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A b s t r a c t .  The present paper treats the identification of parametric non- 
minimum phase transfer function. We propose a method of identification based 
on the inner outer factorization of stable transfer function. It consists of identi- 
fying the outer and inner parts of a transfer function separately. The outer part 
is identified by the use of the second-order spectral estimate from the observed 
linear process, while the inner part is identified by the use of a higher-order 
cumulant spectral estimate from the observed process. Respective parameter 
estimators are determined in the light of asymptotic efficiency. In order to esti- 
mate the order of the inner part of a transfer function, a criterion is proposed. 
It is introduced based on the same principle as in the case of Akaike's AIC. 

Key words and phrases: All-pass, asymptotic efficiency, cumulant spectrum, 
inner function, linear process, minimum phase, nomGaussian, outer function. 

1. introduction 

The  present paper  deals with the s ta t ionary  t ime series which is generated 
as a linear process. Assume tha t  the r andom variables {et}, t -- 0, 4-1, 4 - 2 , . . . ,  
are independent  and identically dis t r ibuted with mean zero E et = 0. Let  {hi}, 
j -- 0, 1, 2 , . . . ,  be a sequence of real constants  with ~-~?=o h2 < oo. The  linear 
process {X~} generated by {hj} and {et} is given by 

o ~  

(1.1) = hj t_j. 
j=o 

This  scheme is regarded as a linear system with ou tpu t  Xt being driven by et 
th rough  a linear filter with impulse response {hi}. Let  H(z) = ~j~=o hjzJ be 
the z- t ransform corresponding to the process {Xt}. Then,  the frequency response 
function or t ransfer  function of the linear filter is 

(1.2) H(X) = Z hj e x p ( - i j X ) .  
j=O 
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We are concerned with the estimation of H()~) on the basis of observations 
only on the process {Xt}. This is a standard problem called system identification, 
and many other results have already been accumulated until 1980 (see e.g. Hannan 
(1973), Box and Jenkins (1976), Kabaila (1980)). However, these results are mostly 
based on assumption that the distribution of {et} is Gaussian. If normality is not 
assumed, these results are based on the second-order spectrum of {Xt}, and the 
two approaches are essentially same. 

Under the Ganssian assumption, the full probability structure of {Xt} is de- 
termined by its second-order spectral density given by 

(1.3) f(,~) = (2~r)-IK21H(A)I 2, 

where/<2 denotes the second-order cumulant or the variance of {et}. Therefore, 
in the identification of H(A) based on {Xt}, any information about the phase of 
H()~) can not be obtained in the Gaussian case. If H(z) is a rational function 
H(z) = g(z)/ f(z)  with f(z), g(z) polynomials 

P q 
f ( z ) = ~ a k z  k, a0----1, g ( z ) = ~ b k z  k, bo?60, 

k = 0  k = 0  

the process {Xt} is a finite parameter autoregressive moving average (ARMA) 
process, 

P q 

~~ ajXt_j -= y~  bket-k. 
j=O k=O 

In the Gaussian case, it is the custom to assume that all the roots of f(z) and g(z) 
are outside the unit disk Izl < 1 in the complex plane. As for f(z), this assumption 
has a physical meaning, since it implies the stability of the system. However, the 
assumption on the roots of g(z), which is often called the invertibility condition, 
has nothing to do with the true structure of the system. 

o o  
We sometimes regard the z-transform H(z) = Y~-j=0 hJ zj as a function of the 

complex variable z. A transfer function H(z) is said to be stable, when H(z) 
is analytic in the unit disk Izl < 1. Then, the class of stable transfer functions 

oo ' • c ~  2 H(z) = Y~3=o hJ z3 with Y']~j=o hj < c~ corresponds to the class H 2 in the theory 
of H p spaces (see Duren ((1970), Section 1.1)). It is known that every function 
H(z) of class H p (p > 0) has a unique factorization of the form 

(1.4) H(z) = A(z)B(z), 

where A(z) is called an outer function, which is stable, i.e. analytic in Iz] < 1, and 
has no zeros in Iz I < 1. B(z) is called an inner function, which is stable, having 
the properties IB(z)l < 1 in Izl < 1 and ]B(z)l = 1 on Izl = 1. This is called the 
inner outer factorization or the canonical factorization (see Duren ((1970), Section 
2.4)). Linear filters with transfer functions A(A) and B(,~) are called the minimum 
phase and the all-pass filters. 

These observations show that the identification of the inner part is impossi- 
ble under the Gaussian assumption. For the purpose of full identification of the 
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transfer function, we assume that the distribution of {et} is non-Gaussian. But we 
do not need to know the actual non-Gaussian distribution of {et}. In the present 
paper, the identification is made by using the second- and a higher-order spectral 
estimates from {Xt} which do not require this knowledge. 

Identifications using higher-order spectrum (or cumulant) have appeared in 
1980s. Rosenblatt (1980) proposed a consistent estimate of the transfer function 
of a non-Gaussian linear process by using a non-parametric higher-order spectral 
estimate. In Lii and Rosenblatt (1982), this estimate is used to match a non- 
parametric non-minimum phase MA model. Tugnait (1986) applied the basic 
approach of Lii and Rosenblatt (1982) to parametric non-minimum phase ARMA 
models. In Tugnait (1986), a spectrally equivalent minimum phase system is at 
first estimated using the second-order statistics of the measurements. Then, the 
fourth-order cumulants of the measurements are used to resolve the location of 
the system zeros. Giannakis and Swami (1990) proposed AR and MA parameter 
estimators of non-Gaussian ARMA models via linear equations by using higher- 
order cumulants of the observations. 

