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A b s t r a c t .  We consider the transformation model which is a generalization 
of Lehmann alternatives model. This model contains a parameter 0 and a 
nonparametric part F1 which is a distribution function. We propose a kind of 
M-estimator of 8 based on ranks in the presence of random censoring. It is 
nonparametric in the sense that we do not have to know F1. Moreover, it is 
simple and asymptotically normal. For the proportional hazards model with 
special censoring, we obtain the asymptotic relative efficiency of our estimator 
with respect to the best nonparametric estimator for this model. It is quite effi- 
cient for special values of 8. We also make a comparison between our estimator 
and other proposed estimators with real data. 
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I. Introduction 

We consider the transformation model which is a generalization of Lehmann 
alternatives model (Lehmann (1953)). In this model, we have samples from dis- 
tributions with distribution functions (df's) F1 and F2 = D(F1; O) where D(-;  0) 
is a parametrized transformation. We then make inference about the parameter 

without knowing F1. In this sense, transformation model is a semiparametric 
model (Wellner (1986)). 

For the first sample, let X~,X~ , . . .  ,X°m be independently identically dis- 
tributed (iid) positive random variables (rv's) with df F1. For each X~, there 
corresponds a positive rv Cli which is independent of X~"s and iid with df G1. 
X~'s are survival times and Cl~'s are censoring times. We can only observe 
(X1, ~1), (X2, 62) , . - . ,  (Xm, 6rn), where 

Xi ~ o I [ x , = x  = X  i ACli, 6i ~ ~], i = l , 2 , . . . , m ,  
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x A y denotes min(x, y) and IA is the indicator function of a set A. 
Similarly for the second sample, let Y~, Y2~,..., y2  be iid positive rv's denoting 

survival times with df F2. Independent of the Yj's, let C2j, j = 1, 2 , . . . ,  n be also 
iid positive rv's denoting censoring times with df G2. Then (Y1, el), (II2, e2) , . . . ,  
(Yn, en) are observed where 

Yj ~= Yj° A C2j, ej ~ I[yj=~Ol, j = 1, 2 , . . . ,  n. 

Further we assume all df's F1, F2, G1, G2 are continuous and have pdf's f l ,  f2, 
gl, g2 respectively. 

Under the above assumptions Xi's and Yj's are iid with df's HI and / /2  defined 
by 

(1.1) 
( 1 . 2 )  

1 - Hi(x) = P{Xi > x} = (1 - Fl(X))(1 - Gl(x)), 
1 - H2(y) = P{Yj > y} = (1 - F2(y))(1 - G2(y)). 

We define the following sub-df's for later use. 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

~0 t H~(t) A P{Xi <_ t, 5i = 1} = (1 - G1)dF1, 

/o gf(t) ~ p{x~ __ t,  e~ = o }  = (1 - F~)aG~, 

H~(t )  ~ P { ~  <_ t, ~ = 1} = (1 - a~)aF2,  

H~(t) ~= P { ~  <_ t,  ~j = O} = (1 - F~)aa2. 

Then clearly we have H1 = H~ + H~ and H2 = H~ + H~. 
Now we shall define the two-sample transformation model precisely. Following 

Miura (1985), the model is expressed as 

(1.7) F2(t) = D(FI(t); 0), 0 • 0 c R 1, 

where O is a parameter space and for each 0 D(u; O) is a continuous df on (0, 1) 
whose functional form is known and has pdf d(u; 0). Furthermore, we assume that 
D(u; O) is monotonically increasing in 0 and continuously differentiable in both u 
and 0. 

In this model we consider inference for the parameter 0. In the next section, 
for the case when F1 is unknown, we suggest a nonparametric estimator of 0 based 
on ranks. 

A particular example of our framework is the proportional hazards model. 

Example 1. (proportional hazards model) Let D(u; 0) = 1 - ( 1  - u) °, 0 < 
0 < oc. Then 

(1.8) Al(t) = 0A2(t), 
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where .'~1 and A2 denote hazard functions corresponding to F1 and F2 respectively 
(Cox (1972)). 

For other examples, see Dabrowska et al. (1989) (hereafter DDM). In the sequel 
we mainly use the proportional hazards model for illustration of our procedure. 

For the above model, without censoring DDM suggest two estimators based 
on ranks and prove their asymptotic normality. In the present paper, we consider 
an extension of one of them to the model with randomly censored data. In Sec- 
tion 2, our estimator is defined in the presence of censoring. The estimator is a 
kind of M-estimator and obtained by solving an estimating equation. It is rather 
simple, especially for the proportional hazards model. Moreover, in Section 3, our 
estimator turns out to be asymptotically normal under certain mild regularity con- 
ditions. For the proportional hazards model with special censoring, we obtain the 
asymptotic relative efficiency of our estimator with respect to the maximum par- 
tial likelihood estimator, which is known to be the best nonparametric estimator 
for this model. We see that our estimator is quite efficient near 0 = 1. 

