
Ann. Inst. Statist. Math. 
Vol. 44, No. 2, 335-356 (1992) 

ASYMPTOTIC EXPANSIONS FOR TWO-STAGE RANK TESTS 

WILLEM ALBERS 

Department of Applied Mathematics, University of Twente, 
P.O. Box 217, 7500 AE Enschede, The Netherlands 

(Received June 28, 1990; revised March 11, 1991) 

A b s t r a c t .  Stein's two-stage procedure produces a t-test which can realize a 
prescribed power against a given alternative, regardless of the unknown vari- 
ance of the underlying normal distribution. This is achieved by determining 
the size of a second sample on the basis of a variance estimate derived from 
the first sample. In the paper we introduce a nonparametric competitor of this 
classical procedure by replacing the t-test by a rank test. For rank tests, the 
most precise information available are asymptotic expansions for their power 
to order n -1, where n is the sample size. Using results on combinations of 
rank tests for sub-samples, we obtain the same level of precision for the two- 
stage case. In this way we can determine the size of the additional sample to 
the natural order and moreover compare the nonparametric and the classical 
procedure in terms of expected additional numbers of observations required. 

Key words and phrases: One-sample problem, Stein's two-stage procedure. 

1. Introduction 

Consider the following one-sample problem: let X 1 , X 2 , . . .  be independent  
identically dis t r ibuted (iid) random variables (rv's) from a continuous distr ibution 
function (df) F ( x - O ) .  Suppose tha t  the dis tr ibut ion de termined by F is symmetr ic  
about  zero, i.e. F ( - x )  = 1 - F ( x )  for all x. Then  we are interested in test ing 
H0 : 0 = 0 based on a sample from the sequence X1, X 2 , . . . .  For the special case 
where F ( x )  = ¢b(x/a), in which (I) is the s tandard  normal  dr, Stein has proposed 
the following two-stage procedure  (see e.g. Lehmann  (1986), pp. 258-260). Take 
an initial sample of size m and evaluate its sample variance SZm . Then  take a 
second sample of size N - m, where 

(1.1) N = max(m,  lS2/c] + 1), 

in which c > 0 is any given constant  and [y] denotes the largest integer < y. 

Stein has shown tha t  N 1 / 2 ( X  N - O)/Sm, where -'~N = N-1 EN=I Xi, has a tin-1 
distr ibution.  Consequently,  for any given al ternative,  the constant  c from (1.1) 
can be chosen such tha t  the corresponding test  has at  least a given power against 
tha t  al ternative,  independent  of the scale pa ramete r  a. 
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The purpose of the present paper is to investigate to what extent this nice 
feature of having a power independent of certain aspects of the unknown under- 
lying df can be generalized to the case of rank tests. This would provide a more 
balanced situation in the following sense: fixed sample size rank tests, being distri- 
butionfree, have levels which are completely independent of F ,  whereas the powers 
are directly dependent of F.  Hence it would be nice to have independence of e.g. 
scale parameter here too. 

Clearly, the results obtained cannot be expected to be more precise than those 
with the fixed sample cases, and hence we will have to be contented with asymp- 
totic rather than exact results. However, the asymptotic results available for fixed 
sample sizes n are not the mere first order normality results, but also asymptotic 
expansions to o(n -1) from Albers, Bickel and van Zwet (1976) (to be denoted by 
ABZ in the sequel). Hence we shall derive such expansions for two-stage rank tests 
as well. Perhaps it is useful to remark already at this point that we shall concen- 
trate on the case where N exceeds m with large probability, i.e. where the second 
sample is not-empty. For if this is not true, we will, with positive probability, use 
more observations than are necessary to attain the prescribed power, and hence 
the realized power will exceed it by a non-negligible amount, even to o(1). But 
if there is already a discrepancy to first order, there is no need to pursue second 
order results. 

Another introductory remark is the following. Even taking into account that 
the results from ABZ provide an excellent starting point, the derivation of expan- 
sions for two-stage rank tests poses tedious technical problems. Therefore, we shall 
use a device which simplifies matters considerably. Instead of evaluating the rank 
statistic in question for the total sample of size N, we let the two-stage character 
persist, then we evaluate separate rank statistics for the initial and the second 
sample. These two are then combined to a total statistic in an optimal manner. 

The likely objection to this approach is that, simple as it may be, it will 
lead to an inferior procedure. However, this is definitely not the case. A similar 
device was applied by Albers and Akritas (1987) in the context of censored rank 
tests and was seen to work well. Moreover, Albers (1992) demonstrated that  for 
rank tests, the loss due to splitting the sample can typically be compensated by 
as little as one additional observation. Incidentally, note that an explanation for 
the negligibility of such losses is also suggested by observing that Stein's statistic 
N1/2(f(.g 8)~Sin itself can be viewed as a linear combination of the separate 
statistics m 1/2 (X~  - 8)~Sin and ( g  - m) 1/2 ( ' X ~ V - m  - -  8)~Sin, with )f,~ and ~-~V--m 
the averages of the first and second sample, respectively. 

In Section 2 we shall derive the desired expansion along the following lines. 
Using a suitable conditioning argument enables us to apply results from ABZ to 
each of the two separate rank statistics. The conditional expansions thus obtained 
in their turn lead through application of the results of Albers (1992) to a condi- 
tional expansion for the combined statistic. The result intended then follows by 
taking expectations. A specific choice of N as a function of the first sample, closely 
related to (1.1), is considered in Section 3. Some examples and a comparison to 
the performance of Stein's procedure are the subject of Section 4. Moreover, by 
way of illustration, a small simulation study is presented there for the case of 
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Wilcoxon's one-sample test. It turns out that the proposed procedure behaves 
quite satisfactory. In particular, it drastically improves the rather poor procedure 
based on mere first order approximations. Finally, the proofs are collected in the 
Appendix• 

2. The expansion for the two-stage test 

First we introduce some notation. As in the introduction, let X 1 , X u , . . .  be 
iid rv's with continuous df F(x  - 0), where F satisfies F ( - x )  = 1 - F(x)  for all 
x. For any given sample size n, let 0 < Z1 < ' . .  < Zn denote the order statistics 
of IXl l , . . . ,  IX~I. Moreover, let 

1 
(2.1) Y j =  0 

if the Xi corresponding to Zj is positive, 
otherwise, 

for j = 1 , . . . ,  n. Finally, let J be a continuous function on (0, 1) and let Ul:n < 
• .. < U~:n be the order statistics of a sample of size n from the uniform distribution 
on (0, 1). Then we have the exact scores 

(2.2) aj -- EJ(Uj:n), 

j = 1 , . . . ,  n. The one-sample linear rank statistic for testing H0 : 9 -- 0 is now 
given by 

n 

(2.3) T = a Yj. 
j=l  

Next we move on to the two-stage situation, where we have an initial sample of 
size m and a second sample of size N - m ,  in which N = N(X1, .  •., Xm) in general. 
The first and rather obvious restriction we impose is that  N = N ( Z ( m ) )  where 
Z(m) = (Z1,. • •, Zm) is the vector of absolute order statistics of the first sample. In 
this way it remains possible to preserve the distributionfree character of the test, 
as the Vj ' s  and Z(m) are independent under H0. The second restriction is the one 
announced in the introduction: to keep things tractable, we shall not consider a 
single rank statistic of the form (2.3) for the total sample, but instead work with 
separate rank statistics T1 and T2 for the first and second sample, respectively. As 
T from (2.3) under standard regularity conditions is asymptotically normal with 
mean and variance of the form 9n# and  nv ~2, respectively, it is straightforward 
to verify (also see Albers (1992)) that the optimal combination T* of T1 and T2 
simply equals 

(2.4) T* = T1 + T2. 