Compared with these works, we address the novelty of the present paper in 
the following two points. First, the method of identification is based on the inner 
outer factorization, and we treat the identifications of outer and inner functions on 
an equal footing. This is conducted through the stages of model setting, parameter 
estimation, and order estimation. Second, parameter estimators are determined by 
the asymptotic efficiency. Based on this evaluation, we derive the optimal estima- 
tors of outer and inner functions, respectively, and their structures are examined 
from the first standpoint. 

The organization of the present paper is as follows. In Section 2, we state 
the general setting of the problem and introduce a class of estimators of transfer 
function by the use of the k-th (k > 2) order spectral estimate. In Section 3, 
asymptotic properties of the estimators are discussed, where strong consistency 
and asymptotic normality are shown under several regularity conditions. Then, 
a Cram~r-Rao type inequality for the asymptotic variances of the estimators is 
derived. We also give the optimal estimator which attains the lower bound of the 
inequality. 

In Sections 4 and 5, the results obtained in Section 3 are applied to two special 
cases. Section 4 treats the estimation of outer transfer function or minimum phase 
filter. There, expected results are regained from the ones in Section 3 through 
simple procedures. In this way, our results are shown to include the known ones 
based on the second-order spectrum. Section 5 treats the estimation of inner 
transfer function or all-pass filter. There, we examine the structure of the optimal 
estimator of inner transfer function, and several similarities exist between the outer 
and inner cases in the optimal estimators. 

In Sections 6 and 7, two separate results on the outer and inner transfer 
functions are combined. We propose a method of identifying non-minimum phase 
transfer function. Roughly speaking, the outer part of a transfer function is at 
first identified by the usual second-order spectral method. The inner part is then 
identified by the higher-order spectral method. This is conducted in two stages of 
the identification. One is in the parameter estimation treated in Section 6, and 
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another is in the order estimation treated in Section 7. In the order estimation, 
the order of the outer part is estimated based on the established criterion, e.g. on 
Akaike's AIC under the Gaussian assumption. In order to estimate the order of 
the inner part, a criterion is proposed. This is derived by introducing a distance 
between inner functions, and then by following the same procedure as in Akaike's 
AIC (Akaike (1974)). Results are summarized in Section 8, and some discussions 
follow. 

2. Explanations of the problem and method 

In the setting introduced in Section 1, we consider the problem of identifying 
the transfer function H(A) on the basis of an n sample {X0, X1 , . . . ,  Xn-1). The 
following will be assumed throughout the present paper. 

ASSUMPTION 1. (i) {et} has finite moments of all orders. 
o¢ " h  (ii) The linear filter {hi} is 1-summable, i.e. ~~j=o31 jl < oc. 

Note that under Assumption 1, we have 

(2.1) 
O(3 

E litJl I t ( U 1 ' ' ' "  ' U k - 1 ) ]  < 00, 

for j = 1 , . . . ,  k - 1, k = 2, 3 , . . . ,  where C(Ul, • • . ,  U k - 1 )  is the k-th order cumulant 
of {X(0), X ( u l ) , . . . ,  X(uk-1)} (see Brillinger ((1975), Section 2.6)). 

We define several quantities in the frequency domain. The k-th order cumulant 
spectrum of {Xt} is given by 

(2.2) f(A1,. . . ,Ak-1) 
OG 

Z 
"~'1 ," " , U k - -  1 = - - 0 ¢  

k-1  

C(Ul, . . . ,uk-1)exp(--iEuj)u ) • 
\ j = l  / 

We note that f(A1,. . .  ,Ak-1) is generally complex-valued, and it has bounded 
and uniformly continuous derivatives in A1,. . . ,  Ak-1 in view of (2.1). In order 
to maintain the symmetry among A1,.. . ,  Ak, we adopt the following notational 
convention. Let Pk be the set of frequency vectors satisfying ~ = 1  Aj = 0, 

(2.3) Pk = = c ( - r ,  

k E J=0} 
j = l  

Hereafter, any frequency vector A will be assumed to belong to Pk, and we will 
write e.g. the k-th order cumulant spectrum as fk()~). When {Xt} is a linear 
process defined by (1.1), fk(A) is expressed as 

(2.4)  

k 

fk(A) = (21r)-k+lKk H H(Aj), 
j = l  
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where Kk denotes the k-th order cumulant spectrum of the sequence {et}. The 
k-th order cumulant spectral measure of {Xt} is given by 

(2.5) f Fk(A) = fk(a)da, 
7r 

where, the abbreviated notation in the right-hand side implies 

• . .  f k ( O L i , - . . ,  O~k-1)dOll  " " " dak-1. 
J - - 7 ~  

We next define several statistics. Let 

n--1 

(2.6) dn(A) = E Xtexp(-iAt) 
t----0 

be the finite Fourier transform of the sample {X0, X I , . - . ,  Xn-1}. Then, the k-th 
order sample periodogram is given by 

k 
( 2 . 7 )  [ ( n ) ( ~ )  ~-- ( 2 7 r ) - k + l n - 1 H  dn(~j). 

j=l 

Multiplying by a factor, we modify this to 

(2.8) 

In (2.8), ~(A) is a function satisfying kO(A) = 1, " k i f  E j = I  )~J --- 0 but ~-~jeJ A i ¢  0, 
where J is any nonvacuous proper subset of {1 , . . . ,  k}, and O(A) = 0, otherwise. 
The factor • is essential in the point of suppressing any contribution from a proper 
subset of Pk (see Brillinger and Rosenblatt ((1967), Section 2) and Keenan (1987)). 

