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A b s t r a c t .  Maximum quasi-likelihood estimators have several nice asymp- 
totic properties. We show that,  in many situations, a family of estimators, 
called the minimum f-divergence estimators, can be defined such that  each es- 
t imator has the same asymptotic properties as the maximum quasi-likelihood 
estimator. The family of minimum f-divergence estimators include the maxi- 
mum quasi-likelihood estimators as a special case. When a quasi-likelihood is 
the log likelihood from some exponential family, Amari 's  dual geometries can 
be used to study the maximum likelihood estimator. A dual geometric struc- 
ture can also be defined for more general quasi-likelihood functions as well as 
for the larger family of minimum f-divergence estimators. The relationship be- 
tween the f-divergence and the quasi-likelihood function and the relationship 
between the f-divergence and the power divergence is discussed. 
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i. Introduction 

Generalized linear models (glms) are a natural extension of the linear regres- 
sion model and the geometry used to describe glms, known as Amari's c~-geometry, 
is an extension of the Euclidean geometry used in the classical linear model (Amari 
(1985), Vos (1987)). Allowing the error distribution to belong to some exponential 
family such as the normal, binomial, multinomial, Poisson, gamma and inverse 
Gauss ian  dis t r ibut ions,  is one extension of glms. In the  classical linear model ,  
m a n y  i m p o r t a n t  proper t ies  of  the m a x i m u m  likelihood es t ima to r  under  the  as- 
sumpt ion  of normal  errors  are preserved by the least squares  e s t ima to r  wi th  the  
weaker  a s sumpt ion  of cons tan t  variance. An analogous s i tua t ion  holds in glms. 
Wedderburn  (1974) and  McCul lagh (1983) have shown tha t  m a n y  impor t an t  prop-  
erties of the  m a x i m u m  likelihood es t imator  hold wi th  the  weaker  assumpt ion  in- 
volving a funct ional  re la t ionship between the  mean  and variance.  The  likelihood 
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function provided by exact distributional assumptions is replaced with what is 
called the quasi-likelihood function. The estimator obtained from this function, 
the maximum quasi-likelihood (mql) estimator, has many desirable asymptotic 
properties. Further, just as the constant variance assumption determined the Eu- 
clidean geometric structure for the classical linear model, we show here that  the 
quasi-likelihood function defines a pair of dual geometries. These geometries de- 
scribe varying aspects of the mql estimators and play an analogous role to that 
of Amari's +1 geometries in maximum likelihood estimation. Vos (1991a) shows 
how the dual geometries can be used to define invariant measures of influence. 

Under exact distributional assumptions, it is difficult to find an estimator 
with as many desirable properties as the maximum likelihood estimator. (Even 
with full distributional assumptions, not every one considers the ml estimator as 
the clear choice, see e.g. Berkson (1980).) Under the weaker assumptions on the 
first two moments of a distribution, however, there is no ml estimator and no 
single estimator dominates. The superiority of one estimator over an other cannot 
be based on higher order asymptotic calculations, such as second order efficiency 
(Rao (1962)), without making further distributional assumptions. We define a 
family of estimators, called minimum f-divergence estimators, that  contain the 
mql estimate as a special case. These minimum f-divergence estimators have the 
same (first order) asymptotic properties as the ml estimator and they admit a 
dual geometric structure similar to that of the mql estimator. The family of f -  
divergences is related to the a-divergences of Amari (1985) and each defines a 
geometric structure using the f-connections and a-connections, respectively. 

In the next section, we describe the relationship between quasi-likelihood func- 
tions and divergence measures. Before considering the minimum f-divergence esti- 
mators, we consider minimum X 2 estimators in Section 3. The relationship between 
mql estimators and minimum X 2 estimators will illustrate how to construct mini- 
mum f-divergence estimators. In Section 4, we define the minimum f-divergence 
estimators and describe their asymptotic properties. In Section 5, we discuss the 
relationship between a particular family of minimum f-divergence estimators and 
the minimum power divergence estimators of Read and Cressie (1988). The role 
of the minimum f-divergence estimators in applications is considered through an 
example. 

2. Quasi-likelihood and divergence 

Quasi-likelihood functions and divergence functions typically appear in dif- 
ferent contexts. Amari (1985, 1987) uses divergence functions in studying the 
higher order asymptotic properties of estimators in exponential families, while 
Wedderburn (1974) and McCullagh (1983) use quasi-likelihood functions to study 
estimators in which distributional assumptions have been weakened to assump- 
tions about the first two moments. Higher order asymptotic calculations are not 
possible without making further assumptions on the distribution represented by 
the quasi-likelihood function. Nevertheless, these functions are closely related. 
In many situations, for a given quasi-likelihood function there is a corresponding 
divergence function and for a given divergence there is a corresponding quasi- 
likelihood function. The quasi-likelihood and divergence are related in such a 
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manner that maximizing the quasi-likelihood is equivalent to minimizing the cor- 
responding divergence function. This statement is made precise in the proposition 
and corollary. We begin with two definitions. 

DEFINITION 2.1. Let .L4 and y be subsets of R n. 
function l : AJ x y ~-~ R 1 such that 

v )  _ - ,) 
O# 

where V - ( # )  is nonnegative definite for all # • A4. 

A quasi-likelihood is a 

This definition arises from McCullagh and Nelder ((1983), pp. 168, 169). 
McCullagh and Nelder ((1989), p. 325) motivate the quasi-likelihood in terms 
of a function that behaves like the score vector. As the notation suggests, the 
quasi-likelihood is typically used when A/I is the mean of a random variable Y, 3; 
is the convex hull of the support of Y, and V - ( # )  is a generalized inverse of the 
variance matrix for Y. The solution of the system of differential equations given 
in Definition 2.1 can be written as 

(2.1) /(#; y) - t9 -y - ¢(8) + K(y) 

where 0 = 0(#) is a function o f #  into R n such that Ot~/O# = V- (p ) ,  0¢(8) /00  = #, 
and K(y) is not a function of #. The image of the map 0 will be denoted by 
O = {0(#):  # • M} .  