2. RAM estimator 

First we shall consider the case when F1 is known, and introduce the M- 
estimator which depends on F1. For this purpose let us calculate the likelihood of 
(Y1, el), (Y2, e2) , . . . ,  (Yn, ca). If F1 is known we only have to consider the second 
sample, because by transforming 

u, FI(X,), Wj 

the joint distribution of U1,. • •, Urn, W1,. • •, W~ has the following survival function 

m n 

I I ( 1 -  u i ) [ 1 - G l ( F ~ l ( u i ) ) ]  . U ( 1 -  D(wj;O))[1 - G2(F~I(wh))], 
i=l 5=1 

and therefore W 1 , . . . ,  Wn are sufficient for 0. 
Denoting the likelihood of a single observation (Yj, e5) by L(yh, Q), we have 

S f2(Yh)[ 1 - G2(yh)] if e 5 = 1 
L(Yh, ej)  

g2(y )[1 F2(yh)] if = 0 

= {f2(yh)[1 - G2(yj)]}~J. {g2(yh)[1 - F 2 ( Y j ) ] } i - e J .  

Hence the total likelihood L of (Y1, el), (]I2, e2) , . . . ,  (Yn, en) becomes 

L = r I  L(Yh' ei) 
j = l  

= 1-I f2(Y5 )[1 - G2(Yh)] • H g2(Yh)[1 - F2(yh)], 
u c 

j---- 1 , . . . , n ,  
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where I-I~ and t ic  denote products over uncensored observations and over censored 
ones respectively. Now the terms concerning g2 and G2 may be considered as 
constants for maximum likelihood estimation since they do not depend on 0, and 
hence we may regard L as 

L = H f2(Yj)" 1-Ill - F2(yj)]. 
u c 

Taking logarithms gives 

logL = E l o g f 2 ( y j ) +  E log[1-  F2(yj)], 
u c 

where, similarly as above, y~= and ~-~.¢ denote the sums over uncensored and 
censored samples, respectively. Further, 

01ogL ]2(Yj) + 
O0 f2(Yj) 1 - F2(yj) ' 

where 

By (1.7) 

hence we have 

(2.1) 

0 

f2 = f l "  d(F1;O), 

d(u; O) = O D(u;O), 
uu  

A 0 P2(yj) = ~F2(y~).  

P2 = b (v~;  o), 

/)(u; 0) ~ ~-~D(u; 0), 

01ogL ~-~[  d(wj;O) 
O0 - eJ d(wj; O) 

j = l  
( 1  - ej) 1 - D(wj;O) J ' 

where wj & FI(yj). To obtain further expression, we state the following lemma 
(c.f. James (1986)). 

LEMMA 2.1. Assume that for d(w; O) the order of differentiation in 0 and 
integration in w are interchangeable. If  we set 

d(w; O) 0 log d(w; 0), (2.2) /',(w; o )=  ~ - oo 

then 

(2.3) D(w;0)  = E [A(W°;0 )  I W ° > w], 
1 - D(w; O) 

where yo  is a rv with df F2 and W ° ~ FI(Y°) .  
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PROOF. 

E 1 A(wO; O)d(wO O)dw o E[A(W°;O) I W ° > w ] -  p { w o  > w} 

1 ff  d( P { W  ° > w} w°;O)dw° 

/5 _- 1 . __0 d(wO; O)dw o 
1 D(w;O) O0 

1 o D(w; o)1 
= 1 - D ( w ; O ) ' - ~ [ 1 -  

b ( ~ ; o )  
1 - D(w; 0)" 

[] 

Using (2.2) and (2.3), (2.1) can be writ ten as 

n 
0log L 

- E [ e j A ( w j ; 0 ) +  ( 1 -  e j ) E { A ( W ° ; 0 ) [ W  ° > wj}]. 
00 

j = l  

Note tha t  E[OlogL/O0] = 0 and MLE is defined by OlogL/O0 = 0. Now let r] be 
any function satisfying Eo[~?(W°; 0)] = 0. Then as proved in Lemma 3.1 below, 
we can show 

(2.4) E[ejrl(Wj; O) + (1 - ej)E{~I(W°; O) [ W ° > Wj}] = E[r/(W°; 0)] = 0. 

Therefore a natural  score function ¢ for M-est imat ion may be defined by 

(2.5) ¢(wj, ej; O) ~= ejg, o(Wj; O) + (1 - ej)E{¢o(W°; 0)[ W ° > wj) 

where ~o is any function satisfying Eo[~bo(W°; 0)] = 0. For brevity, let us write 

(2.6) @I(wj;O) ~ E{¢o(W°;O) [ W ° > w3}, 

so tha t  
¢(~ j ,  ~j; 0) = ~j¢o(~j;  0) + (1 - ~j)¢l(~oj; 0). 

Here we further assume tha t  Ck, k = 0, 1 are monotonically increasing in 0. We 
then define an M-est imator  (Huber (1981)) of 0 as a solution of the equation 

}-~ ¢(wj,~5;0) = 0 
j----1 

Now we turn  to the main case where F1 is unknown. Then we cannot  t ransform 
Yj by F1. However we can replace F1 by some estimator of F1. For the censored 
case we shall take Kaplan-Meier PL(product  l imit)-estimator Far,  as an est imator 
of F1 (Kaplan and Meier (1958)). It is defined as follows: let X(1) < X(2) < . ' -  < 
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X(m) be order statistics in the first sample, and 5(i) be the 5i corresponding to 
X(i). Then Elm is defined by 

_ = H m - i + 1  
if t < T m ,  

X(i) <_t 

0 if t>_Tm~ 

A 
where Tm ---- X(m). In order that the proposed estimator is applicable for small 
samples, we define 