Using the modified j(n)(A), the sample k-th order cumulant spectral distribution 
is defined as 

( 2 . 9 )  = 
8 

where, s -- (81, • • •, Sk), and each integer sj is summed in the range -Tr < 2rsSn  < 
Aj. 

Next, we set a candidate model for linear filters. It is a model whose transfer 
functions or impulse responses are specified by a finite dimensional vector param- 
eter t~ E O, possibly not having an ARMA representation. The parametric space 
O of t? is assumed to be a subset of an Euclidean space R 8. Our model is then 
expressed as 

(2.1o) M = H(A,0) = hj(O)exp(-ijA)]O E 0 c R s 
j = 0  
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in terms of parameterized transfer functions. We assume that  the model M and 
its parameterization are well-suited ones as follows. 

ASSUMPTION 2. (i) H(.) -- H(., 00) for a unique 00 E intO, where int O 
denotes the interior of O. 

(ii) H(., 01) = H(-, 02) if and only if 01 = 02. 

The identification is then reduced to the estimation of the parameter value 
00. In the present paper, we adopt the following type of estimators. Let y be a 
complex vector valued function of the form 

(2.11) Y: Pk × 0 --~ C s, 

i.e. y(A, 0) =- (Yl(A, 0 ) , . . . ,  ys(A, 0))', and each Yi(A, 0) is generally complex-valued, 
where ~ denotes the transpose, so that y will be regarded as a row vector. The 
integration of y(A, 0) with respect to the k-th order sample cumulant spectral 

distribution F~n)(A) will be denoted by y(n)r0~ k ~ ) '  

f (2.12) Yl (e)= 
7V 

This is an s-dimensional vector valued function defined on O. The deterministic 
version of v(~) *k (0) is defined replacing F(~)(A) with F~(A) as 

f (2.13) Yk(O) = y(A, O)dFk(A). 
7~ 

The estimator 0n associated with Y(~)(0) is defined, if it exists, by a solution of 
the simultaneous estimating equations 

(2.14) = 0 .  

Similar types of estimators have been considered in estimating the time series pa- 
rameters (e.g. Whittle (1953), Walker (1964), Ibragimov (1967), Taniguchi (1981), 
Hosoya and Taniguchi (1982), Keenan (1985)). In these works, estimators are 
mostly defined as a minimization solution of an integral expression. In the present 
paper, it is not assumed that y(n)(0) or Yk(O) is the gradient vector of a func- 
tion. Therefore, estimators which are not necessarily related to an optimization 
procedure are also considered. 

In the next section, we state conditions under which strong consistency and 
asymptotic normality of the proposed type of estimators are guaranteed. Based on 
these results, the optimal estimator in the sense of having the minimal asymptotic 
variance will be derived. 
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3. Strong consistency and asymptotic normality 

Keenan (1987) has already studied the asymptotic theory of functionals of the 
k-th (k > 2) order sample cumulant spectra. In the light of Keenan (1987), we 
give Lemmas 3.1 and 3.2, Theorems 3.1 and 3.2 below without proof. 

Conditions for the consistency of estimators are the following. 

CONDITION 1. (i) Any element yj (A, 0) of y(A, 0) is continuous in A and 8, 
which is of bounded variation in any Ay with supeeo II lY(',8)loollv < oc, where 
I" I~ is the sup norm on R 8, and II" IIv is the total variation norm. 

(ii) The simultaneous equations Yk(8) = 0 have a unique solution 80 whatever 
the value of 00 in O. 

Let ]1" II~ be the sup norm on Pk, 

IIKII~ = sup IK()QI, 
AEPk 

where K(.) is a function on Pk. 

LEMMA 3.1. Under Assumptions 1 and 2, 

lIF(F ) - Fkil  --, 0 w .p .1 .  

THEOREM 3.1. Under Assumptions 1, 2 and Condition 1, there exists a so- 
lution ~n (i.e. y (n) (  ) = --+ ,~ , O , 0 have a solution at On) such that On Oo with probability 
onc. 

Conditions for the asymptotic normality of the consistent estimators are the 
following. 

CONDITION 2. (i) Any Oyi(A, 8)/08 j is continuous in A and 0, and of bounded 
variation in A for all 0. 

The s x s matrix W is non-singular, where W -- [wij] is given by (ii) 

(3.1) 

i.e. 

(iii) 

Y W = - Oy(A, Oo)/OOtdFk(A), 

f w,j = - Oyi(A, Oo)/OOYdFk(A). 

yi(A, 8) is symmetric in any Aj. 

LEMMA 3.2. Under Assumptions 1, 2 and Conditions 1, 2, 
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where the components of the matrix An --* 1 w.p.1, and the O(n -1) term does not 
depend on the realization. 

Under the stated conditions for y(A, 00), V~[y(n)(Oo)- Yk(O0)] is asymptoti-  
cally normal with mean zero and covariance matrix V given by 

lr k 

V = 27r~p /_  y(a, Oo)y'(-Pa, Oo) H f2(aj)da , 
_ _  ~r j = l  

where _P denotes the permutat ion of a = ( h i , . . . ,  ak), and the s u m  E p  ranges 
over all permutations. This is the k-th order analogue of TheorenT 5.10.1, 
Brillinger (1975) applied to y(A, O0). In the present case, f2(aj)  = (27r)-lK2 • 
H(a j )H( -a j ) ,  so that  

k 
I I  f 2 ( a j ) =  (g2/21r)kSk(a)Sk(-~), 
j = l  

k H where Sk(a) = 1-Ij=l (aj). Hence, the covariance matrix V is writ ten in view of 
Condition 2(iii) as 

V = (27r)-k+lK2kk! y(A, Oo)Sk(A, 00)y'(-A, 00)Sk(-A, Oo)dA. 
- - , f f  

On the other hand, we have for the matrix W 

W = - (27r)-k+1Kk Oy(A, Oo)/OO'Sk(A, Oo)dA 
- -  T r  

f = (27r)-k+lKk y(A, Oo)OSk(A, Oo)/OO'dA. 
7r 

The last expression is obtained by differentiating 

f Yk(Oo) = (27r)-k+'Kk y(A, Oo)Sk(A, 00)dA = 0 
7r 

with respect to 00, since it is an identity in 00 in view of Condition l(ii). Then, 
we have the following theorem by Lemma 3.2. 