DEFINITION 2.2. Let Af be an open subset of R n and let r]l , r]2 • d~ f. The 
divergence from Yl to ~2, denoted by D(rh, 712), is the function taking values in 
[0, c~] such that for any ~1, ~2 • Af 

(1) 
(2) 

D(yl ,  ?72) _)> 0 with equality holding if and only if yl -- ~2 

The metric matrix G(~) - (gij(~)) is positive definite where 
02 

gij(~l) = 0 ~ "~D(~I'T/2)~[ar/~ is a smooth function of ~]1 alone. 

Notice that  the smoothness of D and (1) imply OliD(~h, 772) = 0 = 02iD(~h, 772) 
when ~1 = ;]2, 01~ = 0/0y~ and 02i = 0/0~/~. For a given G(~), the divergence 
is defined uniquely on Af. Amari (1985) defines the divergence on a Riemannian 
manifold S. We define the divergence on Af to avoid the introduction of differential 
geometric concepts. In order to make our definition agree with Amari's we shall 
also call D(~I, ~2) -- D(h- l (~ l ) ,  h-1(~2)) a divergence when h is a diffeomorphism 
on Af. Notice that the ~ parameterization will generally not satisfy the three 
properties of a divergence. To distinguish between these parameters we call y the 
divergence parameter and reserve the notation D for the divergence expressed in 
this parameterization and u s e / )  for other parameterizations. 

We note that other authors have defined divergence differently than Defini- 
tion 2.2. Many definitions do not require G to be a function of 7h alone. Both 
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definitions are closely related to the terms contrast  functional and yoke. Further  
discussion can be found in Eguchi (1983, 1985), Barndorff-Nielsen (1987) and Rao 
(1987). 

The relationship between quasi-likelihoods and divergence measures is given 
in the following proposition. 

PROPOSITION 2.1. I f  D(~1,~/2) is a divergence on Af with metric matrix 
G(~?), then we can define a quasi-likelihood such that p = ~ and V - ( p )  = G(~). 
Conversely, ill(#; y) is a quasi-likelihood with V -  (it) positive definite for all # and 
a smooth function in #, .hA C Y,  and A/[ open, then there is a divergence D(~ll, 7/2) 
with ~? = # and metric matrix G(~?) = V - ( # ) .  

PROOF. Given the divergence D(~71, if2), we fix ~70 E Af and define ¢07) = 
D(~, ~70) and 0i(~) = 0¢(ff)/0~? i. Since G(~) = (00/07/) is full rank, we can write 

= (~1, . . .  , ~ ) ,  as a function of 0 = (01, . . .  ,0n),, ff = ~](0). Since G - I ( ~ )  = 
(0if/00) is symmetric,  0~ i /00  j = 0 ~ / 0 ~  ~ so there exists a function ¢(0)  such 
that  0¢(~)/00 i - ~i. If we take Ad = 3; and # = ~7, then it is easily verified 
t h a t / ( # ;  y) = 0(77) • y - ¢ (0(#) )  is a quasi-likelihood with inverse variance matr ix  
V - ( p )  = G(#).  Conversely, let l(#; y) be a quasi-likelihood defined on )Uf x 3) and 
take ff -- #. Let 0 be the function given in (2.1), so that  0(~7) = 0(#) is a function 
of ~7. It is now easily verified that  

(2.2) 0( 1, v2) = l(nl; nl)  - @2;  

is a divergence with metric matr ix G(~) = V-(~7). 

By  the uniqueness of D(~I ,  72) on Af, we know (2.2) holds for all likelihoods 
and divergence functions for which 77 = # and G(77) = V - ( # ) .  The following 
corollary is an immediate  consequence of (2.2). 

COROLLARY 2.1. Let D(~x, ~72) and l(#; y) be the divergence and a likelihood 
described in Proposition 2.1. I f  M C A d  C Y,  y E J~d and fL c M,  then l(fi; y) = 
max~eM l(#; y) if and only if D(y, f,) -- min~,eM D(y, #). 

This corollary is impor tant  because the dual geometries can be used to describe 
when the divergence is minimized and thus when the quasi-likelihood is maximized. 

Suppose now that  p(/3) is some smooth  function of the m-dimensional  pa- 
rameter  /3 = (/31, . . . , /3m)'  E B where B = {/3 : /,(/3) E JUI}; for a glm, this 
function takes the following form #(/3) = H-I (X/3)  where H is a bijection with 
domain JL4 called the link function and X is the N × m matr ix  of covariates. 
The mql est imator  /~ has several desirable asymptot ic  propert ies tha t  we now 
consider. First, ~ is asymptot ical ly unbiased; tha t  is, E(/3 - /3)  = o(N-1/2). Sec- 
ond, x/N(/~ - / 3 )  is asymptot ical ly  normal with mean zero and variance matr ix  
E = [(01~/0/3)'V-(0#/0/3)]- where (0#/0/3) is the N x m matr ix  with compo- 
nents 0#i/0/3 a for i -- 1 , . . . ,  N and a -- 1 , . . . ,  m. Hence, /~ is O(v /N)-cons is ten t .  
Third, among all es t imators /~ satisfying 

(2.3) ~ - / 3  = L , ( Y  - #) + op( g -1/2) 
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where Lg = ~(O#/Oj3)'V- is an m x N matrix evaluated at #, the mql ~ estimator 
has the minimum asymptotic variance. The matrix A is smaller than the matrix B, 
if B - A is positive semi-definite. Finally, the quasi-likelihood difference statistic 
2/(fl; Y)-2/(~;  Y) is asymptotically X2m . These properties are considered in greater 
detail in McCullagh (1983). Each of the estimators we consider will have these 
four asymptotic properties. 

Besides the asymptotic properties mentioned above, the mql estimator has 
other desirable characteristics as well. In order to calculate ~, the quasi-likelihood 
function is treated just as an ordinary log likelihood function from an exponential 
family so that in many respects the quasi-likelihood offers a natural extension of 
ml estimators. In particular, the estimation algorithm in both instances is a fairly 
simple one, consisting of iterative weighted least squares in which the weights 
depend only on the current values of the parameters. Furthermore, the dual ge- 
ometry for log-likelihood functions from an exponential family can be extended to 
quasi-likelihood functions. We leave the details to the Appendix. 