1 

N + I  
g 

N 

N + I  

if 0 < t < X  ~ (1) '  

if X~I ) ~_t<Trn,  

if "r~ _< t, 

where N ~ = m + n  and 
X ) =  rain Xi. 

l<i<m 
6~=i 

Further we set I~j ~ Flm(Yj) and then define our RAM (Rank Approximate M) 
estimator 0N of 8 by a solution of the equation 

?% 

j = l  

More precisely, if we set 

{ t (w, } O~v~sup 0:  ,e j ; 0 ) > 0  
j = l  

0~v*=inf 0:  ,e j ; 0 ) < 0  , 
j = l  

and 

then the RAM estimator is defined by 

07v +0"* N 
N----  2 

If Y(1) < Y(2) < ' "  < Y(,~) are order statistics of Y1, ]I2, . . . ,  Y,~, then ~'lm(Y(j)) 

has the same information about 0 as rank of Y(j). Therefore we can interpret 0N 
as an approximate M-estimator based on ranks. That  is why we call it RAM 
estimator as in DDM. 

In the absence of censoring, Cuzick (1988) developed a similar estimation 
procedure in the linear transformation model which is related to, but essentially 
different from our model. 
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Example 1. (continued) Under  the propor t ional  hazards model,  we have 

d(u; {9) = 0(1 - u) °-1, d(u; 19) = [1 + O log(1 - u)](1 - u) °-1. 

Hence we compu te  

d(u; {9) 1 
(2.7) ¢0(u; O) -~ d - ~  {9) - {9 + l o g ( 1 -  u). 

Similarly the  e q u a t i o n / ) ( u ;  O) = - log(1 - u ) .  (1 - u) ° leads to  

(2.8) ~31(U ;0) & /)(U;O) = log(1 -- U). 
1 -- D(U; O) 

T h e n  bo th  ~b0(u; O) and ¢1(u; O) are nonincreasing in O, and hence 0N becomes a 
solut ion of the  equat ion  

n 

E[ej (O-1 -~- log(1 - ~'am(Yj))) + (1 - ej)log(1 - •m(Yj)) ]  = O. 
j = l  

Solving this we obta in  

( 2 . 9 )  = 

n 

E j----1 ej 

y~'jn=l [ -  log(1 - ~"lm (Yj))] " 

Note tha t  the  numera to r  represents the number  of uncensored observat ions in 
the  second sample,  and  tha t  - l o g  F lm in the  denomina to r  can be viewed as an 
es t imator  of the  cumulat ive  hazard funct ion corresponding to F1. 

3. Asymptotic theory 

3.1 Notations and assumptions 
Let us denote  the  empirical  (sub-)df 's  of H2, H~*, H~ by 

-n I[y,<t], H~,~(t) =" _1 n IWj<t]Q' 
j = l  j= l  

n 

H~,~(t)c =/' _1 E/ [Y ' -< t ]  (1 - e j ) ,  
n 

j = l  

respectively. Next,  we shall define the  (sub-)df and empirical  one of Wj ~ F(Yj) .  
Hereafter  we denote  the  composi t ion of two functions f and  g by fg. With  this  
rule we have 

WjO _~ Fl(yjo)  d D( .  ;0), FI(C2j) d G2F~I, 
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and so we define the (sub-)df of Wj by 

1 - E2 ~ (1 - D)(1 - G2F~ 1) = H2F11, 

/o E~(t) ~= (1 - G~F?I)dD = H~F~I(t) ,  

E~(t) ~= ( 1  - D)dG2F~ 1 = I I~F~l( t ) .  

Empirical ones are also defined by 

n 

E2n(t) ~ -1 E i[wj<t] = H2nF~l(t), 
n -- 

j----1 

E~n(  ) - n W j < t ] 6 j  : t , 

j-~l 

E~n(t) = - A.., I[w~<t](1 - ~j) = H~nFll( t ) .  
n 

j = l  

Next let us define empirical processes which we need for the proof  of the 
asymptot ic  normali ty of ~N. For the second sample, the processes 

(3.1) V~(H~) ~= v~(H~n - H~), V~(H~) ~ v~(H~n - H~) 

appear  and for the first sample we need the Kaplan-Meier process: 

(3.2) X m  ~ x/m(Flm - F1). 

For the asymptot ic  argument of this process we define the following functions; 

(3.3) c(t) (1- 1) 2dH~ '  

c(t) 
(3.4) g( t )  - 1 + C(t)" 

Furthermore let V0 and V1 be independent  Brownian bridges and X ~ (1 - F)B,  
where B = S ( C )  and S is the s tandard Brownian motion on [0, c~). Here X ~ Y 
means tha t  X and Y have the same distribution. We denote the sup-norm over 
an interval [a, b] by I1" I1~ and when a and b are omit ted it represents the sup-norm 
over [0, c~). 

We now state  our assumptions.  

ASSUMPTION 1. (1) If we set 

~F~ ~ inf{t : F l ( t )  = 1}, 7G~ -~ inf{t : Gl(t) = 1}, 

~H~ ~ in f { t  : H i ( t )  = 1} = ~ A ~ ,  
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we assume that  TF1 ~ TG 1 ~ T H  1 ~ (X). 

