choice of the model variance function v(#), will determine the a and A of a 
conjugate prior distribution of #. We also note the manner  in which the reference 
values of a and A can be approximated by considering external values of the pair 
u,  l: 

(i) Normal variance function: A = 4z2 / ( u -  l) 2, where z~ is the upper 100c~% 
point of the s tandard  normal distribution. Furthermore m -- (u  + / ) / 2  and ~ -- 
Am. The reference values A = 0 and t¢ = 0 are obtained by lett ing u - I and 
(u - l)2/]u ÷ l] approach infinity. 

(ii) Poisson variance: ~ may be determined by solving X212~, c~]/X212~, 1 - 
~] = u / l  for ~. This function of ~ increases monotonically to infinity as ~ decreases 
to 0; an approximate solution may be found by inspecting a X 2 table. Then either 
A = ~ / m  or A = X212t~, oL]/2u or A = X212~, 1 - ~]/21 may be used to find A. The 
reference parameter  pair a = 1/2, ~ = 0 corresponds to large values of u and l 
with u / l  = {z[~/2]/z[(1 -c~)/2]} 2. 

(iii) Binomial(k) variance: With  any a and A as prior parameters,  Tables 2(b) 
and 3 imply tha t  [(Ak - a)/t~]p/(k - #) has the F[2a,  2()~k - a)] distr ibution a 
priori. Therefore we may find ~, A by setting Vl = 2a and u2 = 2(Ak - a) 
and solving for ul, v2 as follows: the condition F[Ul, u2, c~]F[u2, vl, c~] = [u/(k - 
u)]/[ l / (k  - l)] determines a contour in (ul, u2)-space. If m is also given, the 
solution is the intersection of this contour with the line u2 = (k - m ) u l / m .  If 
symmetric  prior bounds are used, say u -- ~k and I = (1 - ~)k given a ~ (0.5 < 

< 1), then an approximate solution may be found with a glance at the F-tables,  
since Ul -- v2. Even with asymmetric  bounds, it may be found by writing out 
a few values of Fin1, u2, (~]F[u2, ul, c~]; however an approximate contour map of 
this function (Fig. 1) is more convenient. Alternatively, s tart ing with u and l, 
the corresponding pair a and A may be found by solving simultaneously the two 
equations (Ul/p2)F[vl,//2, oil = u / ( k -  u),  (v2/Yl)F[p2,/21, oL] = ( k -  l ) / l  for "1, ~2. 
Again, the solution for symmetric  bounds is found with a glance at conventional F-  
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tables. With asymmetric bounds, the solution may be found by writing down a few 
values of G[Vl, 7/2, ~] = (V'I/P2)F[Vl, v2, a], the upper 100a% points of chi-square 
ratios. Here again, an approximate contour map (Fig. 2) is more convenient. 
The curves with increasing slopes are G[v2, Vl,a], needed below in (v). From 
F[1, 1, 0.05] = 161.4, it is seen for the binomial(k) that  the reference parameters 

= 1/2 and A = 1/k correspond to upper and lower 5%-points u = 0.994k and 
I = 0.006k. 

(iv) Gamma variance: 2~/# has the 2 X2(x+l) prior distribution, so that  
2 X2(~+1)2 (a ) /X2(~+l )  (1 - -a)  = U/1 m a y  be  solved for A. T h e n  e i the r  ~¢ --  u x 2 ( ~ + l  ) • 

(1 - a)/2 or n = Ix2(~+])(a)/2 may be used, or ~ = Am if a finite m is pre- 
ferred. Convergence of (n, A) to the reference values (0 , -1 )  corresponds to the 
convergence condition that  for arbitrarily large M, eventually u / l  > M. 

(v) Negative binomial(k) variance: From Table 3, (Ak + 1)#/nk has the 
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Fig. 2. Level contours of G[ul ,u2, .95]  = (u1/v2)F[u1,u2, .95]  (incr slopes) and of 

a[~2, ~1, .95] (deer slopes). 