3. Minimum chi-square estimates 

Before studying minimum divergence estimators it will be useful to consider 
minimum chi-square estimators and their relationship to mql estimators. In the 
preceding section the asymptotic properties of the mql estimator were expressed 
in terms of N, the length of the data vector y. In other applications of quasi- 
likelihoods each of N observations appears in exactly one of n cells. The data vec- 
tor now becomes an n-dimensional column y where the i-th element of y equals the 
number of observations in the i-th cell. The quasi-likelihood most commonly used 
in this situation is the log likelihood of the Poisson or multinomial distribution. 
It can be shown that as N --* co, the mql estimator 3 is asymptotically unbiased, 
normal, and is optimal in a context similar to that expressed in (2.3). Further- 
more, the quasi-likelihood difference statistic is again asymptotically chi-square. 
In Section 4, we show that these four properties hold in a class of estimators. 

We begin by defining the divergence 

1 " i /]2) //]1(/]2) (3.1) D(/]1,~2)----- ~ ~ (/]1 --  i 2 i i 2 

1 

for/]1,/]2 E (0, c~) n. D(/]I,/]2) provides a divergence on multinomial distributions 
by taking 7/-- 1/Tr where zr is the vector of cell probabilities and division of vectors 
is done componentwise. Writing D in terms of the cell probabilities we have 
obtained the more familiar goodness-of-fit measure 

(3.2) /)(Trl,Tr2) = ~ (Tr~ _ff~)2 1 ~ (/z~ - #/2) 2 

If the model provides a smooth •n valued function ~r(~) from B, then from (3.2) we 
see that the minimum Pearson chi-square (X 2) estimate/3 minimizes b(zr(~3), y/N) 
and the minimum Neyman chi-squaxe (X~v) estimate ~ minimizes D(y/N, z~(~3)). 
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To better understand the relationship between maximum likelihood estimators 
and minimum chi-square estimators we use the fact that D(Th, r/2) is the Kullback 
information (1968) between two inverse Gaussian random variables with means ~/1 
and ~/2. If Z is an n-dimensional vector of independent inverse Gaussian random 
variables, z is the vector of realizations, and 7/(f~) is an imbedding of B C R m in 
the mean parameter space for Z, then the value of ~ that minimizes D(z ,  ~/(~)) is 
the maximum likelihood estimate which we denote by/~. On the other hand, the 
value of B that minimizes D(~(~), z) is the dual maximum likelihood estimate ~. 
Hence, the minimum )/~ estimate can be found by transforming y to z = l / y ,  #(~) 
to 7/(~) = (#(~))-1,  treating z as the realization of an inverse Gaussian random 
vector and finding the dual maximum likelihood estimate for ~. Likewise, the 
minimum X 2 estimate f~ is found by making the same transformations and finding 
the maximum likelihood estimate for ~. Clearly, the transformation z i = 1 /y  i is 
not possible when yi = 0. But when yi = 0, the minimum )/2 estimate can not be 
found since then d(-, y) = c¢. In this case, a small positive constant c is sometimes 
added to each observation so that  yi is replaced with yi + e, for i = 1 , . . . ,  n. Now 
the transformation becomes z i = 1/ (y  i + c) and the estimate can be obtained as 
before. 

This relationship between minimum )/2 estimates and ml (and dual ml) esti- 
mates for the inverse Gaussian distribution shows that the estimation algorithm 
used to find ml estimates (iterative reweighted least squares) can also be used to 
find minimum )/2 estimates. Hence, software designed to find ml estimates, such as 
GLIM, can be used to find minimum X 2 estimates as well. The main point, how- 
ever, is to show that sensible estimators can be obtained using divergence measures 
with divergence parameter different from the mean parameterization. Certainly, 
not all transformations of the mean will lead to useful estimators. The reciprocal 
transformation used for the Poisson distribution is too strong for other situations. 
For example, the reciprocal of a normal random variable does not have finite mean 
so it is not sensible to model the variance as a function of it. To avoid such prob- 
lems restrictions must be placed on the distributions and/or transformations. We 
shall consider these restrictions in a later section and turn to an example next. 

Ship Damage Example. The maximum quasi-likelihood estimates and min- 
imum )/2 estimate have similar large sample properties and the algorithm for 
computing these estimates and their variances are both special cases of iterative 
weighted least squares. Which of these estimates to use will depend on several 
factors. To investigate the behavior of these estimates we consider an example 
found in McCullagh and Nelder (1983). The data for this example is given in 
Table 1 where y is the number of wave induced damage incidences to cargo ships. 
McCullagh and Nelder (1983) propose a model for the risk of damage based on the 
ship type, period of construction, period of operation, and the aggregate months 
of service. These authors fit the following model 

(3.3) log(expected number of damage incidences) 

=/30 + log(aggregate months of service) 

+ (effect due to ship type) 
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+ (effect due to construction period) 

+ (effect due to service period). 

The coefficient of log(aggregate months of service) is assumed known and equal to 
1 corresponding to the assumption that the number of accidents should be pro- 
portional to the length of risk. The data support this assumption. To allow for 
over-dispersion of the data a Poisson distribution is not assumed; the only distri- 
butional assumptions are that  Var(Y) -- a 2 E ( y )  where a 2 > 1. The dispersion 
estimate ~2 is defined to be 

f i  -fti) 2 N ~ (yi/N~i #~)2 (3.4) (~2 1 (yi -~; n - m 
n m i - - 1  i - -1  

where/~i = #i(~) and for this example ~2 = 1.69. Notice that n = 34, and not 
40, since there are 6 necessarily zero observations in Table 1. The mql estimate 

and approximate standard errors are given in Table 2. The main effects model 
(3.3) fits the data reasonably well although the 21st observation is an outlier with 
standardized residual 2.87. The i-th standardized residual is defined to be (yi _ 
/ ~ ) / a V ~ .  This residual remains high even with the inclusion of the interaction 
term between ship type and period of construction. McCullagh and Nelder (1983) 
draw the following conclusions: There is evidence for over-dispersion ( ~  = 1.69), 
after 1974 the rate of ship damage increased by 47% with a 95% confidence interval 
given by (8%, 100%), ship types B and C have the lowest risk of damage while E 
has the highest, and the ships constructed between 1960 and 1964 appear to be 
the safest. 

