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A b s t r a c t .  Expans ion  for the  difference of mean absolute  devia t ions  from 
the  sample  mean and the  popula t ion  mean is derived. This  resul t  is used to  
ob ta in  s t rong representa t ions  for mean absolute  devia t ions  from the  sample  
mean  and the sample  median.  Edgewor th  expansions for some scale invariant  
s ta t i s t ics  involving the  mean  absolute  devia t ions  are  s tudied.  These expansions 
are shown to be  valid in spi te  of the  presence of a la t t ice  variable.  
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1. Introduction 

Recent research on robust statistical inference has motivated the development 
of statistical methodology based on the Ll-norm in preference to the traditional 
methods based on the L2-norm or least squares. However, from time to time at- 
tempts have been made to use the Ll-norm in estimation and tests of significance, 
but the complexity of the distributions involved stood in the way of their use in 
practical applications. 

For instance, if X1 , . . . ,  Xn is an i.i.d, sample from a distribution function F,  
the alternatives 

(1.1) 2 = mean{X1, . . . ,  Xn} and )(  = median{X1, . . . ,  Xn} 

were considered as estimators of a location parameter, and the mean absolute 
deviations 

(1.2) M1 = n-1 E IXi - )fl and M2 = n -1 E IXi - X] 
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were considered as estimates of a scale parameter as alternatives to the root mean 
square deviation 

(1.3) 

Godwin (1943) found the distribution of M1 when F is normal, but the expression 
for the density turned out to be very complicated. Geary (1936) considered one 
of the following statistics (W1) 

M1 M2 
(1.4) W1 = , W2 = 

8 8 

as a test of the normality of F.  In fact, he obtained the Edgeworth expansion of 
the distribution of W1 when F is normal. Herrey (1965) discussed the use of one 
of the following statistics (tl) 

v (2 - It) v (2 - It) 
(1.5) tl -- and t2 - 

M1 M2 

to obtain a confidence interval for the unknown mean It of the population when F 
is normal. His analysis rests on the fact that )(  - # and M1 are independent for 
samples from a normal distribution. Two other possibilities for this purpose are 

v (R - It) v (k - p)  
(1.6) t3 - and t4 - 

M~ M2 

In this paper, we derive the asymptotic representations of the statistics 

(1.7) M1, M2; W1, W2; tl, t2 

for a general d.f. F ,  and obtain Edgeworth expansions under some moment con- 
ditions. 

We also consider the Gauss-Markov linear model, define statistics of the form 
(1.7) depending on L1 and L2-norms, and study their asymptotic distributions. 

We use the elementary integral representation 

~0 
1 

(1.8) Ixl - ]x - a] = a sign(x - ya)dy 

to express the statistics (1.7) as a sum of i.i.d, random variables plus quadratic 
term plus a remainder which is negligible in large samples. The recent work of 
Babu and Singh (1989) is used to obtain the Edgeworth expansions. 
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2. Asymptotics of the mean absolute deviations 

Let X1 , . . . ,  Xn be i.i.d, random variables with a common d.f. F such that 

(2.1) E(X1) : ~ ,  Y ( X l )  ~-  (7 2 < (Do 

and define the statistics (mean absolute deviations) 

(2.2) M 1  = n - 1  IX~ - 21 ,  M2 ---- n -1 ~ IX, - 21  
1 1 

where .K and )~ are the sample mean and median respectively. In this section, we 
obtain representations of M1 and M2 to derive their asymptotic distributions and 
for later use in Section 3 in getting the Edgeworth expansions of the distributions 
of certain statistics. We denote 

(2.3) M~ = n -1 ~ IX~ - ~1, M~ = n -1 y ~  IX, - "1 
1 1 

where # and v are the population mean and median respectively. Let Fn denote 
the empirical distribution function 

?% 

(2.4) F,(x)  = 7t -1 E I (X i  <_ x). 
1 

We have the following theorems. 

(2.5) 

Then 

(2.6) 

THEOREM 2.1. Suppose that for some c > 1 and 0 < fl <_ 1, F satisfies 

IF(x)  - F ( , ) I  < ctx - ,1 ~. 

M1 -- M~ + (2Fn(#) - 1)()( - #) + (5( - #)Rn 
i "  1 

+ 2 (2  - #) ]0 IF(# + ( 2  - #)y) - F(#)]dy, 

where for some k > O, 

(2.7) P([X - #[ < n -1/2 logn, [Rn[ > k(logn)(l+fl)/2n -(2+~)/4) = O(n-2). 