In passing we remark that our approach does allow the selection of different score 
functions for T1 and T2. This option for example, can be interesting in connection 
with adaptive rank tests (see Albers (1980)): the information contained in the 
first sample can also be used to select a hopefully better second score function. 
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However interesting it may be, it constitutes a digression involving considerable 
additional technicalities and therefore we shall not pursue it here. 

The purpose of the present section now is to obtain an asymptotic expansion 
for the df of the statistic in (2.4), being the sum of two ordinary rank statistics 
which are linked through the relation N = N(Z(m)). In the next section we 
shall investigate special choices of N(Z(m)) which are of particular interest for 
testing applications, but here we shall only impose certain regularity conditions. 
In addition to the trivially needed constraint N >_ m, the main assumption entails 
that for some e > 0 

(2.5) P((1 + e) _< N / m  <_ e -1) = 1 - o ( m - 1 ) .  

This condition ensures that  if the first sample size m ~ co, the size of the sec- 
ond sample will tend to infinity as the same rate, except on a set of negligible 
probability in an analysis to order m -1. 

The first step towards the desired expansion is to condition on Z(m). As 
T2 depends on the first sample only through N = N(Z(,~)), it is immediate that 
conditional on Z(m) -- z(m), this statistic is independent of T1 and moreover has the 
same distribution as the usual rank statistic from (2.3) for sample size N(z( ,~) ) -m.  
Consequently the asymptotic expansion for the df of T2 given Z(,~) = z(m) is readily 
available from Theorem 4.1 of ABZ, which we shall now quote. 

First we give the conditions on the df F and the score function J.  Let Q be 
the class of twice continuously differentiable functions Q on (0,1) that satisfy 

(2.6) l imsupt (1  - t) Q"(t) 3 
t 0,1 Q'(t) < 5" 

Let ~ be the class of df's on R 1 with positive densities that are symmetric about 
zero, four times differentiable, and such that, for %hi = f(~)/f ,  ~ ( t )  = ¢~(E-:  ((1+ 
t)/2)),  ml = 6, m2 = 3, m3 = 4/3, m4 = 1, we have g'l ~ Q (see (2.6)) and 

F (2.7) limsup 1¢i(x + y) l '~ f (x )dx  < oz, i =  1 . . . .  ,4. 
y--~0 ¢xD 

Let J be the class of nonconstant functions J on (0, 1) that satisfy J E Q and 

J'(t)dt < 
Next we introduce the expansion. Let ¢(k) be the (k + 1)-th derivative of ~, 

k -- 0, 1, 2 , . . . .  Simply denote ¢(0) by ¢. The Hermite polynomial of degree k is 
defined through 

( 2 . 8 )  Sk(x) = k = 0 , 1 , 2 , . . . .  

Hence Ho(x) = 1, Hi(x) --- x, H2(x) = x 2 - 1, H3(x) -- x 3 - 3x, etc. Moreover, 
we define using the convention that integration will be over (0, 1), unless stated 
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otherwise, 

(2.9) 

7,/2 ~- 

b 0 

51 -~- 

nl/20 f JOg1 
( f  j2)l/  , 

f j(3kOla- 6~1kD2 + kO3)f j2  

6 ( f  JlI/1)3 

f j 2 ~  _ f f  J(s)~'l(S)J(t)~i (t)(s A t -  st)dsdt 

2 ( f J v l )  2 
f J 3 ~ l  

b2 
3 ( f  j 2 ) ( f  jlI/1) ' 

b3 - f j4  
12(f j2)2' 

n n 2 E j = I  Covj E j = I  0-2 
bo,n - f J ~ l  f j2  ' 

where Covj = Cov(J(Uj:n), kDI(Uj:~)) and a 2 = a2(J(Uj:n)) (cf. (2.2)). Using 

(2.8) and (2.9) we arrive at the expansion G(x - ~n), where 

(2.10) G(x) = ~(x) T n-l ¢(x) l l ~ 3 } -2 rl'~b°''~ + E q(3-a)bkHk(X) " 
k=O 

Then we have: 

LEMMA 2.1. Let F E ~,  J E J and 0 < 0 < C n  -1/2 for some C > O. Then 
T from (2.3) satisfies 

(2.11) 2T-- ~ =  1 aj < x - G ( x -  ~?,~) = o(n-1). 
SU? P ~ (~n  a2 ~1/2 -- 

\ \z_.,j=l j} 

PROOF. This result is contained in Theorem 4.1 of ABZ. [J 

Application of Lemma 2.1 for sample size N(z(m))- m gives in view of (2.5) the 
conditional expansion for the df of T2 except on a set of probability o(m-1). For T1, 
the mat ter  is more complicated, as it obviously depends on Z(m ) = (Z1 , . . . ,  Z,~) 
in a more essential way than T2. Fortunately, however, the program carried out 
in ABZ to obtain the expansion for the df of the rank statistic in (2.3) precisely 
begins with conditioning on the absolute order statistics and establishing a condi- 
tional expansion (cf. p. 111). Hence, although Theorem 4.1 from ABZ cannot be 
applied to T1, earlier results, like Theorems 2.1 and 2.3 from ABZ, are relevant 
now. Of course, considerable modification is required for the present purpose. In 
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particular, the result for 7'1 has to be formulated in such a way that it lends itself 
to combination through the methods of Albers (1992) with the result for T2, thus 
producing a conditional expansion for the df of their sum T* (cf. (2.4)). 

Before we can formulate the result, we need some additional notations. For 
the statistic T in (2.3), let Z(n) --- (Z1, . . . ,  Z , )  and define, for j = 1 , . . . ,  n, 

(2.12) Pj = P(Vj = 1 I Z(~)), #j = EPj, 

with Vj as in (2.1). Moreover, let 

j = l  

Then, using (2.10), (2.12) and (2.13) we introduce the conditional expansion 

(2.14) / ~ ( x ) = G ( x ) + ¢ ( x ) { - 2 U +  [ - 2 ( U  2 - E U  2) 

n 2 2 ] 1 E ~ = ~  a~((2P~ - 1) - E ( 2 5  - 1) 2} 
~ - -  :2 1 Hi(x) 

+ 2 ~-,j=l at 

+ 3 7-L--.-. ~ ~2~J? ~Ej----1 aj) 
We then have, with ~n as in (2.9), 

LEMMA 2.2. Under the assumptions of Lemma 2.1 the rank statistic T from 
(2.3) satisfies 

(2.15) 

) = o(n -1)  + o 2 5  - 115 + IuI 3 , 

The implication of Lemma 2.2 is that the conditional expansion/~(x - ~n) 
largely agrees with the unconditional expansion G(x - ~)n). The difference terms 
in (2.14) not only have vanishing expectations, but, apart from the first one, will 
moreover turn out to be too small to cause any effect in the sequel. The term with 

PROOF. See the Appendix. [] 

except on a set of z(n)-values with probability o(n-1). 
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U, however, is in probability of order n -1/2 and therefore has to be handled with 
care. 