F[2~, 2(Ak + 1)] prior distribution. (n, A) will be found by setting vl = 2n 
and v~ = 2(Ak + 1) and solving for (Vl, ~2). Starting with u/ l ,  the condition 
Fly1, v2, a]F[v2, Vl, a] = u / l  determines a contour in (vl, v2)-space (Fig. 1). If, be- 
sides u/ l ,  a finite m is available, then the solution is the intersection of this contour 
with the line v2 = (k/m)~2 + 2. Alternatively, starting with u and l, the solution 
point is that  of the system G[ul, 112, a] = u/k ,  G[u2, ul, a] = k/ l ,  available from 
Fig. 2. Convergence of (n, A) to the reference values ( 1 / 2 , - 1 / k )  (meaning that  
the resultant posterior distributions converge) is implied by (u, l) = (k/u~)(u,l) 
where u, l are the upper and lower points for F[1, u2] as v 2 ---, 0. 

(vi) t-nomial(k) variance: t parameters of the Dirichlet prior distribution of 
t - 1  zr = # / k  must be specified, e.g. the vector m = [ml , . . . ,  k - ~h=l  mh]' of prior 



426 D. M. EAVES AND T. CHANG 

expected values of # = [#1,... ,# t - l ] '  and any one of the prior s~ = var(#n) 
determine A as in Table 3. (The values mh and just one s~ determine the other s~ 
through [s~ , . . . , s  2] = [ m l ( k -  r n l ) , . . . , m h ( k  - mt )] / (Ak  + 1); then, nh = Amh.) 
Alternatively, given the pair of values mh and its corresponding upper/lower odds 
ratio rh = [Uh/(k -- Uh)]/lh(k -- lh)] for just one h, A may be found by finding 
the intersection of the (Vl, u2)-contour F[Vl, u~, a]F[u2vl, a] = rh with the line 
Vh = (k - mh)v~ /mh  (Fig. 1), from which A = (Vl + ~2)/2k. Then if all the mh 
are known, the ~h may be determined from nh = Amh. For t = 2, 3 and 4 the 
reference values ~h = 1/2, A = t / 2 k  produce upper 5% points 0.994k, 0.90k and 
0.77k respectively. 

4. Prior distributions for the vector/3 of regression coefficients 

4.1 Univariate data 
We now consider a vector y = [y l , . . . ,  Y~] of univaviate observations with 

mean # = [#1,. . . ,  #n]' and diagonal n × n variance-covariance matrix V = V(#) = 
diag[v(#l) , . . . ,  V(#n)]. Suppose v-conjugate priors, either reference or subjective, 
have been chosen for each 0~ with conjugate parameters ai and Ai. These could 
differ, for example, if different subjective priors are used for i = 1, 2 , . . . .  We shall 
assume the affine structure 0 = u + Xt3, where X is n x d and of full rank. Most 
applications in the generalized linear model literature satisfy this affine canonical 
link condition. Vector ~ is a known offset, and is null in many applications. 
For example v -- 0 with x'i = (row # i  of X) = [1, ti] gives a generalized simple 
regression model. 

A choice of prior for each 0i corresponding to d linearly independent rows x~ of 
course determines a distribution for/3. This latter distribution in turn determines a 
distribution for every Oi, some of which might be incompatible with priors already 
chosen. In this section we propose a means of choosing a prior for/3 in such a way 
that the originally chosen priors for the 0i are adjusted towards compatibility. 

Let W have the same set of distinct rows as X but with no rows repeated. 
Write n3 j = 1, . . .  ,m for the number of times row wj of W appears in X, and 
(by re-indexing) 05 for the corresponding 0. If W is invertible then the above 
incompatibility does not arise. W is invertible for some common designs X, e.g., 
if X represents a one-way anova, or a higher-way anova with all interactions. In 
this situation 0 = W/3, where 0 is redefined to be [01,...,0m]'. By a change 
of variable the d/3-prior p(/3 ] X) is v-conjugate and is proportional to f(/3 ] 

m • • • f • W) = ] det(W)l exp{y~.d= 1 [~jOj - Ajb(Oj)]}. Note that the quasMlkellhood o y is 
c o n s t + ~ j [ ( ~ i : j ( i ) =  j yi)Os-njb(Oj)], where j ( i )  = (row index number in W of X- 

row #i) .  It follows that the PME/~ and ff'~r(/3) may be found exactly in the manner 
of finding the MQLE/~ and @(/~), only replacing y with ~ = [~)1,..., Y~]' where 
~]~ = Yi + ~/nj(~), and replacing the original variance function v(#d(i) ) in MQLE 
program with v(#j(i))(1 q- A/nj(i) ). Thus, identical adjustments are applied to all 
cases of a given distinct covariate pattern, var(y~) and deviance increments can 
be specified with GLIM macros, while in BMDP3R 1/v(#i) can be specified with 
a WEIGHT formula. 
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In the general case where W is not necessarily invertible and reference priors 
are used, Jeffreys' prior distribution p(fl ] X) oc v/det{X'YX} where v(pi) = 
v(O-l (v i  + x~fl)). Thus 