PROOF. Clearly by (1.8) and Lemma A.1, 

fo ° M~ - M~ = ( 2  - ~)  ~ -1  ~ [ 2 I ( X ~  - ~ _< ( 2  - ~)y)  - l l ey  
1 

{ /o 1 } = ( 2 - # )  ( 2 F n ( # ) - l ) + 2  [ F ( # + ( 2 - # ) y ) - F ( l ~ ) ] d y + R n  , 
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where 

(2.8) 
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1 

R~ = 2 fo [F,~(it + ( 2  - It)y) - Fn(it) - F( i t  + (X - It)y) + F(#)]dy.  

By taking an as in Lemma A.2 to be n -1/2 logn,  we get (2.7). This completes the  
proof. 

THEOREM 2.2. I f  F is differentiable in a neighborhood of It and the derivative 
f at It is positive, then with probability 1, 

(2.9) M1 - M I = (X - It)(2Fn (#) - 1) + ( 2  - It)2 (f( i t )  + o(1)) + O(n -5/a (log n)2). 

PROOF. By Lemma A.4, we have with probability 1 

(2.10) n~ /~ lx  - ul <- logn 

for all large n. In view of (2.10) and 

/01 /01 IF(it + ()~ - #)y) - F(it)ldY = y ( X  - I t ) ( f (#)  + o(1))dy 

: ~ ( 2  - u)( f ( i t )  + o(1)), 

the  result (2.9) follows from Theorem 2.1, by taking/3 = 1. 

THEOREM 2.3. Suppose that for  some c > 1 and 0 < fl < 1, F satisfies the 
condition 

(2.11) IF(x) - F(I~)I _< clx - Itl ~. 

Then 

(2.12) v~[M1 - M~ - (2F(it)  - 1)(){ - /~)]  P~ 0. 

Consequently 

(2.13) v/-n(M1 - (2F(it) - 1)(X - It) - EIX1 - Itl) ~ Y(0,  a~), 

wher{~ 

a~ = V ( l X l  - It[ + (2F(it) - 1)(X, - It)) 

= (2F(it) - 1)2V(X1) + (4F(#)  - 2)cov(lX1 - ItI,X1 - It) + V(IX1 - Itl). 

In particular, i f  F(# )  = 1/2, i.e., the population mean and median coincide, then 

(2.14) v~(M1 - EIX~ - Itl) 9 ,  U(0,  V(]X1 - #l)). 
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PROOF. Since v/-~]X - #] is bounded in probabili ty and Fn(#)  P~ F(#) ,  
(2.12) follows from Theorem 2.1, from which (2.13) follows. 

THEOREM 2.4. Let F be differentiable in a neighborhood o f #  and the deriva- 
tive f at # be positive. We have: 

(i) /y F (~)  # 1/2, then 

V/-~[2F(, ) _ 1]_1(M1 _ MI ) 9 g ( 0 ,  V(Xl) ) .  

(ii) I R E ( # )  = 1/2, then 

n ( i l - U ; )  v f ( # ) U  2 _ U V ,  

where (U, V)  is a bivariate normal variable with mean zero and covariance matr ix  

[ y(x1) ElXi- f] 
-= L EIX1 - #[ 1 " 

PROOF. The results of Theorem 2.4 follow from the representat ion (2.9) of 
Theorem 2.2, and (2.12) of Theorem 2.3, which imply tha t  

v / - n [ M 1 - M ~ - ( X - # ) ( 2 F ( p ) - I ) ]  e 0, if F ( # ) ~ 1 / 2  

and 

n[(M1 - M~) - (X" - # )2 f (# )  _ (.e~ - #)(2Fn(#)  - 1)] P,  0, 

if F ( # )  = 1/2. 

THEOREM 2.5. Let F have a unique median t~ and satisfy the condition 

IF(x) - F(t/)l < clx - t/I s 

for  some c > 1 and 0 < <_ 1. I f  - t/) is bounded in probability, then 

(2.15) v'~(M2 - EIX1 - / / I )  z~ N(0,~2),  

where 
~2 = E ( X 1  - t/)2 _ (E IX 1 _ t/l)2. 

Remark  1. The conditions of the theorem hold, in particular,  if F has a 
derivative f in a neighborhood of v and f( t /)  > 0. 