Summarizing the progress up to this point, we have that  conditional on Z(m) = 
z(m), the rank statistics T1 and T2 are independent, that  Lemma 2.1 for sample 
size N(Z(m)) - m provides an expansion for the df of T2, while Lemma 2.2 for 
sample size m does that  for the df of T1. The next step is to use the results of 
Albers (1992) to obtain a conditional expansion for the df of T* from (2.4). To 
distinguish between the two parts involved, we denote (cf. (2.2)) 

(2.16) a U = EJ(Uj:m), j -- 1 , . . . ,  m, 
a2j = EJ(Uj:N-m), j = 1 , . . . ,  g - m. 

Likewise, we define (V l l , . . . ,  Vim) in analogy to (2.1) and modify (2.12) into 

(2.17) Plj = P(Vlj = 1 I Z(m)), 7rlj = E P  U. 

This in its turn leads to (cf. (2.13)) 

(2.18) ~r ~-- Z a i j ( P l j -  7rij) / (~a21j ~ ~a2 j )  1/2 ' 

where we adapt  the convention that  summation involving alj or a2j from (2.16) 
runs from 1 to m or N - m, respectively. Now let 

1 1 ~ 

(2.19) /~(X) = ¢(x)  + ¢(X) ~ N -  ~N(b0,,~ + bo,~-m) 

3 
+ N 20 

k=0 

-t- ( [ -2{ZaI j (P l j -Tr I j ) }  2 

+2S{~al j (Pl j -Trl j )}  2 
1 

+ ~ Z a 2 j { ( 2 P l j  - I ) 2 -  E ( 2 P l j - 1 ) 2 } ]  / 

-~ ~(~__~a31j(Plj-Trlj)/ 

( Z a 2 j W Z a 2 j ) a / 2 ) H 2 ( x ) } ,  

with ~N as in (2.9), with n replaced by N. Then we have 

LEMMA 2.3. Let F C ~ and J E J .  Suppose that 0 < ~ < Cm -1/2 for some 
C > 0 and N statisfies (2.5) for some e > O. Then T* from (2.4) satisfies 

(2.20) sup p~2T*-~_,alj-~,a2j~ --~a21i 7~822--~ 1-~ ~_ x Ii Z(m)) - f-I(x- ~n) 
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except on a set of Z(m)-values with probability o(m-1) .  

PROOF. See the Appendix. [] 

Note that  the complexity of the expansion has increased remarkably little 
in going from (2.14) to (2.19), thus demonstrating that  using separate statistics 
indeed has a very limited effect. In fact, if we replace b0,m + b0,N-m in (2.19) 
by l)0,N the first part  o f / ~  coincides with G from (2.10) applied with N rather 
than n. More in particular, under the hypothesis we obtain that  ~/N = 0 in (2.20), 
Plj = 7rlj = 1/2 in (2.17) and U = 0 in (2.18). Hence under H0 the expansion 
/~(X--~N) in (2.20) boils down to ~(x) +g-lb3H3(x)¢(x).  Consequently, the test 
which rejects Ho : 0 = 0 in favor of H1 : 0 > 0 for large values of (2T* - ~ al j  - 

a2j)/(Y~ a~j + ~ a2j) 1/2 has critical value ~a = ~a + o(N-1), where 

(2.21) = u .  - N - l b 3 H 3 ( u . ) ,  

with us  = ~-1 (1 - ~ ) .  But this is precisely the same result as for the fixed sample 
case! 

Moreover note that  (2.21) also shows that  the standardized critical value de- 
pends in a very limited way on the conditioning. In fact, as we will check in more 
detail later on, replacement of N -1 in ~= by a fixed value like (something suffi- 
ciently close to) (EN)  -1, typically will result in changes of o(m-1). Hence the 
requirement that  the test, just like a permutat ion test, is performed conditionally, 
is apparently met not merely to o(1), but  even to o(m-1), by the standardization 
of T* through the conditional mean (Y~ alj + ~ a2j)/2 and the conditional vari- 
ance ( ~  a21j + ~ a22j)/4. Hence a test based on the unconditional distribution of 
(2T* - ~ alj  -- ~ a 2 j ) / ( ~  a2j + Y~ a2~j) 1/2, will agree to o(m -a) with the exact 
conditional test. In particular, it will be distributionfree to this order. 

In view of these last remarks it makes sense to set as the next goal the re- 
placement of the conditional expansion in (2.20) by an unconditional one, which 
clearly can be achieved by taking the expectation with respect to Z(m). 

This can be done under various conditions on N, resulting also in a variety 
of expansions. Here we shall concentrate, however, on the case of main interest, 
in which N - E N  = Op(ml/2). The resulting expansion then is the natural  one, 
in the sense that  the second order terms typically are of order m -1, while the 
remainder is o(m-1).  To be more precise, we shall in addition to (2.5) suppose 
that  for certain/3 > 1 

(2.22) EIN - ENI~Z = O(mZ). 

Let r > (1 + 2e)m and let ~/~ be as in (2.9), with n replaced by r. Define 

(2.23) ~f = (N/r) 1/2 - 1, 

1 1 ~ 
(2.24) /~(x) = #P(x) + ¢(x) ~ r -  ~/r(b0,m + bo,[r]-m) 
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3 

+ r - 1 E  ~(3-k)bkHk(x)  -- ~rEFJ 
k = 0  

1 2 -2 
- ~wrEV H i ( x )  

r-l~TrE (Lr Y~ a u  (¢I(Zl j )  - ECa (Zu)) )  ] 

+ f JkO1 ]" 

Then we finally arrive at 

THEOREM 2.1. Let F ~ ~ and J C ,7. Suppose that 0 5 0 < C m  -1/2 for  
some C > 0 and N satisfies (2.5) for  some e > 0 and (2.22) for  some ~ > 1. I f  r 
in (2.23) and (2.24) is chosen such that r = E N  + o(ml /2) ,  we have for  T* f rom 
(2.4) that 

(2.25) p 2 * ) ~,.) 
( T - Eal  - < x [ t ( x  - = o ( m - 1 ) ,  

\ 

s u p  - ] - 

while all terms in f t ( x  - r/r) beyond ¢ ( x  - r/r) are o(m-1/2). 

PROOF. See the Appendix. [] 

Making a final comparison to the expansion from (2.10) for the fixed sample 
case, we conclude that  the present result is obtained from the former by 

i) using the ( to order ml /2 )  expected sample size r, 
ii) replacing b0,r by (b0,m A-bo,[r]_m) to account for the splitting of the statis- 

tic, 
iii) adding the three terms involving U from (2.23) to account for the sample 

size being stochastic rather than fixed. 
As concerns the terms involving U, also observe that  the first two of these terms 
simply result from expanding the leading term E¢b(x - ~g) .  The complicated last 
one, however, reflects the interaction between the two stages of the procedure, and 
is less easy to predict. In fact, it is precisely the derivation of this term which 
requires the delicate conditional analysis given before. 

To conclude this section we briefly return to (2.21) and show that  N -1 indeed 
can be replaced by a suitable fixed value. Let r again satisfy r = E N  + o (m 1/2) 
and define 

(2.26) ~a = us  - r - lb3H3(u~) .  