(4.1) p(fl [ X) oc v/det{W'NUW}, 

where 
N = diag[nl , . . . ,n ,~]  and U = diag[v(ttl) , . . . ,v(#,~)].  

The Cauchy-Binet theorem (Marcus and Minc (1966)) or Binet-Cauchy theo- 
rem (Pearl (1973)) states that v/det{W'NgW} = [~-~.sdet{W(S)'N(S)U(S). 
W(S)}] 1/2, where the variable summation index S is any d-element subset of the 
j-index set {1 , . . . ,m} ,  W(S) is the submatrix of W formed by those rows wj 
of W with index j in S, and N(S) and U(S) are the corresponding diagonal 
d x d submatrices of N and U. p(fl I X) can be written in the form p(fl I X) oc 
[y~sw(S)f(fl I W(S))2]l/2, where w(S) = (Trj:jcsnj)/y~S,(Trj:jes, nj) and f(fl ] 
W(S)) = I det{ W(S)}l[det{ U(S)}] 1/2 = I det{W(S)}[ exp{~j : j  es [aOj - Aj b(Oj)] } 
as above. Here b(Oj) is as described in Table 2(b), and values of K and Aj in 
Table 2(b) are used. (We note that  for the multinomial and negative binomial the 
reference )~ might depend on j ,  but ~ will not.) 

Thus p(fl [ X) is a weighted root-mean-square "average" of exponentials and 
is intractable when W is not invertible. In this case we propose a convenient 
product-form approximation: we replace this root-weighted-mean-square average 
P(fl I X) of the densities f(fl I W(S)) with their similarly weighted geometric 
average, 

(4.2) q(fllX) oc Hf(flls w(s))w(s)°(exp{~wd[~OJ-)ub(Oj)]} ' j = l  

where for each j, wj = Y~s:jes w(S). q(fl I X) will be called the conjugate ap- 
proximate reference prior for the given model. If subjective aj and ,kj are used we 
propose the obvious modification of (4.2). To obtain the resulting PMEs one need 
only replace each element Yi of y with Yi + wj(i)a/nj(i) and replace its variance 
function v(pj(i)) with (1 + wj(i))~/nj(i))v(#i). 

Note that  v, d and n = [ n l , . . . , n m ] ' / ~ j  nj completely determine q(fl I X) 
in the sense that a linear recording fl = M'y leads to q(M'y I XM). 

If y has variance-covariance eV(#) with unknown ¢ > 0, then q(fl [ X)dfld¢/¢ 
is proposed as the reference prior distribution for inferences about ft. In estimating 
linear functions of fl this leads to approximate confidence/credibility regions based 
on t-distributions rather than the normal. 

It can be shown that y~j wj = d, and if the design is balanced then every 
wj = d/m. As for unbalanced designs, although calculation of the model adjust- 
ment weights wj is easy in specific examples with small m (Section 5, alternative 
formulation of Cox data), general formulas may be somewhat complicated even in 
simple general cases: 
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LEMMA 4.1. Suppose distinct covariate patterns labeled 1 , 2 , . . . , A  each re- 
ceive a observations, while the remaining patterns, A + 1, A + 2 , . . . ,  A + B each 
receive b. Then ~ = [~ l , . . . ,~m] '  is proportional to [c , . . . , c , e , . . . , e ] ' ,  where 
e = E[SaHb(d-H)]/A and e = E[(d - H)aHb(d-H)]/B, where H has the hyper- 
geometric distribution, i.e., that of the number of class "A" items obtained in d 
selections without replacement from A + B items. 