PROOF. Using the  result (1.8) 

~o 1 M2 - M~ - (X - u) [2F,~(u + ()(  - u)y)  - 1]dy. 
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F~(v + ( 2  - . )y)  - ~ P, O, s u p  
0 < y < l  

we have 
v ~ ( M 2  - M~) P, 0. 

The result (2.15) follows since 

x/~(M~ - EIX1 - vl) .v  N(0,~2). 

This completes the proof. 

L e t / ~  and #a denote the a - th  sample and population quantiles respectively. 
Then we have the following theorem: 

THEOREM 2.6. Suppose that F has a continuous derivative f in a neighbor- 
hood of #~ and f (#~)  > O. Then, with probability 1, 

n 

(2.16) ~ ( I x ,  - ~ t -  Ix, - . ~ l )  
i----1 

= - n ( 1  - 2a)(/~a - #a) - n(/2a - #a )2 ( f ( /~ )  ÷ o(1)) 

+ O(n-1/a(logn)3/2).  

PROOF. Note that  by Lemma A.3, we have with probability 1 

f~a - #~ = O(n-1/2(log n)U2). 

Then the result (2.16) follows from Lemmas A.1 and A.2 using the same lines of 
proof as in Theorems 2.1 and 2.2. 

From (A.6), we have 

COROLLARY 2.1. Under the conditions of Theorem 2.6, i f  a = 1/2, we have 
with probability 1 from (2.16), 

n( M~ - M2) = n( X - v)2(y(v)  + o(1)) + O(n-1/4(log n)2). 

As a consequence, it follows that  

n t 
(2.17) -~ f ( v ) (M~ - M2) 
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3. Edgeworth expansions for some scale invariant statistics 

In this section we obtain the Edgeworth expansions for the distributions of 
the scale invariant statistics 

M1 Ms 
(3.1) w 1 -  , w 2 =  

s 8 

v~(X - ~) v~(:~ - ~) (3.2) t l  - -  , t2  - -  

Mi M2 

using the asymptotic representations of M1 and 21//2 derived in Section 2. It turns 
out that  the main terms in the asymptotic expansions of these statistics involve lat- 
tice as well as non-lattice random variables and the standard results on Edgeworth 
expansions of their distributions are not applicable. However, the lattice variables 
appear only in the quadratic term for W1 and W2, in which case the recent results 
of Babu and Singh (1989) enable the evaluation of two-term Edgeworth expansion 
for W1 and W2. By using a generalization (see Babu (1991)) of the results of Babu 
and Singh (1989), we develop three term Edgeworth expansions for ti, i = 1, 2. 

The following notations are used 

V ( X l )  = E ( X 1  - #)2 _~ o.2, 

Y~ = ( X i  - ~ ) / 0 . ,  ~1 --  E I Y l l ,  

Z,  -- IXi  - ~1/0., ~ = E ( Z I ) ,  

1~ _- n-1 ~ Y/, 

2 = n -1 ~ Z i .  

We now state and prove the main theorems. 

T H E O R E M  3 . 1 .  

of # and f ( # )  > O. 
neighborhood of #. 

Suppose that F has a continuous density f in a neighborhood 
For some c > 0 and/3 > O, let I](#) - f ( x ) l  < cl x -  #1 ~ in a 

I f  E(X61) < oc, then we have 

(3.3) 
1 3 
: 1  - y 2  IYI - "},'1 ~-- ~ -9 '1 (1  - y ~ ) 2  + R.1 W 1  - ~1 = L - Y H + 2 

where the notation ~t is used for  the average o r a l , . . . ,  an, 

and 

L / =  IY/I - ~ '1(1 + Y/2), H i = s i g n Y i - [ 0 . f ( # ) + ~ ' y l ] Y i ,  

P(IR.I] > an -1-~) = o(n -1/2) 

]:or some tc > 0 and e > O. 

PROOF. The theorem follows from Theorem 2.2 and the observation that  

-~ 3(1 - ( s l 0 . ) 2 )  ~ + O ( ( 1  - (s/0.)2) 3) a_s 1---- (1-(s/0.)  2)+-8 
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and the moderate deviation result of Michel (1976) that  for some A 

(3.4) P ( v ~ I X  - #l > Alogn)  = o(n-1). 

(In fact Michel (1976) shows that (3.4) holds under the condition E(X~) < oo.) 