From (2.22) it follows that  P ( I N -  r I > m 1-~) = O ( m - 2 0 - 6 ) ~ m  ~) = 
O(m-(1-2~)~). Hence, by choosing 0 < 6 < (fl-1)/(2/3),  we obtain that  [~a-~al = 
O([N  -1 - r - l [ )  = O ( m - 2 [ N  - r[) is uniformly o(m-1),  except on a set of proba- 
bility o(m -1).  
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3. Tests with guaranteed power 

The expansion in Theorem 2.1 for the df of T* from (2.4) enables us to derive 
how N =- N(Z(m))  should be chosen to ensure to o(m -1) a prescribed power 
against a given alternative. An outline of the program involved is the following. 
First determine an r such that the power requirement is met to first order, using 
the leading term 1 - ~(u~ - ~r) in the power expansion. The r thus obtained 
involves f Jq/1, which, just as ~1 itself, is unknown. Replacement of this quantity 
by a suitable estimator provides the first candidate N1 for N. (Note that  the 
case where f J ~ l  is not completely arbitrary but restricted to some parametric 
family, will typically lead to the natural situation mentioned in Section 2, where 
N1 - EN1 = Op(mU2).) A correction term ]r is then added to this first choice, 
selected through (2.24) in such a way that it precisely cancels the lower order 
terms. Hence choosing N1 + ]~ will produce the required power to o(m-1) .  (Note 

that ]~ also involves through the bk from (2.9) the estimation of integrals involving 
~i, i = 1, 2, 3.) The final touch then consists of setting N = max(m, IN1 +]~ + 1/2]) 
(cf. (1.1)). 

The execution of this program is straightforward, as no new technical obsta- 
cles need to be tackled. Hence it does not seem sufficiently interesting to do so, 
especially as writing it down in some detail would require quite a bit of space. 
Consequently, we shall restrict ourselves to the outline above as far as the general 
case is concerned and now specialize right away to the situation corresponding to 
Stein's procedure, which is our motivating example. This means that  we assume 
the underlying df F to be a member of a scale family ( F ( - / a ) , a  > 0), for some 
standard df P with f~oo x2dF(x)  = 1. It follows that ~i  = a - i ~ ,  i = 1, 2, 3 and 

thus f J ~ l  = a -1 f J ~ l -  Now Theorem 2.1 implies that the power of the level 
(~-test based on T* satisfies 7r*(9) = 1 - @(u~ - ~ )  + o (m-U2)  for all r such that 
r = E N + o ( m l / 2 ) .  Hence to obtain r* ( am -1/2) = 7rl for given a and 7rl, we need 
that to o(m 1/2) the following holds: 

( 3 . 1 )  r = 

where u= = ~-1(1 - r l ) .  To ensure that there exists an e > 0 such that r > 
(1 + 2e)m, it suffices in view of (3.1) if a in 91 = am -1/2 is chosen such that 

(3.2) 

which upper bound reflects the fact that the alternative should be sufficiently close 
to the hypothesis to indeed require a second sample of size proportional to m. 

As r - E N  -~ o(ml/2),  we can without loss of generality, use in the sequel 
the convenient choice in (3.1) for r. Of course, many estimators of a 2 in (3.1) are 
possible, but again we specialize immediately to a single case for briefness' sake. 
To stay as close as possible to Stein's procedure, we essentially select the sample 
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variance S~ (cf. (1.1)). However, as N s h o u l d  depend on X l , . . . , X  m through 
Z(m) ---- ( Z n , . . . ,  Zlm) only, we shall use the modified version 

m m 

(3.3) = - -  ~2m _ 1 ~--, Z2 1 E X 2 .  
- -mZ__ , lj m j= l  i=1 

This immediately gives as our initial estimator 

g2 m(u .  - 2 f 
(3.4) N1 = r - m  = (72 (/% f J ~ l )  2 S2m" 

To obtain the correction term jr  to N1 we need some further notation. Let 
/%4 be the fourth cumulant,  

/(fL )' = f - -  x4dF(x) x2dF(x) - 3. (3.5) /%4 
J-- oo 

As/%4 is scale invariant, it does not have to be estimated, but can be evaluated 
using/> in (3.5). Moreover, define 

~0 t (3.6) L(t) = (F - l ( (1  + t)/2)) 2, M(t)  = J(u)d@l(U). 

Then define through (3.2)-(3.6) 

2 

(3.7) fr  = (bo,m + bo,[r]-m) + 2 E ( u ~  - U,~)(2-k)bkHk(urr) 
k=0 

- 2(u2a -}-uau~r + u2 - 3)b3 - (ua - uTr)2 f J2/ ( f  J~i) 2 

1 1 
+ ~ r m -  (2 +/%4)(1 - u~u,  + u~) 

Let ]r  be obtained from fr  by substituting [N1] for [r] and N1 for r, respectively. 
Note that  no further replacements are necessary to compute i t ,  as bo,n and bk, 
k = 1, 2, 3, from (2.9) are scale invariant which allow replacement of koi, i = 1, 2, 3 
and ~ by ~i and ~ .  

Now we can formulate the main result of this section 

THEOREM 3.1. Let J E (] and F E {F( . / a ) , a  > 0}, where F E Y ,  
f~_~ x2d_P(x) = 1 and f ~  x6dF(x) < oc. If/% satisfies (3.2), then the level 
a-test based on T* from (2.4) has power 7rl + o(m -1) against O1 =/%m -1/2 if we 
select 

(3.8) N = m a x  m, - - -  _-Z--U~ - m + ] r +  • 
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PROOF. See the Appendix. [] 

Note that, not surprisingly, the correction term ]r is strongly related to a 
deficiency in terms of Hodges and Lehmann (1970). Moreover, in analogy to the 
remark following Theorem 2.1, we observe that in (3.7) the terms involving b0,. and 
bk, k = 1, 2, 3 are the type of corrections required already for the ordinary rank 
test to improve the precision in the power determination from o(1) to o(m-1). The 
splitting of the statistics implies the penalty of bo,m + ~)O,N-m -- b0,g additional 
observations, which number typically is one at most (cf. Albers (1992)). The 
remaining three terms again reflect the effect of estimating the sample size. The 
first represents the bias and the second the variance contribution of S~, which is 
made transparent by noting that they can be omitted from ]~ if we replace S~ in 
(3.8) by 

(3.9) (S2 - ~2m-1) { l + 1 m - l ( 2  + ~4) (1 -  uau~ + u2) } . 

The third and last of these terms again is the interaction term (cf. (3.6)). 
It is also interesting to observe that the interpretation above of the various 

components of ]~ opens the way to an heuristic assessment of the direction the 
correction will point to. To be precise, we'll compare N from (3.8) to the simple 
first order choice 

which only takes the obvious bias correction term a 2 / m  into account. To begin 
with, we note that the deficiency-related terms involving b0 and bk, k = 1, 2, 3, will 
typically result in a positive contribution to i t ,  as these terms express the loss (be 
it of second order) we incur by using a rank test instead of a parametric test. As is 
immediate from the above, the splitting causes yet another positive contribution 
to /r.  