(2) Let AN ~ m/N.  Then, for some A0 E (0, 1/2), 

,~0 ~ ,~g ~ 1 -- A0, for all N > 1, 

and there exists A > 0 satisfying 

AN --~ A, as N --o oo. 

On the score functions @0 and ¢1 and the (sub-)df's E2, E~ and E~, we put  
the following assumption. 

ASSUMPTION 2. Define 

~ 0  . , 0  
= ¢ k ( t ; 0 )  = N C k ( t ; 0 ) ,  k = 0, 1 

Assume that  for 0 in a neighborhood of the true parameter value 0o, the following 
conditions (1)-(4) hold. 

(1) For some 5 satisfying 0 < 5 < 1/2, 

a) [¢k(t; 0)l _< M[t(1 - t)] -V2+e, b) I¢;(t; 0)1 < M[t(1 - t)] -3/~+e, 

where M is a universal constant. 
(2) For the same 5 in (1), 

fo t -2+5 [CF[ 1 1-e/2dE2 (t) < (t)] (30, 

uniformly in 0. 
(3) For the same 5, 

( 1  - = t)-l/2+e dE2(t) o p ( m - 1 / 2 ) .  

l(~m) 

(4) 

~0 
1 

a) @o(t; O)dE~(t) < oo, ~o 1 b) (bl(t;O)dE~(t) < oo, 

uniformly in O. 

Let us interpret our assumptions. Assumption 2(1) is an ordinary assumption 
on the smoothness of the score functions which has been very often used in non- 
parametrics, and Assumption 2(4) has the same meaning on the smoothness in 
the argument 0. Assumption 2(2) is a technical and direct assumption ensuring 
the convergence of the process, and so seems with Assumption 2(3). But, as easily 
verified, it is concerned with the censoring distribution G1 and a measure which 
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reflects "the lightness of censoring"; it can be satisfied if the convergence of F1 (Tin) 
to 1 is appropriately rapid. Noting that  FI(Tm) is the largest order statistic from 
the distribution with df E1 -- HIF1-1 and (1.1), E1 should have a density whose 
derivative at 1 does not exist, or at least sufficiently large. Therefore G1 puts 
mass on the part of the positive real line bounded away from the origin. A simple 
sufficient condition for this is 1 - F1 (Tin) = Op(m-1/2). 

Remark 3.1. If G1 ---- 0, that  is, if there is no censoring, easy calculation 
shows that  C = F1/(1 - F1), so that  Assumption 2(2) reduces to Assumption 2(2) 

in DDM. Also, Assumption 2(3) is satisfied since FI(Tm) d U(O, 1). 

3.2 Asymptotic normality 
n ^ We begin with the integral representation of the statistic ~j=l ¢(Wj,~j ;0)  

which is used to define our estimator: 

(3.5) 
n 

Sg(O) ~- -1 E[eJ¢0(i~dj; 0) + (1 - ~j)Vl(I2Vj; 0)] 
n 

j = l  

/o /o -- ¢0(Flm; O)dH~n + ¢1(F1,~; O)dH~n. 

The following lemma shows that  the expectation of SN(Oo) is 0. 

LEMMA 3.1. If the true value of 0 is 0o, then 

/0 # = ¢0(F1; Oo)dH~ + ¢1(F1; Oo)dH~ = O. 

PROOF. By the change of variable, 

f 1 /0 = In ¢o(t;Oo)dE~(t) + ¢l(t;Oo)dE~(t) # 

= ~o(t; 0o)[1 - G2F~l(t)]dD(t; O) 

+ ~ t ( t ; O o ) [ 1  - D(t;Oo)]da2Ffl(t). 

Using (2.6) and the identity 1 - G2F~I(t) = f t  1 dG2F~l(s), we obtain 

/o 1 [/1 # = Co(t; 0o) dG2F~-l(s) dD(t; 0o) 

+/01 ~l¢o(s;Oo)dD(s;Oo)dG~F11(t) 

= /ol~Po(t;Oo)[/tldG2Fll(S)]dD(t;Oo) 
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+ fol¢o(s;Oo)[foSdG2Fll(t)]dD(s;Oo) 

/01 [/o ] -- Co(t; oo) da~F~-i(s) dm(t;Oo) 

= ~Po(t; Oo)dD(t; 0o), 

which is 0 because of the condition on ¢o :Eo[¢o(W°; 0)] = 0, W ° ~ D ( . ;  O). [] 

We are now ready to prove the asymptotic normality of RAM estimator• 

THEOREM 3•1• Under Assumptions 1 and 2, as N ~ oc, 

v~(ON - Oo) d, N(O,o~(Oo)), 

where 
1 ( ]  + ~lv2( 0 

~,~(o) ~ 1 - ~-~,o~ 
) 

[fo ~o(F1;(~)dS~ + fo  ~)l(F1;O)dS~] 2' 
and 

f0 ~ f0 ~ vl(O) ~= [¢o(F1;O)]2dH~ + [¢I(F1;O)]2dH~ 

{/o /o - -  ~)o(F1;0)dH~ + ¢I(F1;0)dH~ , 

2 [ f f  ( 1 -  F l ( S ) ) ( 1 -  Fl(t))C(s) T2(O) 
LJJs < t  

• ¢~(F~(s) ;  o )¢~ (F , ( t ) ;  O)dH;(s)dH~(t) 

+ / / ( 1  - F~(s))(1 - F~(t))C(s A t) 

• ¢~)(F1 (s); O)¢~(Fl(t); O)dH~(s)dH~(t) 

+ __Ill<t(1 - FI (s))(1 - Fl(t))C(s)¢~(Fl(s); 0) 

• ¢~ (F l ( t ) ;  O)dH~(s)dH~(t)[, 
J 

provided a2(8) > 0. 