THEOREM 3.2. Suppose that F has a continuous density f in the neighbor- 
hood of v and f (u)  > O. For some c > 0 and ~ > O, let If(u) - f(x)] < c l x -  v] ~ 
in a neighborhood of v. I~ E(x~) < cx~, then we have 

1 
(3.5) W2 - 9'2 = b - (1/4af(v))(1 - 2Fn(v)) 2 + ~Z - 9'2 1 - y2 

where 

1 1 n i  = Zi - ~9"2( + y2)  

for some ~ > O and e > O. 

and P(IRn21 > an -1-¢) = o(n -U2) 

Proof of this theorem is similar to that of Theorem 3.1, and so is omitted. 
Note that if u = p, then Z~ = tYil and 9'1 = 9'2 and hence D~ = Li. Further, 

in both the representations (3.3) and (3.5) the lattice variables appear only in the 
quadratic term. So the results of Babu and Singh (1989) which generalize some of 
the results of Bhattacharya and Ghosh (1978), apply and both W1 and W2 have 
valid two-term Edgeworth expansions. The next theorem gives these expansions. 

THEOREM 3.3. Under the conditions of Theorem 3.1, we have uniformly in 
x 

1 
(3.6) P(v~ (W1  - 9'1) _< x) ---- (bu~ (x) + - ~ p l ( x ) ~ n ~ ( x  ) + o(n-1/2). 

Under the conditions of Theorem 3.2, we have uniformly in x 

1 
(3.7) P(v~(W2 - 9'2) _< x) ---- ~,~(x) + -~p2(x)~pn~(x) + o(n-1/2). 

In (3.6) and (3.7), 

~ = E ( L ~ )  = 1 + ~9"1 [ E ( X i  - . ) ~ o - ~  - 11 - ~ E I X i  - . I ~ o  - ~ ,  

1 E rl~ = E ( D ~ )  = E ( X a  - v )2~  -2  + ~9"2[ (X~ - v ) %  - 4  - 11 

- 9"2E[(X1 - .)21X1 - vl~-3], 
1 1 x 2 2 pl(x) = ~ + ~ 1 3 (  - ( / , ~ ) ) ,  

1 
p2(x) = ~2 + ~ 2 3 ( 1  - ( ~ / ~ ) ) ,  
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where 

= 1  5 -  ~ ~1[ 3~-~E(X1 - t) ~] ~f(t) + ~ - ~ E I X ~  - t l  ~, 

/g2 - -  4 f ( t / )  ~"/2 -}- E [ ( X l  - t ) 2 1 X l  - / ] l f f - 3 ] ,  

7112/~13 --- E(L 3) - 6E(LIY1)E(LIHI) - 3E(L11Y1 IS(LaY})) 

+ ~ I ( E ( L 1 Y } ) )  2, 

~ 3  = E(D 3) 3 2f(v) E[D1 sign(X1 - v)] 2 - 3E(DIZ1)E(D1Y 2) 

+ 3(E(DIY1)) 2 + ~?2(E(DzY})) 2. 

Remark 2. If F is symmetric, then 

---- 7122~;23 ~--- E(L 3) - 3E(IY 11L1)E(y2L1) + 9~fl (E(LIY}))  2. T]12~13 

Remark 3. ~/1 = E(IX - t] /a)  is known for some parametric families. For 
example in Gaussian case, V1 = v/2v/~- The order of error in (3.6) does not change 
if the coefficients of the polynomial Pl are replaced by their sample estimates. 

In view of the unknown parameter 711 , (3.6) may not be of much help in 
practice. However, such expansions are essential, in establishing superiority of the 
bootstrap estimate. By some additional algebra, it is possible to show, as in Liu 
and Singh (1987), that  the bootstrap distribution of v/~(W1 - "Y1) gives a better 
approximation to its sampling distribution than (I)v~., (x), in terms of asymptotic 

mean squared error, where 712,n is an estimator of 7112. Similar comments apply 
throughout  this section. 

We now consider representations and three-term Edgeworth expansions for tl  
and t2 defined in (3.2). 

From Theorem 2.1 and (3.4) we have the following representations. 