THEOREM 3.2. Under Assumptions 1, 2 and Conditions 1, 2, v/-n(On - 00) 
is asymptotically normal with mean zero and covariance matrix f~ given by 

f~ = W * - I V W  -1, (3.3) 
where 

(3.4) 

(3.5) 

(3.6) 

f W = (27r)-k+lKk y(A, Oo)OSk(A, Oo)/O0'dA, 
I F  

v = Oo)Sk( , Oo)y'(-a, Oo)Sk(- , Oo)d),, 
- - W  

k 

s (A,o) = I I  
j = l  
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and W* = [wi*j] denotes the complex conjugate. 

There exists a Crem~r-Rao type inequality for the asymptotic variances, and 
we give the optimal estimator attaining the lower bound. Let ~(/~, 0) be the s- 
dimensional vector valued function given by 

(3.7) ~)(A, O) = {Sk(~, O)Sk(-A, O)}-lask(-A,  o)/ao. 

We denote by t~n the estimator which is a solution of a set of estimating equations 

/: (3.8) ~'(n)(o) = ~l()~,O)dF(n)(A) = 0 .  
7r  

Then, the optimality result is given by the following theorem. 

THEOREM 3.3. If  ~1(~, O) satisfy Conditions 1 and 2, the covariance matrix 
of 0,~ is bounded by ~, ,  

> ~,  = KkK;2(k  - 1)!G-i(00), (3.9) 

where 

(3.10) f a(oo) = (27r)-1 0 log H(A, 0o)/000 log H(-A,  Oo)/O0'd)~ 
7 r  

and the inequality implies that $2- ~.  is a positive semi-definite matrix. The lower 
bound $2. is attained by the estimator On. 

and 

PROOF. Let us define 

= V~[On - 0o, On - 0o]' 

where 

(3.11) 

(3.12) 

W * - I V W  1 flo] 
A =  12o f~o ' 

= K2Ki- k!a; (eo), 

Gk(Oo) = (27r) -k+l  OlogSk(A, Oo)/OOOlogSk(-.,k, Oo)/OO'd.~. 
7r  

Then, it is easily shown that  a is asymptotically normal with mean zero and 
covariance matrix given by A. We only explain the derivation of A. The first 
diagonal part is the result of Theorem 3.2, and the second diagonal part is given 
simply by substituting 

eo) = {Sk(A, Oo)/ao 
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for y(A, 00) in Theorem 3.2. The off diagonal part is derived by noting that  the 

¢ovariance matrix between ff_, y( A, Oo )dF('O ( ~ ) and ff_, y( A, Oo )dF~ (~) is  

f (27r)-k+1Kkk! y(A, Oo)Sk(,k, Oo)O'(-,k, Oo)Sk(-A, Oo)d)~ 
7r 

f_ = (2~r)-k+lK~k! y()~, Oo)OSk()~, Oo)/O0'd)~ 
I r  

= K~K;lk!W. 

Since A is a covariance matrix, it is positive semi-definite. Hence, 

][:,] ~o __ O. 
[~ - x] ~o  ~0 

Therefore, ~ = W*-IVW -1 > 12o. 
We next show that  120 is equal to 12,. 

have 

0 log Sk ()~, 00)/00 --= 

so that  

Prom Sk(~, O) k = l-[j=l H(Aj ,  0), we 

k 

Z Olog H()~j,Oo)/O0, 
j = l  

f Gk(Oo) = Z (21r)-k+l OlogH(Ai,Oo)/OOOlogH(-Aj, Oo)/OO'dA 
i , j=l  ~r 

= k{a(Oo)  + (k - 1 )~(Oo)J(Oo)}  

= k a ( O o ) ,  

where we have put 

f w(0o) = (2~r) -1 0log H($, Oo)/OOd.X, 
7f 

and used the result of Lemma 3.3 below, i.e. w(0o) = 0. Hence, we have 

~o = K~Kk2k!a-~l(Oo) = KkK[2(k - 1)!G-l(0o) = ~ . ,  

proving the theorem. 

LEMMA 3.3. If ~1(~, O) satisfy Conditions 1 and 2, 

f (3.13) w(Oo) = (2~r) -1 0 log H(A, Oo)/OOdA = O. 
7r 
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PROOF. Let us define lYk(0) = f~,rfl(A,O)dFk(A), which is the deterministic 

version of Y(n)(0). By Condition l(ii), Yk(00) = 0, and the left-hand side becomes ~k 

f ]zk(Oo) = (27r)-k+1Kk {,5'k (,k, 0o)Sk(-A, 0o)}-10Sk(-A, Oo)/OOSk(A, 0o)dA 
- - T r  

f = (2r)-k+lKk 0 log Sk (A, Oo)/OOdA 
- -7"¢ 

k rc 

= (2~r)-k+lKk E f OlogH(Aj,Oo)/OOdA 
l r j _ _  1 -- 

= Kkkoa(Oo). 