PROOF. 

where 

Let O ~ Oo + N-1/2b, and decompose SN(O) as follows: 

SN(O) = S~(O) + S~(O), 

fO ° S~v(O) ~- ¢0(Flm; O)dH~, ~ i ~ (F S~(O) = ¢1 ira; O)dHf=. 
do 
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In view of the symmetry of the assumptions on ¢0 and e l ,  we have to show only 
the convergence of S~v (0), for the convergence of S~v(O ) can then be proved quite 
similarly. 

As a method of proof, we shall adopt the so-called Pyke-Shorack approach 
(Pyke and Shorack (1968)), by which we obtain almost sure convergences of the 
processes on the specially constructed probability space. However, it should be 
remarked that only convergences in distribution is true on the original space. 

We note that the convergences in the sequel are all true uniformly in b satis- 
fying Ibl < B for any fixed (sufficiently large) B < oo. 

Now let us show the convergence of S~v(O ). A simple algebra leads to the 
expression: 

~/N S~(O) = A1N q- A2N q- A3N + rg, 

where 

AIN = 

A2N = 

A3N ~- [¢0(F1; 0) - ¢0(F1; Oo)]dH~, 

fo = - - ¢0 (F1; 0)(Flm -- F1)]dH~n 

+ v/N f o ~  ~b~(F1; O)(Flm - F1)d{H~n - H~}. 
Jo 

¢0(F1; O)d{H~n - H~}, 

I 
~20(F1 , O ) ( . F l m  - F1)dH~, 

Here we used Lemma 3.1 implicitly. Using the results of Shorack and Wellner 
(1986) and Gill (1983) (see the Appendix), we can show the weak convergences of 
A1N, A2N and A3N and asymptotic negligibility of rN. 

(i) A1N. 

A1N ---- ¢0(F1; O)d{v~(H~n - H~)} 

1 fo - ~ ¢0(t; O)d{v~(E~( t )  - E~'(t))} 

/o - -  ~ ~P0(t; O)d{ Vn(E~(t))  - Vo(E~(t))} 

1 f 1 
+ [ ~o(t;O)dVo(E~(t)). 

Jo 

By Proposition A.2 in the Appendix, the first term converges to 0 almost surely 
as N ~ o~. Thus we get 

~.~. 1 ~o 1 (3.6) A1N ' X/~Z-- ~ Co(t; eo)d 
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(ii) A2N. 

A2N = ¢0 (F1; ~ ) vim(Fire - F1)dH~ 

= ¢o(F1;O)XdH~ + 

÷ ¢0(F1; 0)x/~(1 - F1)dH~ 
m 

: A21N + A22N T A23N, say. 

¢~(F1; O)(Xm - X)dH~ 

Then 

A21N a.s.> 1 ~0 ¢~ , ¢0(F1; Oo ) X dH~ 

/0 IA22NI < M IF1(1 - -  F1)] -3/2+5 1 - K 
- 1 - F ~  

ii TM 

F 1 [K(1 :-K-)]-(-i--5)/2 

• fo ~m KO-~)/2F[3/2+5(1 _ K)-(1+~)/2(1 _ F1)-U2+~dH~. 

and 

- - ( X m  - X)  1 - FldH~ 
1 - K  

If we see the integral on the right is finite, then A22N P ~ 0 since the factor before 
the integral is %(1) by Proposition A.4. In fact, using Proposition A.5, 

~0 "r'~ KO-~)/2F~3/2+5 (1 K)-(1+5)/2(1 ~ "~-l/2+6,zTju 
_ _ z , 1 )  t~ll 2 

<-- ~r~ K(i-~)/2F13/2+5( 1 _ K)-I+~/2dH~ 

<_ F~2+eCI-~/2dH~ 

/o < t-2+~(CF~l(t))l-~/2dE~(t), 

which is finite due to Assumption 2(2). Here the first inequality follows from the 
fact 1 - K  < l - F 1  and the second one from F1 < K and K = C / ( I + C ) .  
Therefore, we obtain A22N P> O. Finally, 

jfT °° 
IA23N[ _< M [FI(1 - F1)]-3/2+~x/m(1 - F1)dH~ 

m 

/j _< M v"-m(1 - F1)-l/2+edH~ 
m 

= M (1 - t)-l/2+edE~(t). 
JF~(~-~) 
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This converges to 0 in probability by virtue of Assumption 2(3), and therefore we 
conclude that 

(3.7) A 2 N  P 1 foo °° , u ' - ~  ¢o(r l ;  Oo)Xdg~. . 

(iii) A3N. By the mean value theorem, we can write 

if A3N = ~ ~0(F1; 0")(9 - Oo)dH~, 

where 0* assumes a value between 9 and ~o. Noting that 9 = 9o + N-1/2b,  it 
follows from Assumption 2(4) that 

(3.8) AaN = b ¢o(F1; O*)dH~ = b g)0(t; 9*)dE~(t) 

b  b0(t;O0)dN(t). 