THEOREM 3.4. Suppose that F has a continuous density f in a neighborhood 
o f t  and f ( t )  > O. For some c > 0 and/3 > O, let I f ( t )  - f(x)l  < c l x -  t l  f~ in a 
neighborhood of t .  I f  E(X¢) < oc, then 

(3.s) t l  ---- V / - ~ ( X  --  t ) (1  - U + V ( X  - t )o "-z + 0 2) + Rn3 
"/1Cr 

where 

and 

~ l U i  = Ix~  - t l  - ~/1 n t- ( 2 F ( t )  - -  1 ) ( X i  - t ) ,  

"}'IV/ = 2 F ( t )  - 2 I ( X i  <_ t )  - f ( t ) ( X i  - t )  
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P(IP~a[ > t~n - l - e )  = o(n -1) 

for  some ~ > O and e > O. 

THEOREM 3.5. Under the conditions of Theorem 3.4, i f  tt = u, then 

(3.9) t2 = v ~  ( ) ~ -  . ) ( 1 - U "  + / )2  + ( 1 -  2F" (u ) )2 )  
710. 4~  1 - ~ - ~  -~- Rn4 

where P(IRnn[ > ~n -1-~) : o(n -1) for some tz > 0 and e > O. 

The results of Babu and $ingh (1989) do not give a valid three- term Edgeworth 
expansion for tl and t2. However, a refinement of it due to Babu (1991) provides 
the desired expansion. 

THEOREM 3.6. 

(3.10) 

for i = 1. 

Under the conditions of Theorem 3.4, we have 

P( t l  <_ x) = ¢~,_2(x)  

7 1 ~ 1  ( 7~n [P2(71x) + P2i(71x)]) + \ P l ( ~ / , x ) +  

• ~ , .1 ,1__2(X) -~- O('rt -1) 

(3.10) also holds for  i = 2 if  in addition # = u. 

In (3.10), 

Pl(x) = +  3((1 - 
2 

a2 a a ( 3 x _ x  3 ) + a 3  3 15x xh), P2(x) = - ~ x  + ~ ~-~(10x - - 

P21(x) = - x 3E( Y I V1)  = xa(~f(#)  - 71)/71, 

P22(x) = [(71 - (1/71))X -- 71X3]/(4f(#)), 
where 

t~ 2 = 

t~ 3 : 

t~ 4 : 

E(UIY1) = [E(YIIYlt) + 2F(#)  - 1]/71 

[E(~-2(X1 _ #)2 sign(X1 - #)) + 2F(#)  - 1]/71, 

6~12 -- 2E(U1Vl 2) + 3E(U 2) 

6t~ - 27~-2[1 - 7~ + (2F(#) - 1) 2 + (4F(#) - 2)E(Y12 sign Y1)] 

+ 3E(UI ), 

E [ a - 3 ( X 1  - / _ 0  3] + 6t~l, 

E ( Y  4) - 3 + 16~IE(Y1 ~) - 12E(U1Y12) + 12E(U 2) + 84al 2. 

Remark 4. If X1 is symmetrically distributed, then clearly g l  ---- g3 ---- 0 and 
hence PI(x)  - O. Further  Ui = 71-11Y/I- 1 so that  

t~2 = 3712 - 1 - 2711a-3EIX1 - #13, 

~4 = E[(XI  - #)4a-4] - 3 - 12712(1 - 7Vr-3EtX~ - ttt3). 
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R e m a r k  5. ~/1 here is the shape parameter which is known for some paramet- 
ric families. The coefficients of the polynomials/92, /O21 and P22 can be replaced 
by their estimates without changing the magnitude of the error. For symmetric 
populations P1 -- 0. So 

^ 

P ( t l  _< x) = (I).yl_2(x) + ~l---~n (P2(~lx) + D2i(~lX))~/1--2(X ) -~- o(n-1), 

where ^'s signal that the quantities are estimated. In the Gaussian case ~/1 = v /2 /7r ,  
~1 ~-- t~3 ---~ 0~ 

a2 = (3r/2) - 1 - v f ~  and a4 = - 1 2  + 6 v / ~ .  

Some of the results on Edgeworth expansions may be derived using Bai and 
aao  (1991), instead of Babu and Singh (1989) and Babu (1991). However, it 
should be noted that, in our case, it is not trivial to verify Assumption 4 of Bai 
and Rao (1991). 

4. Statistics associated with linear models 

In this section, we consider the Gauss-Markov linear model, define statistics 
similar to those introduced in Sections 2 and 3 and discuss their asymptotic dis- 
tributions. To avoid complicated notation, we consider a simple model. Let 

(4.1) Yi = x i ~ / ~ + e i ,  i = 1 , . . . , n ,  

where ~i , . . . ,  en are i.i.d, random variables, xi~ are m-dimensional row vectors 
such that ~ x~nXin = I and the true value of fl is zero without loss of generality. 