It remains to consider the effect of estimating the sample size. To this end, 
we first observe that  it is readily verified that for x near 1 the function 

q(x) = 1 - '~(u~ - ~]r(x 1/2 - 1)) 

is concave, as u~ < 0 < ~r. Hence if the rv X is close to 1 with large probability 
and E X  = 1, we have Eq(X)  < q(EX)  = q(1) = 1 - ~ ( u ~ )  = Irl. For X = 
($2 m - ~2/m)/o'2, however, Eq(X)  is nothing but  E(1 - ~(ua - ~ ) ) ,  which shows 
that also in this respect a positive correction of the first order choice 2V is called 
for. (If one feels this reason to be enlightening but  rather sloppy, then note that 
(3.9) provides a proof: as - u~ ,  ua and (2 + g4) are non-negative, the same will 
hold for the correction (2 + a4)(1 - u~u, + u2).) 

The final term to deal with is the interaction term. It originates as - 2 U  in 
(2.14), with U as in (2.13). After convolution it becomes -2b" in (2.19), with 0 
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(3.10) 

Then let 

as in (2.18) and thus it contributes 2El ;  to the power. As the numerator  of ~" 
has mean zero, while its denominator can be replaced by a multiple of N 1/2 = 
rl/2(1-t-U), we next observe that  this leads to a power term which is proportional to 
- E U  ~ alj  (Pu  -7rl j) .  It is intuitively clear that  ~2  and ~ c u P  1 j, and thus 0 -- 
(N/r) 1/2 - 1  and ~ aljPlj  are typically positively correlated (see the Appendix for 
the actual computations again) and hence this power contribution will be negative 
too, thus requiring a positive term in jr. Summarizing, we observe that  ]r  will 
characteristically be positive and that  N" will lead to a power which systematically 
falls short of the prescribed 7q. 

For the special case of the locally most powerful rank test against location 
alternatives of type F,  considerable simplification of the results is possible. Let 
J = - ~ 1  (or without loss of generality, J = - ~ 1 ,  if desired) and introduce 

<,=io4/(ioO 

(3.11) 
t j = l  5=1 

1 + 1 4 1 ( - 2 u 2  + 13u~u. - h u  2 - 6 ) +  542(u~ - u , )  2 
6O 

+  N1 -1(2 + + 

1 ), 
and obtain 

COROLLARY 3.1. I f  in Theorem 3.1 we let J = - ~ 1 ,  we can in (3.8) replace 
2 f J / ( f  g ~ l )  2 by 1/(f ~) and ]r by ]* from (3.11). 

PROOF. See the Appendix. [] 

Finally, we remark that  for J = - ~ 1  the results not only hold for exact scores, 
but also for approximate scores aj = J ( j / ( n  + 1)) (cf. ABZ, Theorem 4.2). 

4. Examples and a numerical illustration 

Next we present some explicit examples. First consider the normal case F ---- ~. 
If we apply the corollary above, T* from (2.4) will be a combination of two normal 
scores statistics. Here f ~2 = 1, a4 = 0, 41 ---- 3, 42 -- 2 and ( f  L ~ 2 / f  ~2 _ 1)/2 = 
1, while 

1 1 
Ecr2(q22(Uj:n)) = 5 loglogn + 57 + 0(1), 
j = l  
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where 7 is Euler's constant l i m k ~  (~k=l  i-1 _ log k) = 0.577216...  (cf. ABZ and 
Bickel and van Zwet (1978), p. 974). Insertion of these results into (3.8) and (3.11) 
leads to 

(4.1) N = max 
m, [ m ( u a - u " ) 2  1-uc~u~ q-u~) 

1 1 1 2  1~ + ~ loglog m + ~ loglog([N1] - m) + 7 + ~ u ,  + l j )  . 

In this example, the result is particularly easy to explain. In the first place, ~ 2  is 
modified according to (3.9) to correct for bias and variance effects. What  remains 
is essentially the deficiency of the normal scores test with respect to the test based 
on the sample mean, which exactly produces ~rl if n = m(u~ -u=)2a2/a 2 (cf. ABZ, 
(6.8)). It only remains to correct this deficiency by an amount (1 /2 ) log logm + 
(1/2) loglog([N1]-  m ) -  (1/2)loglog[N1] + 7 /2  to account for the splitting (cf. 
Albers (1992), (3.20)) and by 1 to account for the interaction term ( f  L ~ 2 / f  ~2_ 
i)/2. 

Next let once more F = ¢,  but  now use Wilcoxon scores J(t) = t, rather than 
the optimal normal scores. Then we have to resort to Theorem 3.1 itself, instead of 
the more simple corollary. To apply (3.7), we evaluate that  b0,m and b0,[r]-m equal 
7/2 - 2v/2 to first order, while b0 = r / 9 ,  ba = 2 - 2 /v~ ,  b2 = (12 cretan x/~ ) / r  - 3, 
b3 = 3/20 and { f  L M -  f L f M } / f  J ~ l  = 1. Together with (3.8) and (3.9) this 
leads to 

(4.2) N = max Fm(u.-u') 27r ~ _  l+l-u"u~+u~ 
m' L -a -~ 3 2m 

+ u a + uau~ 9 3 

V +  ,/g-  + -i-d- 

Compared to the corresponding term of (4.1), the leading term of (4.2) contains 
the additional factor 7r/3, which reflects the well-known fact that  the ARE of 
Wilcoxon's test with respect to the normal scores test under normal alternatives 
equals 3/7r. However, it is nice to observe that  the second order terms are also 
remarkably close to their counterparts from (4.1). In fact, the coefficients of u 2, 
u~u~ and u 2 are (to three decimal places) 0.578, -0.006 and 0.006, respectively, 
whereas in (4.1) the corresponding values are 1/2, 0 and 0. The constant term 
equals 2.445, of which 7/2 - 2v~  -- 0.672 is due to the splitting and 1 to the 
interaction term. This value as well is close to the corresponding expression 
(1/2) log log m + (1/2)log log([N1] - m) + 7 + 1 from (4.1). 

As our second choice for the underlying distribution we consider the logistic 
ease F(x)  = (1 + exp(n3-1/~x)) -1. First we again deal with the locally most 
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Of the amount in 
interaction term. 

powerful case, where T* becomes a combination of two Wilcoxon statistics. Here 
f ~/21 ---- (~ /3 )  2, ~;4 : 6/5, ~1 = ~2 = 9/5, ( f  ~ 2 / f  L ~ 2 _  1)/2 = 6/7r 2 and 
~jn=l a2(~l(Uj:,~))/f ~2 = 1/2 + o(1), which leads through (3.8) and (3.11) to 

°]) 1 (5u~ - 3uau~ + u~ + 2) + ~-ff + 1 + ~  • 

(4.3), we can ascribe 1/2 to the splitting and 6/Qr 2) to the 

Our fourth and final example is the counterpart of the second one: the distri- 
bution remains logistic, but we return to normal scores. Then b0,m to first order 
equals 4 - 2 v ~ - ( 1 / 2 )  log log m-~//2,  while b0 = 6 arctan v~-57r/3,  51 = Ir/6+1/2, 
b2 = 5/6, ba = 1/4 and {f  LM - f L f i ) / f  J~i -~- 0.559 (which value has been 
obtained numerically). Together with (3.8) and (3.9) we arrive at 

( [m(ua_= u,)2 3 (~m - _~_) (1 + 4 ( 1 - u a u T r  +u2~r)) 
(4.4) N ---- max m, b n2 v: 5m 

+ u~ 3 

+ u~u~ ( - 2 4  cretan v/-2 + 7Ir + ~ )  

+ u,~2 12 aretan v ~  -3--- + 

)]) - l o g l o g ( [ N l l  - m )  . 