(iv) rN. We shall decompose rg  as follows: r~r = r l N  + r2N, where 

Z ~v/-N [¢0(~'zm;9) ~0(F1;9) ¢;(F1;O)(Flm F1)ldH~n, T 1 N  = - -  _ _ 

Cto(FI"O)(Flm F1)d{H~n H?}. ? ' 2 N  ---- , - -  - -  

(iv-a) rlN. Let 7 > 0 be sufficiently small, and rlN --- rUN + rl2N + 
rlaN, where the ranges of integration in rUN, rl2N and rl3N are (0, F l1(7)) ,  
[F1-1(7), F1-1( 1 - 7 ) A  *m] and (F~-I (1-  7)A T~, 0o) respectively, while their in- 
tegrands are the same. And F~' denotes a random function assuming the value 
between Flm and F1. For ruN ,  let ¢ > 0 be given. Then the fact that there exists 
some No such that for all N _> No, with probability greater than 1 - e, 

(3.9) I¢~(F;; 0) -- ~)~(F1; 0)l ~< 2[(F1" A F1)(1 - FI* A F1)] -3/2+~ 

< 2M[FI(1 - F1)] -3/2+6, 

and the obvious relation ]Flm - $'lm] < 1/ (m + 1) together show that 

/ Fl1(7) --3/2+6 u 
Irllu} < M [FI(1 - F1)] ]XmldH~n. 

J0 

It follows from an application of Proposition A.4 that 

1 - K Xm = Op(1). 
(3.10) 1 ---F1 [K(1 - K)](1-6)/2 
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And then, as in the argument of A22N, we obtain 

Iru~l _< Op(1) fn ~ t-2+~C~-~/2dE~, 

which converges to 0 in probability as ~ ~ 0 and N ~ c~. 
Next we work on r12N. Since ¢~ is uniformly continuous on [F1-1 (~), F1-1(1 - 

~/)], HF{ - F i l l  _< IIFlm - F i l l  "% 0, and IIXmll = Op(1), we have, for any fixed 7, 

F?I("/)ATm 

Ir12NI = JF~-~(~) v~[¢~(FI*; 8) - ¢~(F1;0)](Flm - F1)dH~n 

<- MO,(1)  jF;_~(~) I¢{)(F~; 0) - ¢'o(F1;O)lau~,. 

P 
Hence, as N --* oc, r12N > O. 

Concerning r13N, it is obvious that it should be %(1) on (F1-1(1 -~/) ,  Tm] as 
before, so that it suffices to show that it converges to 0 in probability as N --* oc on 
[rm, c¢). But this follows immediately from (3.9), Proposition A.1 and Assumption 

P 
2(3). Therefore, we conclude that rlN ~ 0 as ~/ ~ 0 and N --* oc. 

(iv-b) r2N. Let r21N and r22N equal r 2 N  with change of the range of integra- 
tion into [0, Tin) and [Tin, OO) respectively. Then, using (3.10), the same argument 
as for A22N leads to 

1/0"  ]r21N] <_ ~ [FI(1 -- F1)]-3/2+~lXmIdIH~n - H~] 

1' _ 0p(1) t-2+e(CP~l(t))*-e/2dlN~n(t) - E~(t)l, 

which converges to 0 in probability as N ~ oe by Proposition A. 1. As for A23N, 
it is easy to show that r22N also converges to 0 in probability. 

Therefore, we finally conclude that, uniformly in b (Ibl _< B), 

v/-~S~v(O ) p 1 .~1 ) ~ -v ¢o(t;Oo)dVo(E~(t)) 

+ ~/o l~° ( t ;O°)X(Fcl ( t ) )dE~( t )  

+ b ~ 1  ¢0(t; Oo)dE~(t). 

As mentioned at the beginning of the proof, convergence of S~v(8) can be shown 
quite similarly; that is, 

)--~----~ -~ ¢l(t;Oo)dVl(E~(t)) 

+ - ~  ¢[(t;Oo)X(F~-*(t))dE~(t) 

+ b f l  ¢1(t; Oo)dE~(t) 
Jo 
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uniformly in b satisfying Ib[ _< B. Uniformity in convergence may be easily verified 
by the monotonicity of SN(O) in b and the compactness of the interval I -B ,  B]. 
Now set 

~ ¢o(t;Oo)aVo(E~(t)) + ¢l(t;oo)aVl(E~(t)) , 

--~ [~01 ~01 )1 T2 -~ ¢~( t ;00)X(F~l( t ) )dE~( t )  + ~b~(t;00)X(F11(t))dE~(t , 

Ta -~ ~0(t;00)eE~(t)  + ~b~(t;00)eE~(t). 

Then the result above is rewritten in a form of well-known asymptotic linearity: 
uniformly in b (Ibl _< B), 

(3.11) v/-N SN(O) P~ TI + T2 + bT3. 

To show the convergence of v/N(~N - 00) , according to the spirit of Shorack 
(1970), we have to check that  IvZ-NSN(O)[ is bounded away from 0 for b outside 
I -B ,  B] with probability sufficiently close to 1. For if this is proved, then, for 
sufficiently large N, a unique minimizer of Ix/~SN(O)] is X/~(~N -- 00), and this 

converges to - (T1 + T2)/T3 which minimizes IT1 + T2 q- bT3 I. Now set lAb,g -~ A3N. 
Then, by triangle inequality, 

(3.12) Iv~s~(o ) l  >_ v ~ l s N ( o )  -lAb, NJ - v~JlA~,~J . 