Hence, w(00) = 0, proving the lemma. 

In the next two sections, we treat the estimations of outer and inner transfer 
functions, respectively. We focus on the optimal estimators, and the results of 
Theorem 3.3 are applied to each case. 

4. Estimation of the outer transfer function 

In this section, the model is assumed to be the following set of transfer func- 
tions specified by a vector parameter ~ • E. 

o c  

(4.1) Mo = A(A,~) = ~-~aj(~)exp(-ijA)]~ • E, ao(~) - 1, 
j = 0  

A(z,~) is analytic and has no roots in Izl _< 1}. 

This is the model customly used under the Gaussian assumption. We show that 
the known results are derived from Theorems 3.2 and 3.3 by putting k = 2. 

When k = 2, we have at first for S2(A, ~) (3.6) 

(4.2) S2(A, ~) = A(A, ~)A(-A, ~), 

so that S2(A,~) -- S2(-A,~). The matrices W (3.4) and V (3.5) are 

(4.3) W -- (27r)-1K2 y(A, ~0)0S2(A, ~o)/O~'dA, 
7T 

f (4.4) V = (27r)-lK~2 y(A, ~o)S2(A, ~o)y'(-A, ~o)S2(A, (o)dA, 
7r 

respectively. From (3.9), the asymptotic variance l~ ---- W * - 1  VW-1 is bounded by 
~'~., 

(4.5) ~ , =  2 -2 -1 K6K 2 G (~o) = G-I(~'o), 
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(4.6) 
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f G(~0) = (27r) -1 OlogA()~,~o)/O~OlogA(-)~,~o)/O~'dA. 
7r  

The lower bound can also be written in spectral representation, which is given by 
~0 (3.11) with G2(~0) (3.12), 

(4.7) flo = K2K222!G21(~o) = 2G21(~0), 

where 

(4.8) a2(~o) = (2r) -1 OlogS2(A,(o)/O(OlogS2(A,(o)/O~'dA. 
71" 

From (3.7), this is attained by 

(4.9) ~(A, ~) = S~-2(A, {)OS2(A, {)/0{ 

= _ o s ~ ( ~ , ~ ) / o ~ .  

Neglecting the sign, the optimal ~(A, ~) is the gradient of the function S~-I(A, ~). 
Therefore, the vector 

~('~)(~) = 9(A,~)dF(n)(A) 
7r 

is also the gradient of 

(4.10) 

where 

(4.11) 

and 

/ D (n) (~) = S f l (A ,  {)dF ('~) (A), 
7r 

F(~)(A) - (21r/n) E I~'~)(2rs/n), 
8 

- ~  < 2rs /n  < A, 

2 

(4.12) I('~)(A) = (2rn) -1 E Xt exp(-itA) 
t=0  

is the usual sample periodogram. 
It is known that the deterministic version of D (n) (~) 

f ( 4 . 1 3 )  D(~) = S;I(a,  ~)aF2(),) 

satisfies the following condition. 
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CONDITION 1. (ii)' D(~) _> 1, and the minimum D(~) = 1 is at tained at the 
single value ~0 (see e.g. Hannan (1973)). 

Therefore, the optimal estimate ~n corresponds to a minimizing value of 
D(n)(~). Note that  Condition l(ii) '  guarantees the consistency of ~n in view of 
Condition l(ii). It is also well known that  ~n is asymptotically equivalent to the 
maximum likelihood estimator under the Gaussian assumption (Hannan (1973)). 

We have thus regained several known results in the estimation of minimum 
phase filter. A point to be noted is that  the optimal estimate ~,~ is necessarily 
a minimizing value of D(~)(~). There exists one more case where the optimal 
estimate is given by an extreme value of a function. It is the subject of the next 
section. 

5. Estimation of the inner transfer function 

In this section, the model is assumed to be the following set of transfer func- 
tions specified by a vector parameter y E H, 

(5.1) Mz = B()~,~) = Ebj(~)exp(-ij)~)l~ e H, 
j=O 

S(z,~) is analytic, B(z,,])S(z-l,~) < 1 in Izl < 1, 

= 1 on Izl = 1} .  and B(z,~)B(z-l,~) 

That  is, the model consists of all-pass filters or inner transfer functions. Note that  
by the condition B(z)S(z -1) = 1 on Izl -- 1, the presence of the all-pass filter 
has no effect on the second-order spectrum of {Xt}, so a higher-order (i.e. k > 3) 
spectrum will be employed for identifying the inner transfer function. Here, we 
assume that  for the selected order k of the spectrum, the sign of Kk (the k-th order 
spectrum of {et}) is known. Then, without loss of generality, it will be hereafter 
assumed 

ASSUMPTION 3. Kk > O. 