Table 2 also lists the minimum X 2 estimates ~ and their approximate standard 
errors. The standard errors are computed using the estimate 52 which is defined 
by replacing/~ with/~ = #(~) in (3.4) and takes the value 1.46 in this example. 
Using the minimum X 2 estimate, there appears to be less evidence for ship type 
C being safer than A while there is more evidence that ship A is safer than E. The 
other minimum X~ estimates are similar to the mql estimates. Using f~, the risk 
of ship damage increased by 44% and has a 95% confidence interval (9%, 91%). 
Since ~2 < ~2, the standard errors for the/~i 's  are all slightly smaller than the 
corresponding standard errors for the/3~'s. The major conclusions do not change 
by using ~, although the estimate for over-dispersion is smaller ( ~  = 1.46). 

Since both ~ and ~ have optimal asymptotic properties under mild distributional 
assumptions and each algorithm is equally easy to implement, we need some other 
criteria for deciding between using ~ or ~. For this example we note two advantages 
that favor the minimum X2p estimate. First, minimization of ~-~(yi _ #i)~/#i is 
easier to motivate and interpret than the maximization of the quasi-likelihood 
function. Second, the minimum X 2 estimator also improves the fit by decreasing 
the standardized residual for the 21st observation to 1.98. 
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Table 1. Ship damage data .  

Ship Per iod of Period of Aggregate  Number  of 

type  cons t ruct ion  opera t ion  months  service damage  incidents  

A 1960--64 1960--74 127 0 

A 1960-64 1975-79 63 0 

A 1965-69 1960-74 1095 3 

A 1965-69 1975-79 1095 4 

A 1970-74 1960-74 1512 6 

A 1970-74 1975-79 3353 18 

A 1975-79 1960-74 0 0* 

A 1975-79 1975-79 2244 11 

B 1960-64 1960-74 44882 39 

B 1960-64 1975-79 17176 29 

B 1965-69 1960-74 28609 58 

B 1965-69 1975-79 20370 53 

B 1970-74 1960-74 7064 12 

B 1970-74 1975-79 13099 44 

B 1975-79 1960-74 0 0* 

B 1975-79 1975-79 7117 18 

C 1960-64 1960-74 1179 1 

C 1960-64 1975-79 552 1 

C 1965-69 1960-74 781 0 

C 1965-69 1975-79 676 1 

C 1970-74 1960-74 783 6 

C 1970-74 1975-79 1948 2 

C 1975-79 1960-74 0 0* 

C 1975-79 1975-79 274 1 

D 1960-64 1960-74 251 0 

D 1960--64 1975-79 105 0 

D 1965-69 1960-74 288 0 

D 1965-69 1975-79 192 0 

D 1970-74 1960-74 349 2 

D 1970-74 1975-79 1208 11 

D 1975-79 1960-74 0 0* 

D 1975-79 1975-79 2051 4 

E 1960-64 1960-74 45 0 

E 1960-64 1975-79 0 0* 

E 1965-69 1960-74 789 7 

E 1965-69 1975-79 437 7 

E 1970-74 1960-74 1157 5 

E 1970-74 1975-79 2161 12 

E 1975-79 1960-74 0 0* 

E 1975-79 1975-79 542 1 

* Necessarily empty  cells. 
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Table 2. Parameter estimates. 

Parameter 

Intercept 

Ship type 

Period of 
construction 

Period of 
service 

~(s.e.) /~(s.e.) 
-6.41 -6.37 

A 0.00 0.00 
B -0.54 (0.23) -0.57 (0.21) 
C -0.69 (0.43) -0.25 (0.34) 
D -0.08 (0.38) 0.11 (0.33) 
E 0.33 (0.31) 0.45 (0.27) 

1960-64 0.00 0.00 
1965-69 0.70 (0.19) 0.71 (0.18) 
1970-74 0.82 (0.22) 0.81 (0.20) 
1975-79 0.45 (0.30) 0.46 (0.28) 

1960-74 0.00 0.00 
1975-79 0.38 (0.15) 0.37 (0.14) 

4. Minimum f-divergence estimators 

In the example of the previous section, we found a divergence whose minimiza- 
tion provided an estimator with good properties. In this section we show that it is 
often possible to use an entire family of divergences to define optimal estimators. 
Some divergences together with their variance functions are listed in Table 3. The 
variance matrix of a divergence D(71, r]2) is the matrix inverse of G(71) and when 
71 6 R 1, the variance matrix is called the variance function. If 7 = (71, . . .  ,~") '  
and the variance matrix is diagonal, then D(77i , ~2) = ~-~ n l ( ~ ,  ~ )  where Di (  ., .) 
is the appropriate one-dimensional divergence function. The parameter O(~) is the 
dual parameter to 7 and plays an important role in the dual geometric structure. 
The divergence with variance function given by 7 d for d = 0, 1, 2 and 3 is the 
Kullback information for the normal, Poisson, gamma and inverse Gaussian distri- 
butions, respectively, when ~ is the expectation parameter. The divergences with 
variance 7(1 - 7) and 7 + 72/k  correspond to the Kullback information for the bi- 
nomial and negative binomial distribution, respectively, when ~l = E ( Y ) .  In these 
special cases, O(y) is the natural parameter for these exponential families. Table 3 
is closely related to McCullagh and Nelder's table for quasi-likelihoods (1983). 
This is not too surprising in the light of the relationship between quasi-likelihoods 
and divergence functions. 

We have seen that minimum chi-square estimates can be obtained by trans- 
forming the data and finding a value for t3 that minimized a particular divergence 
between the transformed data and the transformed fitted values. Clearly, we need 
not restrict ourselves to the reciprocal transformation and the Kullback divergence 
for the inverse Gaussian distribution. Under suitable regularity conditions we can 
use any transformation with any divergence function. However, to ensure that  our 
estimates are optimal, for a given transformation we must choose the appropriate 
divergence. 
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Table 3. Divergences. 