We have already seen that V~(SN(O) - lAb,N) P) T1 -~- T2 uniformly in b, and 

hence it is Op(1). On the other hand, it was shown that  v/-NIAb,N P~ bT3 also 
uniformly in b. Thus, for an arbitrary sufficiently large M > 0, we can take 
BM > 0 SO that  BM[T3[ > M + 1, and then for this BM we can choose nM such 
that  IV/--NIAb,N -bT31 _< 1 for all [b I <_ BM and all N > riM. It then follows from the 
monotonicity of #b,N in b that  v/-N]#b,gl > M for all ]b] > /~M and all N > riM. 

This, together with (3.12), implies that  for a given e > 0, there exist a B~ > 0 and 
an integer n~ such that  for all N > n~ 

P I v ~ S ~ ( O ) l > -  for a l l l b l > B ~  > l - e ,  
e 

which shows the assertion stated above. 
Consequently we arrive at the following: 

(3.13) V~(~N - 0 0 )  P,  
T~ + T2 

Clearly the mean of the rv on the right hand side is zero. For variance, note that  

Cov[X(8), x ( t ) ]  = (1 - F1(8))(1 - Fl(t))C(~ A t) 

Cov[ Vo(E~(s)), VI(E~(s))] = -E~(s)E~(t).  

and 

T3 
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These follow from Proposition A.2 and A.3. Since X and Vk (k = 0, 1) are 
mutually independent, direct calculation shows that  the variance of the rv on the 
right in (3.13) is given by a2(00). [] 

Remark 3.2. By the above proof, it is easy to see that  the effect of estimating 
F1 by ~'lm appears in the asymptotic variance in the form of T2(0). 

Remark 3.3. If G1 = 0, that  is, there is no censoring, asymptotic variance 
0"2(~0) of  ~N coincides with the one obtained in DDM. This is easily verified by 
noticing that  the PL-estimator agrees with the empirical df in this case. 

3.3 Estimation of variance 
Apparently it seems possible to estimate asymptotic variance by replacing F1, 

/-/2, H~, H I and C in the expression of a2(0) by their empiricals. In the case of 
continuous F1 a consistent estimator of C is given in Shorack and Wellner (1986) 
by 

Vim(t) ~ --1 1 - 1 I[x(,) <_t]5(i ) . 
m i-~1 m 

However, here one is faced with difficulty: the value of e l m ( t )  for t >_ T m is always 
infinite, that  is, co. This fact makes it impossible to estimate C by Clm if the 
largest order statistic Y(n) is greater than Tm (see the expression of T2(0)). In this 
case, we shall modify e lm slightly by 

O l m ( t ) ~  1 ~ ( 1  i-1)-2I[x(~)<_t]5(i) 
m i=1 m 

This may underestimate C in comparison with e lm because of replacing (1 - 
i /m)  -1 by (1 - (i - 1)/m) -1, but considering the definition of C in the case that  
F1 is not necessarily continuous (see Shorack and Wellner (1986)), our definition 
of  e l m  seems natural. 

Example 1. (continued) In the proportional hazards model (1.8), the asymp- 
totic variance a2(0) of  ~N of (2.9) is given by 

Tl(O) = 01~[H~'(oe) - H~'(oz) 2] 

2 - - H ~ ( o c )  f ° l og ( l -F l )dH2]  

+ [log(1 - F1)]2dH2 - log(1 - F1)dH2 , 

T2(0) = 2 C(s)[1 - H2(s)]dH2(s), 

and 

/0 c,2 1 2 
Co(F1; O)dH~ + el(F1;  O)dH~j = ~ H ~  (co) . 
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For this model, it is known tha t  the maximum partial  likelihood est imator (MPLE) 
(Cox (1975)) is the best nonparametr ic  estimator of 8 (for precise s tatement ,  see 
Begun and Wellner (1983)), so tha t  one would like to compare the RAM est imator 
with the MPLE.  Set 

1 ~ [ ~  1 - H1 dH~ '~, 
a .  2 J0 ( 1 - A ) - 1 ( 1 - H 1 ) + 8 A - 1 ( 1 -  H2) 

then the asymptot ic  variance of the MPLE is given by 82a. 2. In order to obtain 
tractable asymptot ic  relative efficiency (ARE), let us suppose tha t  the censoring 
mechanism is given by 1--Gk = ( 1 - F k )  ~k , (k -- 1, 2) as in Kalbfleisch and Prentice 
(1981). Then we find tha t  the asymptotic  variances of the RAM est imator and 
M P L E  are given by 

and 

8272 + 1 8 a (72 + 1) 2 

1 - A  A 2 8 + 2 8 7 2 - 7 1 - 1  

--1 

respectively for 8 > 1. For A = 1/2 the ARE of the RAM est imator with respect 
to the M P L E  is tabulated in Table 1 for various values of 8, V1, 72. We see from 
Table 1 tha t  the RAM estimator is quite efficient for 8 E [1, 2]. 