The factor 3/~r in the leading term of (4.4), as compared to (3/7r) 2 in (4.3) reflects 
the fact that the ARE of the normal scores test w.r.t Wilcoxon's test equals 3/rr 
under logistic alternatives. The coefficients of 2 2 u~, u,~u~ and u .  are 0.492, -0.436 
and 0.111 respectively, which is again close to the corresponding values 5/10, 
-3 /10  and 1/10 in (4.3). A similar observation holds for the constant terms in 
(4.4) and (4.3). 

After these four examples, let us now return to Stein's procedure and compare 
it to the test in example 1. To avoid confusion, denote N from (1.1) by N S T  and N 
from (4.1) by NNs. From Lehmann ((1986), p. 260), we obtain that c -1 in (1.1) 
should be chosen equal to  r e ( t i n _ l ,  a - tm_l,r)2/~ 2, where t m - l , a  is the upper 
a-point of the t-distribution with (m - 1) degrees of freedom. It is easy to verify 
(cf. e.g. Hodges and Lehmann (1970), p. 792) that 

3 
(4.5) tm-l,~ = u~ + us + us 4 ~  + 0(m-3/2)" 
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A straightforward computation shows that NST satisfies to o(1) 

(4.6) UsT = max m,  [ t~ 2 S2m 1+ 2m 

Before comparing NST to NNS,  observe that NST is the smallest integer for which 
the power at 01 exceeds ~rl. If, as before, our objective is to achieve 7rl to o(m-1),  
it is easily verified that the final 1 in (4.6) can be replaced by 1/2 (cf. the proof of 
Theorem 3.1). It seems more fair to use this modified version NST of NST in the 
comparison. We then obtain 

(4.7) 1 1 
E(I~NS - NST) : ~ log logm + ~ loglog([Nl] -- m) + -y 

+ =u~ + =u~ + u~u,~ . 

Typically, the amount in (4.7) will be quite small. To be a little more specific, 
l o g l o g n + ?  attains the values 1.411, 1.674, 1.941 and 2.104 for n = 10, 20, 50 and 
100, respectively. Moreover, in view of (3.2) the factor (u~ -U~r)20"2/t~ 2 exceeds 1, 
while (u~/2 + u~u~) will usually be positive, unless high values of c~ are combined 
with high values of 7rl (for c~ = 0.05 we still have u2/2  + u~u~ >_ 0 as long as 
7rl < 0.791). 

To conclude this section, we shall by way of illustration present a small sim- 
ulation study. Consider once more the situation of example 3, i.e. a combination 
of two Wilcoxon statistics under logistic alternatives. We shall consider initial 
sample sizes m = 10, 15 and 20 and levels of significance c~ -- .05, .025 and .01. 
The desired powers 7rl are chosen in the region of practical interest, say (.5, .9). 
Next, the alternatives 0 = t~m -1/2 are selected such that A = r / m  (cf. (3.1)) 
satisfies A E (1.5, 3.5). Now for each simulation step, we first draw a sample from 
F(x) = 1/(1 + e-X), shift it over 0 and compute T1 and ~2  from (3.3), and sub- 
sequently N from (4.3). Then the additional sample is drawn and T2 is obtained, 
after which H0 is rejected if T* = T1 + 7"2 exceeds the approximate critical value 
g / 4  + ( ( N  - 1)/3)U2{u~ - 3(u 3 - 3u~) / (20N)}  (cf. (2.21)). For each configura- 
tion (m, ~, 7rl, 0) we use 104 simulations, thus obtaining power estimators ~r with 
standard deviation at most 1/2%. The results are collected in Table 1. 

Inspection of Table 1 reveals that the agreement between the prescribed 7rl 
and the estimated # is quite satisfactory: on the average, # falls short of 7rl 
by about 1%, which is negligible for most practical purposes. Moreover, sim- 
ulations using 8 = 0 show that the approximate critical values used are rea- 
sonably accurate, but typically slightly conservative. Upon correction for this 
effect, the agreement between 7rl and ¢r is still better. By way of contrast, let 
us neglect the refinements offered by our second order analysis and simply use 

= max(m, [m(u~ - uTr)2(3/Tr)2(S2 m -/~2/m)/t¢2]) (cf. (4.3)!. The final column 
of Table 1 gives the results for the corresponding estimator ~, computed on the 
same run as on which # is based. This first order approach is clearly inadequate: 
~r typically is about 10% below the prescribed value ~rl. 
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Table 1. The realized power ~r (~r) using second (first) order methods for the Wilcoxon two- 
stage procedure under F(x) = 1/(1 + e-X). For each initial sample size m, level a, shift 0 and 
prescribed power 7rl, the number of simulations used is 104. (As concerns A = r/m, cf. (3.1).) 

^ 
a 0 ~ 7r 1 # ~" 

(i) m =  10 
.05 .75 1.93 .600 .603 .531 
.05 1.00 1.62 .750 .742 .658 

.05 1.25 1.65 .900 .866 .785 

.025 .75 3.30 .700 .686 .581 

.025 1.00 1.85 .700 .691 .583 

.025 1.00 2.36 .800 .767 .653 

.01 .75 2.89 .500 .492 .412 

.01 1.00 2.00 .600 .595 .478 

.01 1.00 3.01 .800 .770 .618 
(ii) m = 15 

.05 .50 3.77 .700 .684 .635 

.05 .75 2.56 .850 .833 .752 

.025 .75 2.47 .750 .731 .640 

.025 1.00 1.57 .800 .789 .704 

.01 .75 2.37 .600 .594 .509 

.01 .75 2.14 .550 .540 .465 
(iii) m = 20 

.05 .50 2.48 .650 .642 .590 

.05 .75 2.29 .900 .886 .813 

.025 .75 1.85 .750 .747 .662 

.025 .75 2.10 .800 .781 .705 

.01 .75 2.17 .700 .690 .597 

.01 .75 1.78 .600 .600 .522 
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Appendix 

PROOF OF LEMMA 2.2. To begin  wi th  we no te  t h a t  the  condi t ions  of  this  
l e m m a  are those  of  T h e o r e m  4.1 of  ABZ,  and  as such imp ly  those  of  the  p rev ious  
t h e o r e m s  and  l emmas  of  t h a t  pape r  except  possibly  on  sets of  p robab i l i ty  of  o rder  
n -5/4. Let  

1 2 2 (A.1) K(x)=~(x )+¢(x )  -~ ( E a 2 ( 2 P j - 1 )  / E a j ) H l ( x )  

+ ~ ( E a 3 ( 2 p j  - 1 ) / ( E a 2 )  3 /2 )  H2(x) 