When W is invertible, exact posterior probabilities can sometimes be calcu- 
lated in terms of a tabled distribution; for example, the posterior distribution in 
a binomial model is then a product of Dirichtet distributions. Thus for purposes 
of comparing the recommended approximation with an exact calculation we may 
calculate, for example, the exact posterior probability of the recommended approx- 
imate 68.26% posterior credibility interval 0 + [~r(~)] 1/2 in the case of binomial 
data with k = 2 dichotomous trials, using the reference prior distribution: when 
this is done, the approximate credibility interval for estimating success probability 

= tt/2, arising from y = 1 observed success, is 0.240 < ~ < 0.760 with exact 
posterior credibility 0.632. For y = 2 these figures become 0.515 < 7~ < 0.959 and 
0.582. (This can be verified from F-tables since the exact posterior distribution 
of log(O) is a scaled F.) 

Conditional distributions of 0 of the form exp{~-]~j~__l [a0j - )~b(gj)] }d01 ' ' '  dora 
were used by Albert (1988) in a proposed two-stage hierarchical scheme. 

4.2 Multinomial models 
Suppose # is a t-vector of t-nomial mean frequency counts. Then v(#) is no 

longer just a number but is the t × t matrix diag(#) - #tt~/k, which, although non- 
invertible, has a pseudo-inverse d iag{1/p i , . . . ,  1/#i}. It is this diagonal form of 
the reweighting matrix which allows the t-variate analysis of t-nomial(k) data to be 
done with univariate MQLE programs, by arranging the entire string of t observed 
frequency counts as though it were a univariate outcome vector and by imposing 
the constraint ftl + . . .  + ~it = k. This constraint removes one parameter, say 0t, 
leaving 0h = log(~rh/rt) for only h = 1 , . . . ,  (t - 1). Aitkin et al. ((1989), Section 
5.6) describe how this is done with GLIM (including the important situation where 
covariates are involved). With more conventional iterated reweighted least squares 
(IRLS) programs such as BMDP3R the constraint may be imposed algebraically 
with the control language, using columns of 0s and ls to indicate the t categories. 

In order to convert from MQL Estimation to reference PM Estimation, the re- 
quired adjustment to the data is simply to add wj(i)/2nj(i) to each Yih, h = 1 , . . . ,  t. 
Unlike the binomial analysis already discussed, no adjustment to the variance 
function is required. This is because the "conditioning" approach discussed above 
to modelling the multinomial is really a form of modelling independent Poisson 
variates. To implement a conjugate adjustment parameter t¢ in general (not nec- 
essarily reference values), the adjustment is: add ~j(~)wj(i)/nj(i) to each Yih. The 

t conditioning c o n s t r a i n t  becomes  E h = l  f t ih  ~- [ki -{- t t ~ j ( i ) w j ( i ) ] / n j ( i ) .  

4.3 A trinomial example 
The pneumoconiosis (miners' black lung disease) frequency count data appears 

in Aitkin et al. ((1989), p. 235). The three categories of severity are normal, mild 



POSTERIOR MODE ESTIMATION 429 

and severe. The explanatory variable is log (number of years of the miner's expo- 
sure through working at the mineface), with numbers of years x = 5.8, 15, 21.5, 
27.5, 33.5, 39.5, 46 and 51.5. The corresponding 8 triples of observed frequency 
counts were 98 0 0; 51 2 1; 34 6 3; 35 5 8; 32 10 9; 23 7 8; 12 6 10; 4 2 5. The model 
as coded w a s  lgxh : log(Trzh/Trzl) = /~h -~- ~[h log(x), h = 2, 3, where 7~xh ~- true 
proportion of the x-exposed population in severity category #h .  Suppose we guess 
a priori that  the mild and severe categories are similar in that  they share a com- 
mon intercept around ~h = --10.5 and slope ~h = 2.5 for both h = 2, 3. Thus our 
prior means mxh for ~ x h  are such that [taxi, mx2, rex3] (x [1, e - l ° ' 5 x 2 ' 5 ,  e - l ° ' 5x2"5] .  

Suppose we further decide that the prior standard deviation of each 7rxh is about 
50% of the maximum possible, i.e., that 1/(A~kx + 1) = 1/4. This gives )~x = 3/k~ 

3 
and n~h = 3mxh/k~,  where k~ = ~-~h=l Yxh. Note that wj = 4/8  and nj  = 1 for 
all j = 1, 2 , . . . ,  8. Consequently the subjective adjustment is to add 1.hmxh/k~ 
to each Y~h. Table 4 shows the resulting estimates using the program GLIM both 
for standard MQLE and for the above subjective adjustments. The consequent 
changes are negligible, in part because the data happens to agree closely with the 
prior opinion. 