We make the following assumptions 
(A1) The common d.f. F of ei has median zero, has a derivative f in the 

neighborhood of zero and for some c > 0 

1 
(4.2) f(0) > 0, F(0) -- and I f (y) -  f(O)l _ clyl 1/2 

(A2) 

(4.3) q n ( l o g n )  1/2 -~ 0 as n --~ oc, 

where q~ = max{llxinll : 1 < i < n}. Clearly nq 2 > m using the condition 

E '  X i n X i n  ~ I .  

We denote the least absolute deviations (LAD) and least square (LS) estimates 
of f~ by/~ and/~ respectively. 

Using the results of Babu (1989), the following theorem can be established. 

THEOREM 4.1. Under  the as sumpt ions  (A1) and (A2) we have: 
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(i) For some B > O, 

(4.4) P(IIDIt > B(logn) 1/2) = O(n-2) • 

(ii) 

(4.5) 2f(0)~ = Z x~n sign Yi + Rnl 
1 

where for some c > 0, P(IRnl[ > cqln/2(logn)3/4) = O(n-2). 
(iii) 

(4.6) n ] ~ 1  signyi 2 4f(O) x,n -4- R~2 
i=1 

1/5 5/4 where for some c > O, P([/~2[ > Cqn (logn) ) = O(n-2). 
(iv) Using Borel-Cantelli Lemma, it follows that the errors P~i 

(4.5) and (4.6) satisfy with probability 1 

(4.7) 

and t~2 in 

Rnl = O(ql/2(logn) 3/4) and Rn2 = O(qln/2(logn)5/4). 

THEOREM 4.2. 
sumption on the LS estimation 

(4.8) P(ll¢)ll > A(logn) U2) = o(n -i/2) or o(n - i )  

we have 

n n n 

(4.9) E ly~ - xin~l = ~ lyil + f(o)ll~ll ~ + 2 ~ x,n[/(y~ < o) - F(ol]~ + P~ 

Under the assumptions (Aa) and (A2) and the additional as- 

or o(n-1) .  

with probability 1, 

with probability 1. 

1 1 1 

where for some B > 0 

(4.10) P(IRnl > Bq~/2(logn) 5/4) = o(n -1/2) 

I f  the stronger condition 

(4.1i) ~ ---- O((logn) i/2) 

holds for the LS estimator ~, then 

(4.12) /~  = O(qln/2(log n) 5/4) 
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Remark 6. If E(ei) = O, E(e~) < oo and q~ = O(n-1/a(logn) -1) then by 
Lemma A.5 of the Appendix, (4.8) holds with o(n-U2). By similar arguments, it 
can be shown that (4.8) holds with o(n-:) if in addition E(e 6) < exp. 

In summary we have the representations: 

(4.13) 2f(0)~ = f ix~n signyi + R n l ,  

1 
?Z 

(4.14) ~ = E x~inYi' 

(4.15) $1 = f i  [Yi - xi~fl] 
1 
n n 

= ElYi l  + Exin(2I(yi  <- O)- 1 +yif(O))~+ P~2, 
1 1 
n n 

(4.:~) s~ = Z ( y i -  x i ~ )  2 = Z y ~  -I1~112, 
1 1 

n n I ~ 1  sign yi 2 (4.17/ s~ = ~ l y ~ - ~ l -  ~ ly~ l  1 
1 1 4f(0) Xin -~- Rn3 ,  

n n 

s ,  ~ = Z ( y ~ -  x ,~)~ = ~ y , ~  -If~ll ~ + I1~- ~11 ~, 
1 1 

(4.18) 

where the e r r o r s  R n l  , R, n2 and P~2 can be ignored in determining Edgeworth 
expansions for statistics based on (4.13)-(4.18) provided qn(log n) 5/2 = o(1). 

Formal Edgeworth expansions can be obtained for the distributions of statis- 
tics of the form Si/Sj, i ~ j, but to examine their validity we need to develop 
new tools. We content ourselves in giving the asymptotic distributions of some 
statistics which may be useful in statistical data analysis. 