~ ( E a 4 / ( E a 2 )  2 )  q- 1 H3(x)  } .  
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(Here and in the sequel of this proof we assume that  summation is from 1 to 
n, unless stated otherwise.) Taking steps similar to those leading in ABZ from 
Theorem 2.1 to Theorem 2.3, we obtain that (2.15) holds i f / ( ( x  - 77) is replaced 
by g ( x -  ( ~  a j (2Pj  - 1 ) ) / ( ~  a2)1/2). In fact, at this point a remainder of the 

form A { n  -5/4 + ~ 12Pj - 115 } suffices. 
Next the argument of K is changed into ~ = x - (y'~ aj(2frj - 1))/(~-~. _2~1/2 uj ) , 

which involves an expansion in powers of U from (2.13). Thus the U- and U 2- 
terms in (2.14) and the IUI3-term in (2.15). Note by way of check that  if we take 
the expectation with respect to Z(n) at this point, we get back Theorem 2.3 of 
ABZ: E U  = O, E U  2 = var(}--~ a j P j ) /  ~ a~, and EIUI 3 leads to the complicated 

term involving E I P  j - f r j l  a. However, for the application of the present paper, we 
need to keep track of the dependence on Z(,~) till the end. Consequently, we divide 
our expansion into a deterministic and a stochastic part in a very simple manner. 
Replacing each term in the expansion by its expectation produces the first part, 
whereas the collection of terms needed to correct this change constitutes the second 
part. It is straightforward from (A.1) and the expansion in powers of U that the 
stochastic part precisely equals K(~) - G(~) in (2.14), which agrees to the desired 
order wi th /~(x  - ~) - G(x - ~). Hence it remains to show that the deterministic 
part agrees to order n -1 with G(x- r l )  from (2.10). But that is rather trivial: as we 
observed before, taking the expectation not only produces the deterministic part, 
but also the expansion from Theorem 2.3 in ABZ. The development from Theorem 
2.3 to Theorem 4.1 of ABZ is devoted to demonstrating that the expansion from 
the first theorem can be simplified to that of the latter, which is nothing but our 
d ( x  - [] 

PROOF O F  LEMMA 2.3. First we collect some results from Albers (1992). Let 
W~, ~ -- 1, 2, be independent statistics with continuous df's, admitting expansions 
of the form 

(A.2) sup IP((W~ - ¢~)/~, <_ x) - d . ( x  - vv)l _< 5~, 
x 

where 

(A.3) 
P 

G.(x) = (I)(x)+ ¢ ( x ) E  bk~,Hk(x), 
k = 0  

in which all Ibk~[ < 1. Then in Lemma 2.1 of Albers (1992) the following special 
case is contained: for certain C1, C2 > 0, 

(A.4) 

- E b2 < 6~, 1 +C1 tbk,,I +C2 k~,, 
v = l  k=O v = l  k=O v = l  
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where ~. = ~v/(~ 2 +/322) W2, v = 1, 2 and 

P 2 
k + l  (A.5) d*(x)=(~(x)+¢(x) EEbk~ ,%,  Hk(x). 

k = O  v =  l 

If we specialize to the case where W~ is the rank statistic from (2.3), the 
formal ~v, fly, ~,, 5~,, bk~, and p in (A.2) and (A.3) can be made specific through 
(2.9)-(2.11), using n~ rather than n. Moreover, it follows from Theorem 3.2 of 
Albers (1992) that  in this particular application the expansion G*(x 2 
from (A.4) and (A.5) boils down to 

/ 2 } 
(A.6) G(x-qn)+¢(x-~ ,~)  E b 0 , , . - b 0 , ,  q , / (2n)  

~,v----1 

2 with n = )-~=1 n~ and G, ~], and b0,, as in (2.9). In words, if we compare the 
df of the standardized version of the sum W1 + W2 to that  of the standardized 

2 version of T from (2.3) with corresponding sample size n = ~-~=1 n~, surprisingly 
the only difference to o(n -1) is the second term in (A.6). 

Now we are in a position to prove the result of the present lemma. Conditional 
on Z(m), the statistics T1 and T2 are independent, while expansions of the form 
(A.3) for their df's are given by (2.14) and (2.10), respectively. Hence, through 
(A.4) this leads to a conditional expansion for the df of T* from (2.4). Moreover, if 
the expansions in (A.3) are based on G from (2.10), a greatly simplified expansion 
results (cf. (A_6)). But here T2 indeed leads to G (cf. (2.10)), while T1 leads to K, 
which equals G plus a stochastic part  (cf. (2.14)). Consequently, the deterministic 
part  of the conditional expansion for the df of T* is given by (~,.6), for nl  = m, 
n2 = N(Z(m)) - m, and hence n = N(Z(m)). The additional contribution due to 
the stochastic component is easily determined from (2.14) and (A.5). Finally, from 
(A.4) it is clear that  the new remainder will be as in (2.15), with the appropriate 
change in sample size. [] 

PROOF OF THEOREM 2.1. We have to show that  taking the expectation of 
/ t ( x  - ~g) in (2.20) leads t o / t ( x  - ~r) in (2.25). First consider the leading term 
EO(x-  ~N). As ~N = ~r(1 + U), w i t h / ]  as in (2.23), the corresponding expansion 
clearly produces O(x) in (2.24), as well as the terms involving ED- and E[T 2. The 
contribution EI/JI 3 to the remainder is o(m-1), as 0 in view of (2.5) and (2.22) 
is bounded and satisfies EIUI 2~ = O(m -~) for some ~ > 1. 

Next replacing ~N by ~ everywhere in ¢ ( x -  ~N) and H k ( x -  ~N), k = 
0, 1, 2, 3, causes differences which are O(m-l l / ) l )  = O(m -3/2 + IUI 3) and hence 
regligible. As bo,m ~- o(ml/2), substitution of [r] for N in the corresponding 
term in (2.19) results in a remainder term o(rn-1/21UI) = o(m -1 + ~2), which 

again is negligible. A similar argument applies to the terms involving N-ly(~ -k). 
The remaining terms in (2.19) all have a numerator  with expectation 0 and a 
denominator of the form (~~ a2j + E a~j) k/~, k = 1, 2, 3. In the first place, note 
that  these denominators can be replaced by (N f j2)k/2, since this change leads 
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to a factor 1 + o(m-1/2), which can be neglected. Let Y denote the numerator 
of such a term, then E Y  = 0 implies that E Y N  -k/2 = E Y ( N  -k/2 - r -k/2) = 
O(m-k/2EIYIIUI), which is easily shown to be o(m -1) for those Y that  satisfy 
m-k/2EIyI = O(m- l ) .  This latter relation holds for all terms in (2.19), besides 
(-2Lr). Hence, as already indicated after Lemma 2.2, the contribution of those 
terms is negligible. 

As ~r is Op(m-1/2), however, this argument fails and we need to take an addi- 
tional term into account. In fact, E ( - 2 U )  = 2E(U ~ alj(Plj -7qj) ) / (r  f j2)1/2+ 
o(m -1) + O(E[Uf] 2) with V as in (2.13), with n = m. This last remainder is 
easily shown to be o(m-1). Next observe t h a t  2 ( P l j  - 7rlj) can be replaced by 
-O(¢I(Zu) -E~bl(Zu)),  to arrive at the mixed term involving 0 in (2.24), which 
was the last term to be explained. Moreover, note that it is straightforward from 
ABZ that the expectation of the remainder on (2.20) is o(m -1) as well. 