Variance D i (?/1, ~72) ~(?/) Comment s  

1 

?/ 771 log(? / l  ~ - (?/1 - ,2)  log( , )  7 />  0 
~?/2 / 

?/2 l o g ( ~  + r/1--?72 _?/--1 ? / 5 0  
\ ? / 1 /  ?/2 

?73 1 --1 --2, ~771 ?/2 I,?/1 -- ?/2) 2 - -17/ -2  ?/ > 0 

2-p  ~ I - P H 2  -- P)?/1 (1 -- P)~72} zt 1-p  ?/p ~71 - ',2 ~, - ? / >  O; p # O, 1, 2 
(1 - p ) ( 2 - -  p)  1 - p 

? / ( 1 -  ? / ) ? / 1  ~log (~?~-1 ~ - log ( 1 - ?/1 ~ l o g ( 1  - ?/1 '/ 

Let /(#; y) be a quasi-likelihood function defined on A4 x y with variance 
matrix Y(#). Suppose V(#) has a nonsingular generalized inverse V - ( # )  and 
define V* -- V*(#) = (V- )  -1. The construction of V* allows us to define a 
divergence even when V is not full rank, as is the case when Y is multinomial. 
Suppose further that there is a divergence function D(/~l,/~2) on J~  × .hd with 
variance matrix V*. Notice that/~ is the divergence parameter for this particular 
divergence. Let f(-) be any diffeomorphism between Ad and Af such that there ex- 
ists a divergence Dy(7}l, ~72) on AZ x A/" with variance matrix (Of /O#)'V*(Of /O#) 
where # = f - l ( ~ )  is a function of ~}. In terms of the original expectation pa- 
rameter, we have DI(#l,/~2) = Dl(f( /Zl) ,  f(#2)).  The divergence D I ( # l , # 2  ) is 
called the f-divergence for D(#I ,  #2), the f-divergence for / (# ;  y), or simply the 
f-divergence. The minimum f-divergence estimate ~f is the value for /3 that 
minimizes/)f  (y, #(~)). 

From the glms perspective, the minimum f-divergence estimators can be un- 
derstood in the following way. We know that Var(Y) = V(#) + 0(1) is some 
function of the expectation parameter/~. The mql estimate is found by maximiz- 
ing the quasi-likelihood associated with V(#). When f is the identity map the 
mql estimate and the minimum f-divergence estimate are the same. For the other 
minimum f-divergence estimates, we also consider the quasi-likelihood defined by 
the variance matrix VI(~}) = (Of/cOlz)'Y*(/z)(Of/cq/z) where # is a function of ~}. 
This variance function is chosen to ensure that the minimum divergence estimators 
have the same asymptotic properties as the mql estimator. As in Section 3, we are 
assuming that each value in the data  vector represents a sum of N observations. 
We note that  the minimum f-divergence estimates are not simply estimates based 
on a transformation of the data. Not only is the data transformed, but the model 
{#(~) : fl E B} is also transformed. To this point, finding minimum f-divergence 
estimators is like using the transform both sides model discussed in Ruppert  and 
Aldershof (1989). There is, however, an important difference. In transformation 
models, the transformed data is assumed to have a particular error distribution 
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or variance structure; often normal errors or homoscedasticity is assumed. For 
minimum f-estimators,  the variance structure V(#) is assumed up to first order 
for the untransformed data  and the variance structure of the transformed data  is 
defined in terms of V(#) and f .  

This relationship between the minimum divergence estimators and quasi-like- 
lihood functions makes it clear that  the same estimation algorithm used for mql 
estimates can be used for minimum divergence estimates. Mql estimates are found 
using an iterative weighted least squares algorithm that  is Fisher's scoring algo- 
r i thm when the quasi-likelihood function is the log likelihood from some exponen- 
tial family (McCullagh and Nelder ((1983)), pp. 31-34). This same algorithm can 
be used for minimum divergence estimates provided the transformed data z = f ( y )  

and z /=  f (# )  parameterization is used. If fl0 is an initial estimate for/~f, then the 
one step estimate/31 is found from 

where 

o(/3o)) 

and each matrix is evaluated at/3o. Notice that  W is same for all transformations 
f(-); we show later that  W is the asymptotic covariance matrix for/~y. 

To make our discussion more explicit, we consider the family of power trans- 
formations f(-; ~) 

f y~ for A # 0 f(y; A) 
logy for A=O.  

Let E ( Y )  = # = (#1, . . .  , # , y  with #i > O, for i = 1 , . . .  ,n.  The family of diver- 
gence measures associated with the power family of transformation will depend 
on the variance matrix for Y. Let V and V* be defined as above with the added 
restriction that  V* is a diagonal matrix with diagonal pc, the mean vector raised 
to the power d. For each real d, we can define the following family of divergences 

2- -d2d .  # 2 - d  #92-d + - - ~ # 2 -  {1 - ( ~ 1 / ~ 2 )  A} 

(4.1) D),,d(#l,#2) = E ( 2 - d - ) ~ ) ( 2 -  d) 

provided A ~ 0, d ~ 2 and ~ + d ~ 2. In (4.1), raising a vector to a power and 
division, #1/#2, are done componentwise so that  #1/#2 is the vector with i-th 
component #~/#~. The function )-~" A / / ~  ~ is defined by ~ v = )-'~ v i where 
v--- ( v l , . . . , v n )  ' e . M .  If A ¢ 0 and d = 2 -  A, then 

(4.2) 1)A 2--A(•1,'2) ----- E #2A -- ~tlA -~ z~#l~ log(pl /p2)  
, A2 

where log(p1/#2) is the vector with components log(#~/#~). If A ~ 0 and d = 2, 
then 

(4.3) D~,2(#1, #2) = E A l o g ( # 2 / p l ) +  (#1/#2) ~ - 1 
£ 2  
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If )` = 0 and d # 2, then 

(4.4) 
#~-d ~ - d  

DO,d(t*l tie) = ~ - + (2 - -d )~-d l°g( t*2 /~ l )  
' ( 2  - -  d) 2 

If )` = 0 and d = 2, then 

(4.5) Do 2(#1, #2) = ~ (lOg#l - |'~"~.oe~2, 2 
' 2 

Equations (4.1) to (4.5) are obtained by writing ~ = f(#;  )`) as a function of # 
in the appropriate divergence function from Table 3. In particular, equation (4.1) 
is obtained by replacing 7h (7/2) with f (# l ;  )`) (f(#2;)`)) in the divergence with 
variance matrix equal to )2 diag(~p) where p - 2+ (d -2 ) / ) ` .  For a fixed d, a family 
of minimum )`-divergence es t imators /~  is defined by minimizing D),,d(y, #(fl)). If 
some of the components of y are zero, then adjustments must  be made to y (as is 
done for minimum X 2 estimators) when )` _< 0 or d = 2. 