Let the error term in the linear model (4.1) have a symmetric distribution. 
Then: 

(i) The asymptotic distribution of (/~,/~) is 2m-variate normal with zero 
means and variance covariance matrix 

E(y 2) (2f(O))-:E[Y:[) ® Ira. 
(2f(O))-:E[YI[ (2f(0)) -2 

(ii) The asymptotic distribution of 
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is (m + 1) vexiate normal with zero means and variance-covariance matrix 

0 
E(Y~) - (EIYll) 2 )" 

(iii) The asymptotic distribution of 

~, vfn(Xs1 -E'YI[) o r  v/-~ (~S3- EIY~ 0 
is (m + 1) variate normal with zero means and vexiance-covexiance matrix 

0 
( (2f(0)0)-2/m E(y12)_(E[Y1[)2). 

(iv) The asymptotic distribution of 

1 
V~ (sl ,  S~, $3, ~2) _ V~ (E[yl [, Vex Yl, E]yl [, Vex Yl ) 

is 4-dimensional normal (R, S, R, S), where (R, S) is bivexiate normal with zero 
means and vexiance~covariance matrix 

E(y2) - (Elyl]) 2 E(]yl] 3) - E(lYll)E(y21) 
E(]yl] 3) - E(]yl])E(y21) E(y~) - E(y21) )"  

(A.1) 

Appendix 

The following lemma is an immediate consequence of (1.8). 

LEMMA A.1. For any 01 and 02, we have 

~(fn(O2)- fn(Ol)) = (~  - Fn(Oi)) (02-O1) 

fo °" + (F(Oi) - F(x))dx + R~(Oi) 
1 

for i = 1, 2, where for any ( 
n 

1 Z ( ] X i ] _  ]X~- ([) fn(() : n 
(A.2) 1 

and 

f f  t~( ( )  ---- (F,(() - F,(x) - F(() + F(x))dx. 
1 

Further, if F has a derivative f at 01, then 

fo °~ 1 0 (A.3) (F(02) - F(x))dx -- 5( 2 - 01)2(f(01) + 0(1)) 
1 

and 



(A.4) 

as 02 ~ 01. 

LEMMA A.2. 

(A.5) 

EXPANSIONS FOR ABSOLUTE DEVIATIONS 

/ o2 1 0 
(F(01) - F (x ) )d x  = --~(  2 -01)2( f (01)  + o(1)) 

1 

For a fixed 0, let 

IF(x) - F(O)I <_ elx - 01 ~, 

for some c > 1 and 0 < ~ < 1. Let ( ( logn)/n)  < a~ < 1 and 

G.(O) = max{lg.(x ,O)l  : I x - O I  an}, 

where g,~(x, O) = F , ( x )  - F,(O) - F(x )  + F(O). Then 

(A.6) P(G~(O) > gbn)  <_ 6n -2, 

where bn = n-1/2(logn)l/2a~n/2 and g = 2c + 2 + (2~) -1. 

PROOF. Note tha t  for any lYl -< 1, e u _< l + y + y 2 .  
an, 0 + aN], A > 0 and 0 < 7/<_ 1, we have by (A.5) tha t  

(A.7) 

401 

So for any x in [0 - 

P(gn(x,  O) > A) <_ e-nAY(1 + ~/2]F(x ) - F(O)D n 

< e x p ( - n A r / +  n•21F(x) - F(O)I ) 

<_ e x p ( - n A r / +  cn~?2a~). 

By put t ing ~? = bna~ ~ and A = ( c +  2 + (2fl)- l)bn in (A.7), we get tha t  0 < r/<_ 1 
and tha t  the  r.h.s, of (A.7) is not more than  

(A.8) exp ( - (2 - ] - (2~ )  -1 )  l o g n )  ---- n -(2+(2j3)-1). 

We now let Vo = 0 - a~, 

vi+~ = u~ + b~/~ for i = 0, 1 , . . . ,  r - 2, 

~r ---- O + a n ,  

0 ~_ lY r -- 12r_ 1 ~_ b~/~. 

Clearly 1 < r < 2anb~ 1/~ <_ 2n 1/2~ _< 3n 1/2~ - 1 and 

(A.9) V, (0)  _< max Ig,(v~,0)l + max (F(uj)  - (F(v3_l)) .  
O(_j(_r l_(j_(r 

It follows from (A.5), (A.8) and (A.9) that  

r 

P(G,~(O) > Kb,~) < E P ( ] g n ( u j , o ) l  > ( K -  c)bn) 
5=0 

_< 2(r + 1)n -2-(2~)- '  <: 6n -2. 



402 G U T T I  J O G E S H  B A B U  

This completes the proof. 