Table 4. Pneumoconiosis: logistic intercepts B and slopes 7, with s tandard errors. 

Standard MQLE PME with the above subjective prior 
Coefficient 

Estimate Est 'd  SE Estimate Est 'd  SE 

/32 -8 .936 1.052 -8.972 1.031 

~3 -11.97 1.322 -11.88 1.287 

"~2 2.165 0.3045 2.174 0.2985 

73 3.067 0.3736 3.035 0.3640 

5. Some special cases and examples 

5.1 Designs with var(y) = Cdiag[v(#n , . . .  ,v(J/,lk);... ;V(JZml),---,V(Jdmk)], 

#ji  = tzj 
Here we consider nj = k for all j ,  so that wj = d / m ,  and we will suppose a 

common variance adjustment parameter )~ is to be used for all m distinct rows of X 
(i.e., of W). The consequent replacement in L of each b(tgji) with (1 + d£/mk)b(tgj,)  
amounts to modelling each var(yji) as ¢(1 + d , V m k ) v ( # j i  ) rather than as Cv(pji) .  
Changing A has no effect on ~. If ¢ is to be set = 1 the estimate of var(/~) 
is now ~-£~(/~) = [ X 'Y ( f~ )X ] - I / ( 1  + dA/mk) .  Otherwise if ¢ > 0 is unknown, 

= X 2 / ( k m  - d) = (y - f z ) ' Y - l ( y  - f~) / (km - d) is a convenient estimate of 
¢ and ~ ( f l )  = ¢ [ X ' V ( f ~ ) X ] - I / ( 1  + dA/mk) .  Thus the reference adjustment of 

changing from ff£Y(/~) to v-dY(~) is one of scaling upward if the correctly fitted 
variance function is v(#) = r + s# + t# 2 with t > 0, since ,~ = - t  (Table 2(b)). 
Data exhibiting such a variance function with r > 0 and s = 0 could arise as 
follows: the outcomes y i l ,Y i2 , . . ,  could be random observations with each Yik 
from a population with mean and variance mi and t m  2 (e.g., as with gamma 
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populations with a shape parameter 1/t common to all covariate patterns), where 
the mean mi for covariate pattern # i  is itself a random variable with mean #i and 
variance ~-: it follows that var(y~j) = v(tt~) = (t + 1)• + titS. 

5.2 Log-linear and logistic models for r × c frequency counts 
5.2.1 General 
Let Yjh ----- observed number of cross-classified occurrences in row j =- 1 , . . . ,  r, 

column h = 1 , . . . ,  c. Table 5 exhibits the reference adjustment weights Wjh = ~ for 
four models which might be fitted. It is understood that  when a logistic t-nomial(k) 
model is fitted, the t-variate coding described in Subsection 4.2 is used. Thus no 
adjustment to the variance function ~tjh is made, and the term "logistic" implies, 
as does "log-linear", that the variance function for each observed count is #jh. In 
the case of log-linear modelling this is often rationalized as Poisson variance; in 
logistic t-nomial modelling it is the reciprocal of a diagonal element of the t × t 
diagonal matrix V(#)- .  Here nj = 1 so the reference-adjusted observed outcomes 
are Yjh q-a)j/2 for both log-linear and logistic t-nomial. Here y.. = E j h  Yjh and 
Y . h  = ~-~j Yjh. Goodman ((1970), p. 229) has suggested in effect the general use 
of w = 1 and ~ = 0 (sometimes in close agreement with Table 5) because "this 
adjustment of the y's reduces both the asymptotic bias and mean-squared-error of 

{ ~ j h "  . 

Table 5. Reference weights for fitting two-way frequency counts. 