Now we consider the asymptotic properties of the minimum f-divergence es- 
t imator/~I- Once again, it will be convenient to use the f-divergence parameter 

rather than the mean parameter #. Let f~l be the minimum f-divergence es- 

t imate for y; i.e., /~I minimizes Df(z,~I(fl)) where z = f (y)  for all fl E B. We 
have seen that  there exists a quasi-likelihood function/(7/; z) whose maximization 
corresponds to minimizing Df(z  , ~l). If/~y maximizes/(7/(fl); z), then 

(4.6) ( z ) ) 1  = o. ; z ~=3~ 

Since the metric matrix for DI  is the inverse of the variance matrix for/(~/; z), we 
can use (2.1) to rewrite (4.6) as 

(&?) ' (4.7) ~fi V / ' ( f l ) ( z - , ( f l ) )b__~ ,  : o. 

Equation (4.6) shows that  fll is also a mql estimator and we can expect it to have 
the corresponding asymptotic properties for mql estimators. However, the asymp- 
totic assumptions are slightly different from those given in McCullagh (1983), Our 
data  is a vector of fixed length n and has components of order N. McCuUagh (1983) 
considers data  of length N where N ~ co. 

One approach to establishing the asymptotic properties of/~f is to check that  
the argument outlined in McCullagh (1983) can be extended to data  vectors of 
fixed length. Instead, we shall use two results from Ferguson (1958) for estimators 
that  satisfy 

(4.8) Q ( Z ) ( z  - n (Z) )  = 0 

for some m × n matrix Q(fl). Notice that  8I satisfies (4.8) with Q(fl) = 
(O~l/Ofl)'V71 . The strongest assumption we need is that  v fN(Y-# ( f l ) )  be asymp- 
totically normal with mean 0 and variance matrix V(fl). Although this assumption 
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is not valid for all generalized linear models, it applies to repeated sampling situ- 
ations and to quasi-likelihoods proportional to that of the Poisson or multinomial 
distribution where yi is now the number of observations in the i-th category di- 
vided by the total number of observations. Notice that yi is defined differently 
here than in the previous section. We shall also assume the following: 

ASSUMPTION 1. B is an open subset of R m. 

ASSUMPTION 2. The map ~(13) --- f (p(~))  : B ~-~ ~n (m < n) is smooth and 
homeomorphic on its image. 

ASSUMPTION 3. Q(B)(Orl/OB) is nonsingular for each ,2 • B. 

ASSUMPTION 4. Q(13) and OQ(~)/O~ a, a = 1, 2 , . . . ,  m, are continuous. 

^ 

For fir, Assumption 3 says that W is nonsingular on/~. 
The following two results will be used, 

THEOREM 4.1. If  Assumptions 1-4 hold and v/-N(Z-~(~))  is asymptotically 
normal with mean zero and variance matrix E(~), then there exists a neighbor- 
hood, O, of the set {~(~) : ~ E B} and a unique function ~(z) from R n to R m 
continuous in 0 such that/~(~?(/3)) = f~ for all Z • B and Q(~(z))(z-~(/~(z)))  = 0. 

Furthermore, x / ~ ( ~ -  ~) is asymptotically normal with mean zero and covariance 
matrix 

- 1  i 0 7  I i - 1  

The above theorem is actually a slightly weaker version of Theorem 1 of 
Ferguson (1958). The second theorem shows in which cases the estimator sat- 
isfying the linear form in (4.6) has minimum variance. 

THEOREM 4.2. I f  the assumptions of Theorem 4.1 hold and i f  there exists 
an n x n nonsingular matrix E -  such that EZ-(O~/O~) = (0~/0~),  then the 
asymptotic variance matrix of ~(Z) is minimized when Q(~) =- (Orl/O~)E-. The 
minimum is [(OV/O/~)'E- (avlOZ)]- ' .  

The proof of Theorem 4.2 is given in Ferguson (1958). 
It is now easy to prove that the minimum divergence estimators have opti- 

mal asymptotic properties analogous to those of the maximum quasi-likelihood 
estimates. 

PROPOSITION 4.1. Suppose x / - N ( Y -  p(~)) is asymptotically normal with 
mean zero and covariance matrix V(~) and V -  is a nonsingular generalized in- 
verse of V.  We also assume that f is a diJ]eomorphism on y and is defined so 
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that 7l(15 ) = f(p(~) ) satisfies Assumptions 1-4 and ~f is the minimum divergence 
estimator satisfying (4.7) with z = f(y). Then 

(1) E(3f  - /3)  = o(N-1/2). 

(2) ~ - N ( ~ f  - ~) is asymptotically normal with mean zero and covariance 

matrixW_ 1 : [(O~) 'V_ (0~ ) ]  -1 

(3) /f  VV-(aglOZ) = (@IOn), valance then Jf has minimum asymptotic 
among all estimators satisfying (4.8). 

(4) /lOs(., .) exists, then 2YPf(O(~/),O(Z)) is asymptotically 2 Xm, 

PaOOF. Since f(.) is smooth and Y is asymptotically normal, a Taylor series 
expansion shows that Z -- f (Y)  has mean y = f (#)  and v/-N(Z - y) is asymptoti- 
cally normal with mean zero and covariance matrix E = (Orl/O#)V(Orl/O#)'. State- 
ments (1) and (2) now follow from Theorem 4.1. An easy calculation shows that 
VV-(0#/c9~) = (0#/0~) implies EE-((9,7/0/~) = (0~/0/3). Now, Theorem 4.2 is 
invoked to prove (3). A Taylor series expansion of D/(~(~/), ~03)) shows, 

(4.9) 2NDs( @), 
0 

~ N ( I ~  f - -  

= N(/~f -/~) 'W(/}I - /~)  + On(N-I~2). 

Statement (4) now follows from the asymptotic normality of v ~ ( / ~ / -  ~). 

Note A. Statement (3) of this proposition does not compare the minimum 
f-divergence estimate with the mql estimate. Statement (3) says that for a given 
transformation f(.),  we cannot do any better by using a different Q(fl), i.e., a 
different divergence function. The fact that the variance matrix W -1 for the 
optimal choice of Q(~) does not depend on f( .)  shows that we cannot do any 
better (or worse) by transforming the data. Hence, all ~y have the same first order 
asymptotic properties. In many situations V is nonsingular, so that the hypothesis 
of (3) is automatically satisfied. If Y is multinomial, V has ij-th component _#*#3 
for i # j and ii-th component #i(1 - #i) and is singular. If V -  is the diagonal 
matrix with diagonal # -  1, then it is easily checked that V -  satisfies the hypothesis 
of (3) (Ferguson (1958)). 