Remark A.1. 

(A.10) 

LEMMA A.3. 
of I.tc, and f(I.t~) > O. 

(A.11) 

AND C. R A D H A K R I S H N A  RAO 

It is obvious from Lemma A.2 that with probability 1, 

limsup Gn(0)b~ 1 _< K. 
n - - ~ O O  

Suppose that F has a continuous derivative f in a neighborhood 
Then with probability 1, 

[z,~ - #,~ = O(n-1/2(log n)W2). 

PROOF. Let dn = n-1/2( logn)  U2 and 

F j t ( t )  = inf{x : F~(x) >_ t} 

for 0 < t < 1. Since F is continuous in a neighborhood of #~ it follows that for all 
large n, 

F ( F - I ( y ) )  = y  for all y e  [#~ - dm#~ + d,~]. 

Further, for any c > O, we have on D = {sup~ IF~(x) - F(x) l  <_ cd~}, 

F n ( F - l ( a  - 2cdn)) <_ F ( F - I ( a  - 2cdn)) + cdn < a 

< F ( F - l ( ~  + 2cdn)) - cdn <_ F n ( F - l ( a  + 2cdn)). 

Hence on D, 
F - l ( a  - 2cdn) ~ f~a ~_ F - l (  a + 2cdn). 

Since F -1 is differentiable in a neighborhood of a, the lemma follows from the 
well known result that with probability 1, 

sup IFn(x) - F(x)l = O(dn). 
X 

LEMMA A.4. Let {Z~} be a sequence of i.i.d, random variables with mean 
zero and E ( Z  2) < oc. Then with probability 1, for all large n, 

v~121 <_ logn. 

PROOF. Let 

Z~ = Zd(IZ~l <_ v~)  

By Markov inequality 

(A.12) 

for i = 1, 2, . . . .  

P 2 _> v ~ l o g n  _< n -2 HE[exp(4Z~n-1/2)]"  
i=1 
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But 

E(exp(4Z~n-1/2)) <_ 1 + 4n-X/2E(lZ~lI(]Z~] > vq)) + 8E(Z21)n-te 2 
= 1 + O((in) -1/2) + O(n-1). 

So the r.h.s, of (A.12) is O(n-2). Since 

o o  o o  OO 

Z P(Z, # Z~) <_ Z P(IZ'I > v ~ ) =  Z P(IZI[ > v~) 
i=1 i=1 i=1 

< I + E(Z 2)<oo,  

it follows by the Borel Cantelli lemma that with probability 1, Zi = Z~ for all large 
n and [ ~-~n__ 1 Z~I < v/-n(log n)/2 for all large n. These two facts together imply the 
result. 

LEMMA A.5. Let E(yl) = 0 and Ey~ < oc. Let q~ = O(n-1/4(logn)-l),  
then for some A > 0 

P(I]~]I > A(l°gn) 1/2) = °(n-W2) • 

The lemma can be proved using a result on exponential inequality similar to 
Lemma 2 of Babu (1989). 

REFERENCES 

Babu, G. J. (1989). Strong representations for LAD estimators in linear models, Probab. Theory 
Related Fields, 83, 547-558. 

Babu, G. J. (1991). Edgeworth expansions for statistics which are functions of lattice and non- 
lattice variables, Statist. Probab. Left., 12, 1-7. 

Babu, G. J. and Singh, K. (1989). On Edgeworth expansions in mixture cases, Ann. Statist., 
17, 443-447. 

Bai, Z. D. and Rao, C. R. (1991). Edgeworth expansions of a function of sample means, Ann. 
Statist., 19, 1295-1315. 

Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion, 
Ann. Statist., 6, 434-451. 

Geavy, R. C. (1936). Moments of the ratio of the mean deviation to the standard deviation for 
normal samples, Biometrika, 28, 295-305. 

Godwin, H. J. (1943). On the distribution of the estimate of mean deviation obtained from 
samples from a normal population, Biometrika, 33, 254-256. 

Herrey, E. M. J. (1965). Confidence intervals based on the mean absolute deviation of a normal 
sample, J. Amer. Statist. Assoc., 60, 257-269. 

Liu, R. Y. and Singh, K. (1987). On partial correction by the bootstrap, Ann. Statist., 15, 
1713-1718. 

Michel, R. (1976). Non-uniform central limit bounds with applications to probabilities of devia- 
tions, Ann. Probab., 4, 102-106. 