Model d / m  = w 

rc independent Poisson variates, additive effects 

r c  indep. Poisson variates, with interactions (full model) 

rc-nomial outcome (no covariates; conditioning on y..) 

r-nomial outcome (one c-level covariate factor; conditioning on Y . h )  

( r + c  - 1)/rc 
rc/rc=l  
(rc-  1)~re 
r ( c  - 1)/rc 

5.2.2 A 2 × 2 example 
Consider the 2 × 2 table y n  -- 0, y12 ----- 2, Y21 = 2, Y22 = 0. The null 

hypothesis is that the two binomial(2) samples [Ylh,Y2h]' (h ---- 1, 2) are from a 
common population, as opposed to the full model of two populations with possibly 
different success rates 7r = tt/2. The reference adjustment is to add 1/4 to each 
Yjh. The results of three common tests are shown in Table 6. Here the deviances 
and Pearson ~(2 for the null and alternative models, and the Wald statistic for 
the larger model, are calculated in the usual way as in Aitkin et al. (1989) or 
McCullagh and Nelder (1983), but with the adjusted data and adjusted fitted 
model. Thus, e.g., the Wald statistic here is /~ , [~(~)]-1~.  Each test statistic 
follows approximately a X~ distribution, central under the null hypothesis. (A 
Bayesian might prefer to point out that, conditionally given/~, ~'~(~)-1/203 - 
~) has approximately a standard normal distribution.) These results may be 
compared with the "exact" p-level 0.125 based on permutational distributions 
(CYTEL (1990)), wherein for each h, a population of Y.h individuals is allocated 
randomly among the r outcome categories. Using a convenient coding of the 
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full model, the two estimated coefficients with SEs are 412 = log(#12/#11) = 
2.197-4- 2.357 and }22 - ~1~ = 1og(#22/~'12) - log(#21/#11 ) = 2.556 ± 3.333. No such 
normal approximation or calculation can be made with the unadjusted likelihood. 

Table 6. 

Adeviance APearson X 2 Wi ld  

unadjusted 5.545 -- X12(0.018) 4.000 -~ X12(0.045) incalculable 

adjusted 2.945 = X2(0.086) 2.556 = X2(0.110) 1.738 -- X2(0.187) 

5.2.3 A 3 × 9 example 
070000011 

The table 111111100 appeared in CYTEL (1990), with the results in Ta- 
080000011 

ble 7, the two permutational p-levels being those observed for Adeviance and 
APearson )/2 respectively. Treating this as 9 trinomial samples, the reference 
adjustment is to add 4/9 to each Yjh. The results are Adeviance = 8.792, 
APearsonx 2 -- 9.164, a n d  ~ / [ ~ ( 2 ~ ) ] - 1 / ~  ~_~ 7.316, for all of which the X126 dis- 
tribution carries no suggestion that not all 9 trinomial observations come from 
a common population. Does this contradict the small exact p-levels ~ 0.04? 
These are difficult to interpret in the absence of a specified alternative model. 
Looking at two columns at a time, there is little or no evidence that any one of 
the sparsely sampled trinomial populations [Tflh, 7f2h, 'ff3h] / (i.e., for h ~ 2) differs 
from [~12, ~22, ~32]'- Also there is no evidence that  the [7I'1h , 7i'2h , 7{'3h ]' (h ¢ 2) 
are not all the same. The decision to treat the sparse columns unconsolidatedly 
expresses a prior belief that these 8 populations differ and rejects any "pooling" 
of the data columns h ~ 2. On the other hand if we knew a priori that they 
were the same, we would collapse them and analyse the 3 × 2 table with columns 
[7, 1, 8]' and [2, 6, 2]', with success probabilities ~/jh (~/-h = 1). The results of the 
tests of H0 : ["/11, "/21, "/'/31]' ~-- ["/12, "/'/22, "/32] / are then shown in Table 8 in good 
mutual agreement, and in close agreement between the X2(0.040) and the exact 
permutational p-level of the 3 × 9 table. It appears that the choice of alternative 
hypothesis matters. 

Table 7. 

Adeviance APearson X 2 Exact  Permutat ional  p-levels 

unadjusted X216 (0.119) X26(0.169) 0.045, 0.041 

Table 8. 

Adeviance APearson X 2 Wi ld  statistic 

unadjusted 9.362 = X~(0.009) 8.989 = X22(0.011) 6.840 = X22(0.033) 

adjusted 8.422 = X2(0.015) 8.186 = X22(0.017) 6.433 -- X22(0.040) 
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5.3 Logistic binomial simple regression: the Cox data 
At each of four ages t~, ki items were randomly selected from the population of 