Note B. The class of estimators for which/~, is optimal expressed in (4.8) is 
different than that for mql estimators given in (2.3). The following calculations 
show that the two are essentially the same. We shall use the fact that Z - ~(/~) is 
Op(g-1/2), Q(D) -- Q(B) + Op(N-l/2) and 

7I(~) = ~?(~) + ( ~ ) (~ - ~) + Op(N-1) • 
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Replacing/3 with/~, z with Z in (4.8), and then making the above substitutions 
gives 

(4.10) 

If Q1(/3) = Q(/3)(0~1/0/3) is invertible then (4.8) is equivalent to 

(4.11) /~ - / 3  = LI(/3)(Z - ~(/3)) + Op(N -1) 

where L1(/3) = Q~-1(/3)Q(/3). Under repeated sampling Z - r ?  -- (Of/O#)(Y- #)+ 
Op(N-1), so that  (4.11) is equivalent to 

-/3 = L(/3)(Y - #) + Op(N -1) 

where L(/3) = L1 (~3)(Of~O#). 

Note C. Mql estimators and minimum f-divergence estimators have differ- 
ent higher order asymptotic properties and which estimator is optimal will depend 
on the higher order moment  structure of the data. The higher order asymp- 
totic properties are naturally studied using Amari 's dual geometries (1985, 1987). 
Vos (1991b) considers the second and third order asymptotic properties of mini- 
mum f-divergence estimators using the dual geometries. 

Ship Damage Example (continued). We have already seen how the minimum 
X2p estimate improves the fit of model (3.3). Certainly the other minimum f-  
divergence e s t ima to r s /~  cannot improve on the fit when lack of fit is measured 
by b2,1(y,#(/3;~)). If we measure lack of fit using D~,I(y,#( /~)) ,  then it is no 
longer clear w h i c h / ~  provides the best fit. The trouble here is that  it is difficult 
to know how to compare D~,I(Y,#(/~)) for different values of A, especially when 
a 2 must  be estimated. Another way to measure lack of fit is by the size of the 
largest standardized residual. This is of particular interest when the data  may 
contain outliers. For the ship data, the estimate with the smallest standardized 
residual is/3~ with A = 2.12. The largest standardized residual is 1.89 (for the 21st 
observation). When )~ = 2, the largest standardized residual is very similar, 1.98, 
and there is no evidence suggesting that  we use a different minimum divergence 
estimator. Since we are using the data to estimate A, the degrees of freedom should 
be reduced by one, so that  the standardized residuals are increased by V/~-/24. 
This is only one method of allowing the data  to choose A. In other applications 
where other problems present themselves, different criteria could be used to find 
minimum divergence estimators. In other situations, one might want to use the 
more general minimum f-divergence estimators. 

Whenever conclusions rely on asymptotic approximations we must  assume the 
sample is large enough for these approximations to be valid. How large is large 
enough is often difficult to say. One way to get insight into this problem is to 
use several first order efficient estimators. If the sample is large enough and the 
other assumptions hold one can expect each estimator to give roughly the same 
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conclusion. For this example the particular values for the parameter estimates 
change as A varies, but the major conclusions remain the same for A C [.33, 2.5]. 
For larger values of A, ship type C is no longer safer than type A. For smaller 
values of A, type B is no longer safer than type D. The other assumptions remain 
unchanged over a wide range for A. 

5. Relationship to power divergence statistics 

The minimum divergence estimators are related to the power divergence statis- 
tics of Cressie and Read (1984). See also Read and Cressie (1988). Before con- 
sidering the similarities, we mention two important differences. First, Read and 
Cressie assume that the data comes from a multinomial distribution. We have only 
assumed a particular known functional relationship between the mean and vari- 
ance. When the variance is proportional to the mean the divergence discussed by 
Read and Cressie is very similar to ours. Second, Read and Cressie only consider 
estimators for which the sum of the fitted values equals the sum of the observa- 
tions. The conditionality principle requires this since the sum of the observations 
is ancillary for the parameters/3. Since we make no assumptions about the exact 
distributional form of the data, the concept of ancillarity is not defined. Partic- 
ularly when the dispersion parameter needs to be estimated, it is not clear that 
one should condition on the total number of observations. Following the approach 
taken for glms by McCullagh and Nelder (1983), we do not require that the sum 
of the fitted values equal the sum of the observations. 

Read and Cressie ((1988), p. 94) define the power divergence between an n- 
tuple X = (X1 , . . . ,  Xn) of random variables and a multinomial distribution with 
parameter m = ( m l , . . . ,  Inn) where ~ mi = N, the total number of observations. 
The power divergence statistic is written I ~ (X : m) and defined by 

(5.1) I X ( X : m ) = E A ( A + I )  Xi ~ - 1  + A ( m i - X i )  . 
i=1 

For A = 0 and A = -1 ,  the power divergence I A is defined by its limiting value: 

(5.2) 

(5.3) 

n 

t ° ( x :  In) = x ,  log(X, / in , )  + (in, - x , ) ,  
i=1 

t - l ( x  : In) = f i  m i log(ini/Xi) ~- (X i - In i ) .  
i=1 

Comparing (5.1)-(5.3) to (4.1), (4.2) and (4.4) with d -- 1 shows that 

(5.4) D)~,l(ttl,/z2) -~ N- i I - )~ (N~2  : N/t1) 

for any real ),. We see then a close relationship between I ~ and Dx,1, and that 
the divergence measures D)~,d and D/  offer extensions to the power divergence 
statistic I ~ of Read and Cressie (1988). 
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6. Conclusion and related research 

When a random vector is described using a quasi-likelihood function, the mql 
estimation is but one method of estimating parameters. In several situations, 
it is possible to define a family of minimum f-divergence estimators for a given 
quasi-likelihood function. These estimators have the same first order asymptotic 
properties as the mql estimator, can be obtained using the same estimation algo- 
rithm, and admit a dual geometric structure similar to that for mql estimators. 