Table 1. Asymptotic relative efficiency of RAM-estimator with respect to MPLE for special 
censoring. 

0 = 1  0 = 2  0 = 4  

~i\~2 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 
0.0 1.000 0.986 0.978 0.951 0.934 0.927 0.864 0.850 0.844 
0.5 0.863 1.000 0.991 0.981 0.951 0.938 0.886 0.864 0.854 
1.0 *** 0.951 1.000 1.000 0.971 0.951 0.913 0.878 0.864 

0 = 8  0=16  

~1 \') '2 0.0 0.5 1.0 0.0 0.5 1.0 

0.0 0.756 0.746 0.741 0.647 0.640 0.637 

0.5 0.772 0.756 0.749 0.657 0.647 0.642 

1.0 0.789 0.766 0.756 0.668 0.654 0.647 

Table 2, from Pike (1966), gives the times from insult with the carcinogen 
DMBA to mortal i ty  from vaginal cancer in rats for two pre t rea tment  regimens. 
Table 3 gives the results of est imation of 0 for the da ta  of Table 2 using four 
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different estimates.  Besides the RAM and M P L E  est imates we consider the two- 
step es t imate  of Begun and Reid (1983) and the average hazard rat io es t imate  of 
Kalbfieisch and Prent ice  (1981). 

Table 2. Days to cancer mortality in rats. 

Group 1 143, 164, 188, 190, 192, 206, 209, 213, 216, 216 +, 220, 227, 230, 
234, 244 +, 246, 265, 304 

Group 2 142, 156, 163, 198, 204 +, 205, 232, 232, 233, 233, 233, 233, 239, 240, 261, 
280, 280, 296, 296, 323, 344 + 

+ indicates censored. 

Table 3. Estimation for the data of Table 1. 

Estimate of 8 Estimate of Estimated standard 
= log 0 error of 

Two-step estimate .553 -.593 1.165 
MPLE .551 -.596 1.086 
Average hazard ratio estimate .547 -.603 1.045 
RAM estimate .615 -.486 1.153 

Begun and Reid make use of the relation 

(1 - H1)dH~ = 0(1 - H2)dH~ 

and proposes an est imator ,  using some score function J ,  

~ ( j )  ~ f o  J (1  - H l m ,  1 - H2,~)(1 - Him)d(1  - H~n ) 

f ~ J ( 1  Him, 1 H2n) (1 ~ -  H--~m) " 

Two-step est imate  is cons t ructed  by taking J ,  (s, t) = [As + ~o (1 - ) 0 t ] - l ,  where ~o 
is a prel iminary est imate  obta ined with J _-_ 1 in the first step. It  is fully efficient 
with respect  to the MPLE.  

Kalbfleisch and Prent ice  define the average hazard rat io by 

~0 °° v = AF~ (t)/[AF~ (t) + )~F2 (t)]d(1 - F1F2) ~. 

The  paramete r  5 > 0 is a weight to be chosen. Under  the propor t ional  hazards 
model,  we have 0 = v/(1 - v). The  average hazard rat io es t imate  is obta ined  by 
replacing F1 and F2 with their  PL-est imators .  

The  est imat ion principle of RAM est imator  is intelligible and compared  with 
these est imators,  RAM est imator  is easy to compute  and so it is of practical  use. 
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Appendix 

In this appendix, we summarize the results on PL-estimator in Shorack and 
Wellner (1986) which we used for the proof of Theorem 2.1. Proofs of these 
propositions are not given, so the reader should refer to the above book or Gill 
(1983). Notations are the same as in Subsection 3.1. 

PROPOSITION A.1. (Glivenko-Cantelli) As n -~ c~, we have 

IIHA - H~II °~~ 0, IIHA - H~II °~; 0, IIH=n - H211 ~~; 0. 

PROPOSITION A.2. On the specially constructed probability space we have, 
a s  n---+ 00 ,  

i0 v 2 ( g ~ )  - Yo(H~)ii °.8.) 0, ti Y : ( g l )  - Yl (Hi) l ]  o.s. 0, 

where Vo and V1 are Brownian bridges whose covariance is given by 

Cov[ Vo(H~(s)), V1 (g~(t))] = -H~(s)H~(t). 

PROPOSITION A.3. On the specially constructed probability space, for any 
fixed T < Hi( l ) ,  it follows that 

i l x , ~ -  Xilo ~ o.8 o, m - ,  oo. 

Covariance function of X is given by 

Cov[X(s), X(t)] = (1 - Fl(s))(1 - Fl(t))C(s A t). 

PROPOSITION A.4. On the specially constructed probability space we have 

1 - K  X m - X  i "~ p 
1 - F 1  ~7~i >o, ,~-~o¢, 

provided the function q(t) on [0, 1] satisfies the following conditions: 

q(t) / on [0, 1/2], and symmetric about t = 1/2; 

q(t)/vq \ on [0,1/2]; [q(t)]-~dt < ~.  
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PROPOSITION A.5.  
cont inuous,  then 

where 

We have F1 ~_ K. Moreover if both F1 and G1 are 

1 F1 ~0' -- 1 + Cd_,F1 
1 - K  

fo t dG1 fot dH~ 
C( t )  ~ (1 - F1)(1 - G1) 2 = (1 - H1) 2 '  

so that (1 - F1)/(1  - K) is monotonically increasing. 
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