(5.2) 

where 

(5.3) 

The necessity of Assumption 3 will be explained later. 
We examine the optimal estimator. From (3.7), 

Y(~, 7) = {Sk(~, ~)Sk(-~ ,  ~)}-~OSk(--~, ~)/O~, 

k 

= I I  
j= l  

Since B(A,~)B(-A,~)  = 1 holds also for Sk, Sk(A,~?)Sk(-A,~) = 1, ~)(A,~?) is 
simplified to 

(5.4) 7) = osk(- , 
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i.e. the optimal ~ is again a gradient vector. Therefore, by defining the function 

/: (5.5) E~n) (~) = Sk(-A,~)dF('~)()~), 
? r  

estimating equations ]p(n)(~/) = 0 can be written as 

(5.6) OS~'~) (,)/01? = O, 

and the optimal estimate ~ gives an extreme value (~) of E k 07)- 
To investigate the character of the extreme value, we take the deterministic 

version Ek (7) of E~ n) (~), 

(5.7) Ek(~l) = Sk(--£, ~?)dFk()~) 
7r 

= (2~)-k+lKk Sk (--,X, ~)Sk (),, no)a~, 
7F 

and introduce a function space L~, 

{ /: } (5.8) L 2 = F(A) 1(2~) -k+l F(A)F(-A)dA < oc . 
7T 

L 2 is a Hilbert space with inner product  ( , ) k  defined by 

/" 
(5.9) (F, G}k = (21r) -k+l  F()~)G(-)~)dA, 

7T 

and the norm IIFIIk of F E L~ is given by 

(5.10) IIFIIk = ~ , F ) k .  

Using these notations, Ek(~]) can be expressed as 

Sk(~?) = Kk (SkO?o), Sk(~?) )k, (5.11) 

where 

(5.12) IlSk(~o)llk = tlSk(~)llk : 1. 

Then, it is easily shown by Schwarz's inequality and by Assumption 3 that  

( 5 . 1 3 )  

where 

(5.14) 

and 

- K k  _< Ek07) _< Kk, 

Ek(~) = Kk if and only if Sk(~) = Sk(~o), 
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(5.15) Ek(U) = --Kk if and only if Sk(~) = --Sk(~O). 

The expression (5.11) shows that  Ek(~?) in effect measures the inner product  
between the two unit vectors Sk(~O) and SkO?) in the function space L 2. From 
this observation, the following holds under Assumptions 2 and 3. 

CONDITION 1. (ii)" The maximum Ek(~) = Kk is at tained at the single 
value ~?0. 

This is the counterpart of Condition l(ii)' in the outer transfer function case, 
and Condition l(ii)" guarantees the consistency of 7)n. 

Including the representations of the lower bound for the asymptotic variances, 
we give the obtained results as a theorem. 

THEOREM 5.1. The optimal estimator On on the inner transfer function 
model (5.1) is given by a maximizing value of E (n) (~) (5.5). The covariance matrix 
of On is given from (3.9) and (3.10) by 

(5.16) ~.  = K ~ K [ 2 ( k -  1)!G-l(rlo), 

where 

(5.17) G(~o) = (27r) -1 f "  
J . . -  7r 

or from (3.11) and (3.12) by 

(5.18) 

where 

(5.19) 

aB( , Vo) /OVaB(- , ~o)/O~?'d)~, 

: g g;2k!a;l(,o), 

f Gk(~0) = (2n) -k+l  OSk(A, ~?o)/O~?OSk(-A, ~?o)/O~'dA. 
7r  

A typical finite dimensional model is an ARMA one, i.e. a set of transfer 
functions which are rational functions of z -- exp(-iA).  In the case of outer 
transfer function, it takes the form 

(5.20) Mo(p, q) = {A(z, 4) = g(z) / f (z)  ] 

f (z)  = l + a ] z  + . . .  +apz p,g(z) = 1 +blZ + ' "  + bqz q, 

f (z)  and g(z) have no roots in Izl _< 1 / ,  

where, the (p + q)-dimensional vector ~ -- ( a l , . . . ,  Up, bl , . . . ,  bq) is the set of pa- 
rameters specifying the transfer functions in Mo(p,q). On the other hand, the 
model of rational inner transfer functions takes the form 

(5.21) M~(r) = {B(z,~) = g(z) / f (z)  I 

f (z)  -- 1 + alz + . . .  + crz r, 

= z r / ( z  -1 )  -- + e _iz + . . .  + z r, 

f (z)  has no roots in Izl < 1}, 
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where, the r-dimensional vector ri = ( c l , . . . ,  cr) is the set of parameters specifying 
the transfer functions in Mi(r). Note that by the condition B(z)B(z  -1) = 1 on 
Izl = 1, the numerator g(z) is uniquely determined as the reciprocal polynomial 
of the denominator f(z).  

As for the ARMA model Mo(p, q), the following was shown by •strSm and 
SSderstrSm (1974). Let (P0, q0) be the true orders of A(z, ~0). Then, there is a 
unique local and global minimum of the function D(~) on the model Mo(Po, qo). 
It means that 

(5.22) 

and 

D(~) > 1, D(~) = 1 if and only if ~ = ~0, 

(5.23) gradD(~) = 0 if and only if ~ = ~0 

on Mo(Po, qo). This result is useful when seeking the optimal estimate ~n based 
on the gradient method. 

We consider the same problem for the function Ek (ri) defined on the rational 
inner transfer function model Mi(r). The result is immediately obtained in view 
of the expression (5.11) for Ek(~). 

THEOREM 5.2. Let ro be the true order of B(z, rio). Then, there is a unique 
local and global maximum of Ek(rl) on Mx(ro). That is, 

(5.24) Ek(ri) < Kk, Ek(ri) = Kk if and only if ~ = T0, 

and 

(5.25) gradEk(~/) = 0 if and only if ri = rio 

on Mi(ro). 

PROOF. (5.24) is already given by Condition l(ii)". We take a unit sphere 
IIFIIk = 1 in L 2, and assume that the true vector Sk(ri0) points to the north pole. 
The model Mi(ro) is an r0-dimensional region in the sphere containing the north 
pole. Note that by the definition, the south pole is excluded from Mi(ro). Then, 
(5.25) holds, since the longitudinal components of gradEk(~/) do not vanish at 

Theorems 5.1 and 5.2 show that there exist similarities between the outer and 
inner cases in the structures of optimal estimators. 
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6. Estimation of non-minimum phase transfer function 

In this section, we consider the problem of estimating a non-minimum phase 
transfer function. The results obtained in Sections 4 and 5 will be used as building 
blocks here. 