t~-hour-old items and tested; of these Yn failed and Y~2 did not fail (Table 9). This 
data has appeared widely (Cox (1970), Jennrich and Moore (1975), BMDP ((1983), 
Chapter  14)). The model fitted was log[#~l/(k~ - #~1)] -- a + ~t~, #i2 = k~ - #~1, 
Y(# i ) -  = diag[1/~il,  1/~ti2] which, together with ~ ( & ,  ~) = [X'Y(f~)X] -1 where 
Y(#) = diag[v(#i)] = diag[#il(ki -# i l ) /k~] ,  leads to MQLEs & = -5.172 + 0.692 
and/} = 0.0753 4- 0.0212. (An alternative "unconsolidated" analysis of Table 9, 

with X = , each ki = 1, and n ~ [55, 157, 159, 16], 

produced & -- -5.115 and ~ -- 0.0720.) For posterior modal estimation, the 
distinct rows of 1] 

X = t2 
t3 
t4 

imply all wj = 2/4, leading to the reference adjustments whereby each Yih is 
replaced by Yih + 1/4 and [1 + 1/2ki]v(~i) replaces v ( ~ )  = d iag(~)  - (1/ki)#i~ 
(2 × 2). The results & -- -5.099 =t= 0.701 and fl = 0.0744 + 0.0219 testify to 
a dataset of sufficient strength that  the omission of q((~,/3 I X) from q((~, fl I 
X)dad~ results in only negligible distortion. (The unconsolidated reference PME 
analysis requires unbalanced adjustment weights ~ = [0.378,0.748,0.751,0.123] 
and produces similar results.) 

Table 9. The Cox ingot data. 

age in hours ti -- 7, 14, 27, 51 

number observed to fail Yil -- 0, 2, 7, 3 

number observed to not fail Yi2 -- 55, 155, 152, 13 

5.4 MQLE vs. reference PME for a smaller ingot experiment 
Although MQLE and reference PME produce similar inferences on moderately 

informative datasets, a small-sample MQLE vs. reference PME comparison high- 
lights the difficulties of MQLE with small samples: 100 random "ingot" samples 
were generated with four binomial(k/) observations each, with k = [5, 16, 16, 2], 
about one-tenth the sample size of the Cox data. a -- - 5  and /3 = 0.1 were 
simulated. Summaries of the 100 resulting MQLEs and PMEs are shown in Table 
10. Standard calculations of credibility intervals for functions of [c~,/3] are based 
on the assumption of approximate posterior normality. These are the same as 
the standard calculations of confidence intervals, which, from the sampling distri- 
bution standpoint,  are based on the assumption of approximate normality of the 



POSTERIOR MODE ESTIMATION 433 

distribution of [&, ~], or of [6,/~]. The qualities of these two normality assump- 
tions (about sampling and posterior distributions) are closely related, but it is 
more convenient to compare the quality of the normality assumption, as it applys 
to [5, ~] vs. [6, f~], from the latter standpoint, that of sampling distributions: the 
grouped histograms in Fig. 3 are typical of comparisons in small-sample logistic 
regression, between the qualities of the normality assumption for MQLE and ref- 
erence PME respectively. This illustrates an example of superiority of a reference 
PME, at least from a sampling distribution standpoint. 

Table 10. Means and standard deviations of 100 estimates from a = -5 and fl = 0.1. 

estimate & ~ & 

means -12.44 0 . 2 4 0  -4.619 0.078 
standard deviations 19.09 0.506 2.563 0.089 
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-60 
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-30************ 
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-**************************** 

************************************************* 

(a) 100 valu~ of & 

-ll****** 
-i0 
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-7 
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************************** 
************************ 

-3************** 
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0"* 

(b) 100 values of 

Fig. 3. 
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6. Conclusions 

The  purposes of conjugate PMEs  are to  deal conveniently with small samples 
and with prior information. The  availability of PMEs  from an infinite ar ray of 
conjugate priors allows the scientist ei ther to adopt  some s tandard  reference prior 
or else to  choose a prior by specifying some form of prior knowledge. The  M Q L E  
may be intractible a n d / o r  misleading for small or sparse datasets .  (This needs 
fur ther  investigation, especially with models for continuous data.)  The  usual Jef- 
freys' prior is in some cases analytically intractible; hence we have proposed a 
convenient conjugate  reference P M E  related to  Jeffreys' and minimally informa- 
tive priors. The  specification of prior information can be conveniently carried out  
by specifying the general ranges of expected outcomes #i in terms of prior upper  
and lower percentage points of prior distributions. 
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