The added flexibility of using a family of estimators often allows one to improve 
the fit of a given model. We can also view the minimum f-divergence estimators as 
varying, in an indirect way, the higher order moment structure of the model while 
leaving the first two moments unchanged. To prefer one minimum f-divergence 
estimator over another because of its asymptotic properties must result from a 
difference in the moment structure beyond the first two moments because the first 
order asymptotic properties only depend on the first two moments. 

Although the minimum f-divergence estimators are used in different contexts 
and under different assumptions, there is a formal similarity between the power 
divergences discussed in Read and Cressie (1988) and a special subfamily of the 
f-divergences. We have discussed the minimum f-divergence estimators in terms 
of higher moment assumptions. Lindsay (1991) uses robustness considerations 
in comparing estimators from the family of estimators described by Read and 
Cressie (1988). Except for the Appendix, the geometric structure of the minimum 
f-divergence estimator has not been treated. As it turns out, the a-geometries of 
Amari (1985) are closely related to the geometry generated by the f-divergence 
in special but important cases. It is also possible to use the geometry to describe 
minimum f-divergence estimators and how they depend on higher order moment 
assumptions. The geometric considerations are discussed in Vos (1991b). 
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Appendix 

Amari (1985) shows how a divergence allows one to construct a dual geometric 
structure on a smooth manifold. We give this construction explicitly here for the 
manifold corresponding to the quasi-likelihood functions. 

In order to place a dual geometric structure on .44 we require that  M be a 
smooth manifold. It is customary to define a geometric structure on the manifold 
itself, rather than on the range of one of its parameterizations (coordinate charts). 
Hence, in defining a geometric structure on an exponential family, the manifold 
that  we consider is the set of densities S1 rather than the natural parameter 
space. For quasi-likelihoods, the corresponding manifold S consists of a set of 
equivalence classes of n-dimensional distributions for a random variable Y such 
that each distribution has the same support, E ( Y )  = # for some # E A/f, and 
Var(Y) = V(#) where V(#)  is a known function of p. Random variables Y1 and 
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Y~ are equivalent if E(Y1) = E(Y2). Rather than use S, it is notationally simpler 
to define the dual geometries directly on AA. 

Since Az[ is a smooth manifold, there is a tangent space T,~¢I at each # E J~4. 
One possible basis for T,Ad is the set of derivative operators {0/0/~r; r = 1 , . . . ,  n}. 
To define a dual geometric structure on A4, however, it will be convenient to work 
with the natural basis for the ~/parameter; that  is, {0~ = O/Orli;i = 1 , . . .  ,n} 
where ~ = f (#)  = ( f~ (# ) , . . . ,  f~(#)) '  and f is a diffeomorphism. These bases are 
related by 

(A.1) 0 ~ Of j 0 = 

j = l  

We use the convention that  r, s, t , . . .  are used with the # parameterization while 
i, j, k , . . .  are used with the 77 parameterization. The first step in placing a dual 
geometric structure on &t is to make ~4 into a Riemannian manifold. We do 
this by defining a metric (., .), using the metric matrix G(r/) -- (gij(~)) of the 
divergence function; that  is, (0 i ,0 j / ,  = gij(~). Next, we define a pair of dual 
affine connections V and V*. Let rijk ---- (Voi Oj, Ok) and Fij k (VOi j, Ok) be the 
components of these connections in terms of the natural basis {0i; i = 1 , . . .  ,n} 
for 7. Then Fijk = 0 for all i, j, k = 1 , . . . ,  n and Fi~ k = Oigj~ for all i, j, k = 
1 , . . . ,  n. It is easily verified that  these definitions satisfy the definition for an affine 
connection and that  they are dual; i.e., A(B, C) = (V~B,  C) + (B, VACI for any 
vector fields A, B, C. Furthermore, since F~jk ---- 0, .h4 is flat in the connection V 
and therefore ~ is flat in the dual connection V* (Amari ((1985), p. 72)). 

Now we consider the f-divergences defined in Section 4. Suppose/ (# ;  y) is a 
quasi-likelihood for which we can define a divergence D(pl,/~2). Let Df(rh,  r/2) 
with ~/ = f (#)  be the f-divergence associated with D(/zl,/~2). The geometries 
defined by these divergences are closely related. Let (., .) be the metric defined by 
Df(~l,~2) so that  (O/07?i,O/Or~),~ = gij(rl) where ( g i j )  = Vfl (~) .  From (A.1) we 
see that  

(A.2) 
i--1 j----1 

Since (Of /O#) ' vT l (o f  /O#) = V-(#) ,  the right-hand side of (A.2) is just  v~(#)  
where (v~(#)) = V- (# ) .  Hence, (., .) is also the metric defined by V- (# ) .  Since 
D(#l ,#2)  and DI(~?I, r/2) define the same metric, as Riemannian manifolds the 
geometry is the same under either divergence for any diffeomorphism f .  

The difference comes in how the connections are defined. Let V and V* be the 
dual connections defined by D(#I ,  #2); in particular, the components of V with 
respect to {Or = 0 /0#r ;  r = 1 , . . .  ,n} are zero for all #. Amari ((1985), p. 47) calls 

I $ 
such a coordinate system affine for the connection V. If V and V* are the dual 

f 
connections for D$(~h, ~/2), then the connection V is defined to ensure tha t  the 
parameterization is affine. In studying exponential families we see tha t  the dual 
geometries are always defined so that  the expectation parameter is affine for one 
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of the  connect ions (and the  na tu ra l  p a r a m e t e r  is affine for the  dual  connection).  
The  general izat ion of the  f -d ivergence  is t h a t  we define a connect ion t ha t  has 
affine p a r a m e t e r  ~ = f ( p )  where f is any  di f feomorphism rela t ing # and  7/. In 
general,  the  f -connec t ions  are different f rom the a -connec t ions  of Amar i  ((1985), 
p. 39). T h e  a -connec t ions  are defined using a l inear combina t ion  of the  pr imal  
connect ion and its dual  and for mos t  l inear exponent ia l  families the  manifold  is 
fiat only in the  1- and  -1 -connec t ions .  A notable  except ion is the  mul t inomia l  
d is t r ibut ion  which is flat in each a-connect ion.  In this case the  a -connec t ion  is 
the  same as the  pr imal  connect ion defined by the  power divergence D1,~(~1, 7/2) 
wi th  A = (1 + a ) / 2 .  
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