We begin by setting a reasonable model for the non-minimum phase transfer 
functions. The phrase "reasonable" implies that  Condition l(ii) holds for the 
optimal ~)(A, 0) (3.7) on the adopted model. If Condition l(ii) does not hold on 
a model, the consistency of the optimal estimator is not guaranteed there. As a 
simple example, let us take a non-minimum phase MA(1) model which is defined 
a s  

(6.1) MA(1) = {H(z,O) = 1 + Oz l e • R1}. 

Under Condition l(ii), 00 must be a solution of ]Fk(0) = 0, i.e. 

(6.2) = o. 

The left-hand side is proportional to W(Oo) given by (3.13) (see the proof of Lemma 
3.3), so that  the condition (6.2) is 

(6.3) W(Oo) = (27ri) -1 ~zl=l Olog H(z, Oo)/OOz-ldz = O. 

We have for H(z, O) E MA(1), 

0log  H(z, Oo)/Oe = z/(1 + eoz). 

Then, 

W(Oo) ---- (2~'i) -1 ~ ] = 1  (1 + Ooz)-ldz, 

which is not zero if [00[ > 1. Hence, Condition l(ii) does not hold for the optimal 
estimator 0,~ on MA(1), and so MA(1) is not a reasonable model. In general, 
the non-minimum phase ARMA model M(p, q) defined simply by dropping the 
invertibility condition as 

(6.4) M(p, q) = {H(z, O) = g(z ) / f ( z )  [ 

f (z)  = 1 + alz + . . .  + apzP,g(z) = 1 + blz + ... +bqz q, 

f (z)  has no roots in [z[ < 1} 

is not a reasonable model. 
Let us recall the conditions satisfied by the two optimal estimators, i.e. Condi- 

tion l(ii)' in Section 4 and Condition l(ii)" in Section 5. We noted that  Conditions 
1 (ii)' and l(ii)" guarantee the consistency of the optimal estimators in respective 
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cases. Based on this fact and the inner outer factorization, we introduce a non- 
minimum phase model Mot whose parameter space O is the direct product  of 
in Mo and H in MI. 

(6.5) Moi = {H(z, 0) = A(z, ~)B(z, 7) I A(z, ~) • Mo, B(z, 7) • MI, 
i.e. 0 = ((, 7/) or O = .= x H}. 

On the model Moi, we propose a method of estimating H(,k) = H(A, 00). At 
first, the outer part A()~) of  H(A) is estimated on the model Mo parameterized 
by ( • ~. The estimator (~ is given by a minimizing value of D(~)(() (4.10). 
Next, the inner part  B(A) of H(A) is estimated on the model MI parameterized 
by 7 • H. The estimator ~ is given by a maximizing value of 

(6.6) f = 

where 

(6.7) 

and 

(6.8) 

k 

: I I  
j = l  

Sk(-)~,7) : 1-I B(-)~j,rl). 
j=l 

Note that / ) (~)(~)  is slightly different from Ek(~)(r/) given by (5.5). However, the 
strong consistency ~ --* ~0 w.p.1, erases the difference asymptotically, so that  

(6.9) / )~)(7)  -~ Ek(7), n ~ ce 

holds uniformly in 7, where Ek(7) is the deterministic function given by (5.7). 
Then, by the same reasoning as in the case of Theorem 3.1, the estimator ~/~ is 
also strongly consistent, 

(6.10) f/n --+ if0 w.p.1. 

This is the procedure of parameter estimations on the model MOl. 

7. Estimation of the orders of transfer function 

We introduced ARMA models by Mo(p, q) (5.20) for the outer transfer func- 
tions and by Mx(r) (5.21) for the inner transfer functions, respectively. Then, we 
showed that  under the knowledge of the true orders (p0, q0) and r0, the function 
D(~) has a unique local and global minimum at ~0 (see (5.22), (5.23)), and the 
function Ek(7) has a unique local and global maximum at 70 (see (5.24), (5.25)). 
Therefore, estimating these orders are crucial points in the identification. 
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There have been numerous works also on this problem, where estimations are 
made based on respective criteria. The most famous one is Akaike's AIC under 
the Gaussian distribution. In the frequency domain expression, it takes the form 

(7.1) AIC(s) = log D!" ) (~ )  + 2s /n ,  

where D~n)(~n) denotes the value of D(~)(~) at the optimal estimate ~n on the 
s-dimensional outer transfer function model M o  (s). The estimates of the order s 
will be obtained by the minimizing one of AIC(s) or of any other criterion (see e.g. 
Hannan (1980) and the references therein). We propose a criterion for estimating 
the order of the inner part. It is obtained by almost duplicating the procedure in 
deriving Akaike's AIC. 

We at first treat the case where the transfer function itself is an inner function. 
Then, the order will be selected in the family of inner transfer function models 
{Mx(r) ; r  = 1, 2 ,3 , . . . ) ,  where r denotes the dimension of the model. In the 
function space L~ introduced by (5.8), a natural distance is defined by using the 
norm [1" Ilk (5.10). Multiplying by a constant, we define a new distance I(~1,~2) 
between Sk(),, ~ )  and Sk(~, ~2) by 

(7 .2 )  I071, ~2 ) = K~(2K~k! ) - IHSkO?I)  - Sk(712)H 2. 