It remains to deal with the set E of probability o(m-1),  on which the con- 
ditions for the conditional expansion and (2.5) are not fulfilled. If H in (2.19) 
is bounded, or if it at least is sufficiently close on E c to bounded function, we 
simply argue that the contribution over E to the expectation of the left-hand side 
in (2.20) is O(P(E)) = o(m-1). To verify this (near-)boundedness of k in (2.19), 
we note in the first place that N _> m will always hold. Hence using the obvi- 
ous definition b0,0 -- 0 ensures t h a t  N-l~g(bo,m -b b0,N-rn) is bounded. Next we 
observe that the (~-~ a2j + ~ a2j) parts in the denominator cause no trouble, as 
~,  alj +~-~. a2 j 2  2 > ~-~. a2j = m f j2 ( l+o(1) ) .  Of the terms involving g(1-k)/20 (3-k), 
only the one with N1/203 can become unbounded. However, replacement of N 1/2 
by  r 1/2 removes this obstacle, while leading to a difference r l / 203U,  which on E c is 
negligible. Likewise, U and ~-2 could cause problems. But modifying/~ by using 
in (2.20) as an argument (x - 7IN -- 2~1"), rather than x - ~N, again removes the 
difficulty: the difference involved is [UI 3, while (I)(x- ~N --2U) and ¢ ( x -  ~N --2~r) 
are bounded. [] 

PROOF OF THEOREM 3.1. According to the Marcinkievitz-Zygmund-Chung 
inequality (see Chung (1951)), we have for all p > 1 

j=~l 2p m 
(A.7) E Wj ~- Cpmp-I E EIWj 12p' 

j--1 

where Cp is a constant depending only on p and W1, . . . ,  Wm are independent 
rv's with EWj = O, j = 1, . . . ,  m. From (A.7) it follows in view of (3.3) and the 
condition f o o  x6d~(z ) < co t h a t  EIS2m-ES2[ 3 = 0(m-3/2). As E~'2m = 0"2+02, 

with 0 < 0 < Cm -1/2, we also have 

(A.8) E[(S2 /a 2) - 113 = 0(m-3/2). 

Application of Chebyshev's inequality together with (A.8) then gives that for 0 < 
< 1/6 

(A.9) P(l(S2m/a 2) - 11 > m -~) = O(m -(3/2)(1-2~)) = o(m-1). 
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The results (A.8) and (A.9) for $2 m now enable us to show that  for r from 
(3.1) and N1 from (3.4) the conditions of Theorem 2.1 are fulfilled. First recall 
that  condition (3.2) on ~ has been chosen such that  r > (1 + 2e)m for some 
e > 0. Together with (A.9) this implies that  N1 satisfies (2.5). Moreover, as 
EN1 = r + rO2/a 2, we obviously have that  r = EN1 -4-o(ml/2). This fact in 
combination with (A.8) then implies (2.22). Since N in (3.8) is related to N1 by 

(A.10) N = max(m, [N1 -t- ]r + 1/2]), 

while fr  from (3.7) is o(ml/2), it immediately follows that  the conditions hold for 
r and N as well. 

Hence we can now apply Theorem 2.1 and evaluate H(x) from (2.24) for r from 
(3.1) and g from (3.8). To begin with, we note that  working with [N1 + fr + 1/2] 
rather than with N (cf. (A.10)) will clearly cause differences of o(m-1). The same 
holds if we replace [N1 + f~ + 1/2] in its turn by N1 -4- f t .  To see this, note the 
density of/Q1 = (N1 - E N 1 ) / a ( N 1 )  tends to ¢. Hence E{[N1 + f ~ + l / 2 ] -  (N1-4-f~)} 
tends in its turn to 

(A.11) S{[EN1 + f~ + a(N1)x -4- 1/2] - (EN1 -4- fr -4- a(N1)x)}¢(x)dx.  

Now f {[a -4- bx -4- 1/2] - (a -4- bx) }dx = 0 over intervals (k/b - a, (k -4- 1)/b - a) if 
k is an integer. Hence if we replace ¢ in (A.11) by a step function on a suitable 
lattice of width a -  1 (N1) = O (m-  1/2), the integral can be made equal to zero. But 
this replacement clearly can be achieved such that  the difference caused in (A.11) 
is O(m-1/2). Hence E{[N1 -4- f~ -4- 1/2] - (N1 -4- h ) }  = o(1), which is indeed a 
negligible difference. In terms containing second and third powers of N it is trivial 
that  substitution of N1 -4- fr  for [N1 -4- fr  -4- 1/2] is allowed. 

It follows that  in our calculations 0 from (2.23) can be replaced by {r -1 (N1-4- 
f~)}l/2 _ 1 = :Tm/a - t -4- (1 /2)r- l f~  -4- o(m-1). As E(S2m/a 2 - 1) = 8 2 / 0  -2 - -  

r-1~2 f j2/(f j@,)2 and E(S2m/a 2-1)  2 -- a -4 var(S2m)(1-4-o(1)) -- m-1(2.÷,~4) ÷ 
o(m-1),  we obtain that  

l / ( f  ,1 E/ ]  = ~r  -1 j2  J ~ l  - m-1(2  -4- ~4) -4- j r -  h -4- o(m-1),  
(A.12) 

1 1 
El? 2 = (2 + + o(m-1). 

To deal with the last term in (2.24), we begin by noting that  in this term U can be 
replaced by (S2m/a2 - 1)/2 = (1/2)m -1 ~-'{(Zlj /a) 2 - E(Zl j /a)2} .  Using results 

like n -1Cov(}-~ Ewl(Uj:n)w3(Uj:n), ~ Ew2(Uj:n)w4(Uj:=)) = f~ f l  wl(s)w2(t) . 

w'3(s)w'4(t)(s A t -  st)dsdt + o(1) (see Albers (1980), Lemma 5.5) and f l  f l  vl(s) . 

v2(t)(s A t - s t ) d s d t  = f V 1 V 2 -  fVIV2,  where V~(t) = f tv{(u)du,  i = 1,2 (see 
Albers (1980), p. 139), we arrive through (3.6) at 

(A.13) E{U~alj(~l(Zlj) -E~l(Zlj))}/id~ 1 
:,_ 
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Together (A.12) and (A.13) provide an explicit expression f o r / ~  from (2.24). 
As ~*(0) = 1 - / t ( ~  - ~ )  + o(m -1)  = 1 - fI(u~ - ~r) + r - l b a H 3 ( u ~ )  + o(ra -1)  (cf. 
(2.26), while ~ for 0 = 01 obviously attains the value (us - u~), a straightforward 
calculation now shows that f~ from (3.7) indeed leads to ~*(01) = 1 - ¢ ( u ~  - 
(us - u~)) + o(m -1)  = r l  + o(rn-1),  as desired. [] 

PROOF OF COROLLARY 3.1. Using ABZ, p. 128, we obtain in (2.9) that 
l]n ---- I t l / 2 0 ( f  ~/21)1/2 and b0 = (~1+3~2)/18, bl = (3~1+1)/8, b2 = ~1/3, 53 ---~ ~1/12 
and/~0,n = )-~n i=1 a2(~ l (UJ :n) ) / f  ~2 with ~i, i = 1,2 as given in (3.10). Moreover, 
f L  = fZoox dF(x) = 1, f M / f  J(~l (1/2) f ~ 2 / f  ~2 = 1/2 for J = -k~l. 
Insertion of these results leads from (3.8) to (3.11). [] 
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