When 7/is sufficiently close to the true value q0, I(~o, ~/) admits an approximation 

(7.3) I(~o, 71o + &7) = d~'12old~7/2, 

where ~0 is the lower bound for the asymptotic variances given by (5.18). We 
note that  IQ/0, ~) can also be written as 

(7.4) I 070, 77) = {1 - (Sk( lo), Sk(W))k} 
= g k ( g k k ! ) - l { g k  -- 

where Ek(q) is given by (5.7) or (5.11). We take I(~0, An) as a criterion for defining 
a best fitting model by its minimization. That  is, I(~0, ~,)  will carry the same role 
as the Kullback-Leibler information played in deriving AIC (see Akaike ((1974), 
Section 4)). 

Consider the situation where the variation of W for maximizing ~(~)(~) is L,  k 

restricted to a lower dimensional subspace H of W which does not include W0. We 
define 7/, in H as the minimizing value of I(~0, ~), i.e. 

(7.5) min I(qo, q) = I(qo, r/,), 
r l E H  

and then the Pythagorean theorem 

(7.6) IQl0, (/n) -- I O?o , ~l , ) + I ( rl, , ~ln ) 

holds. In the right-hand side, we at first examine the term I(~/,, An). For the 
optimal estimate 7)n of Y0 restricted in H, if 7/, is sufficiently close to ~70, it can be 
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shown tha t  the distribution of 2nI(~. ,  ~l,~) for sufficiently large n is approximated 
under  certain regularity conditions by a chi-square distribution, with the  degrees 
of freedom equal to the dimension of the  restricted parameter  space. Thus, it holds 
tha t  

(7.7) E~2nI(~o, ~)~) = 2nI(~o, ~,) + r, 

where E ~  denotes the mean of the approximate distribution and r is the  dimension 
of H.  

Next, we need to develop some est imate of 2nI(~0, ~.). From the al ternate  
expression (7.4), we have 

(7.s) I (yo ,~ , )  = K~(Kk2k!) - 1 -  Kk(Kk2k!)-aEk(~,), 

and we must  seek estimates of Kk, 1{2 and Ek (~7,). 
As for the variance K2 of {et}, f2(A) = K2/2~ holds, since the filter itself is 

all-pass. On the other hand, 

~)(A)dA ~ f2(A)dA = K2 w.p.1. 
:ff 7 r  

Thus, we take as an es t imate /{2  

(7.9) =, 

As for the k-th order cumulant  Kk of {et}, 

so tha t  

fk(A, Yo) = (27r)-k+1KkSk(A, ~0), 

][.fk(r/o)ll 2 = (27r)-2(k-1)K2" 

On the other  hand,  
HJ~n)]] 2 ~ Hfk(~o)l~ w.p.1. 

Thus, we take as an est imate /{k 2 

( 7 . 1 0 )  = 

Under  Assumption 3, an es t imate /{k  is also given by 

(7.11) /{k ---~ (27r) k-111 J(n) ilk" 

Finally, we replace Ek(~.)  with E(~)(#~). Then,  we have as an est imate of 

(7.12) 2n/~2(/~kk!)- i  ^ ^ k ! -1 (n) - -- 2nKk(K2k.) Ek (~n). 
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By the same reasoning as in AIC, the last replacement causes a downward bias. 
This is corrected by adding r to (7.12). Furthermore, for the purpose of comparison 
of the values of the estimates of E I(y0, ~n) for various models, the first term in 
(7.12) is not necessary. 

Based on these observations, an information criterion IIC(r) of ~ is defined as 

(7.13) IIC(r) = --2/~k(/~2kk!)-:E(~)(O~) + 2r/n. 

The estimate of the order r will be obtained by the minimizing one of IIC(r). 
We are now back to the problem of estimating the order of the inner part of 

a transfer function. Then, a minor modification to IIC(r) is necessary. We must 

replace Ek(n)0)n ) with E(~)(~n) given by (6.6), and define IIC(r) as 

(7.14) IIC(r) = -2 /~( /~kk! ) - ' /~ ( '~ ) (~n)+  2r/n. 

The orders of a transfer function are estimated in the following way. At first, 
the order s of the outer part is estimated based on AIC(s) (7.1) or on any other 
criterion. Next, the order r of the inner part is estimated based on the criterion 
IIC(r) (7.14). 

The criteria IIC (7.13) and IIC (7.14) may need modifications. The proposed 
ones are based on the principle of parsimony that  lies in Akaike's AIC. 

8. Conclusions 

The results obtained in the present paper can be summarized as follows. 
The model of transfer functions specified by a vector parameter was intro- 

duced. By using the k-th (k ~ 2) order spectral estimate from the observed 
process, the parameter estimator was defined by a solution of the set of estimating 
equations. 

The strong consistency and asymptotic normality of the estimators were shown 
under several regularity conditions. The Cramdr-Rao type inequality for the 
asymptotic variances and the optimal estimator attaining the lower bound were 
obtained. 

These results were applied to the estimations of outer (minimum phase) and 
inner (all-pass) transfer functions. There, the optimal estimates were shown to be 
given by the minimizing and maximizing values of two functions. 

Using these optimal estimators successively, we proposed the method of iden- 
tification of a non-minimum phase transfer function. In the order estimations, 
conventional methods estimate the order of the outer part of a transfer function. 
One criterion was proposed for estimating the order of the inner part. By intro- 
ducing the distance between two inner functions, it was obtained following the 
same procedure as in Akaike's AIC. 

A more rigorous mathematical analysis will be necessary to determine if the 
proposed methods are applicable. It will be the subject of our future work. 
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