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Abstract .  Let ~-* be an exact D-optimal design for a given regression model 
Y~ --- X~/~ + Z~. In this paper sufficient conditions are given for designing 
how the covariance matrix of Z~ may be changed so that not only ~-* remains 
D-optimal but also that the best linear unbiased estimator (BLUE) of ~ stays 
fixed for the design ~'*, although the covariance matrix of Z~. is changed. Hence 
under these conditions a best, according to D-optimality, BLUE of/~ is known 
for the model with the changed covariance matrix. The results may also be 
considered as determination of exact D-optimal designs for regression models 
with special correlated observations where the covariance matrices are not fully 
known. Various examples are given, especially for regression with intercept 
term, polynomial regression, and straight-line regression. A real example in 
electrocardiography is treated shortly. 

Key words and phrases: D-optimality, exact designs, correlated observations, 
linear regression, robustness against disturbances. 

1. Introduction 

Designing problems for regression with correlated observations have, so far as 
the author knows, only been solved in an asymptotic-optimal way (cf. Sacks and 
Y]visaker (1966, 1968, 1970), Bickel and Herzberg (1979), Bickel et al. (1981)). 
Recently N£ther (1985) gave conditions under which the best linear unbiased con- 
tinuous estimator of the regression parameters degenerates to a discrete best linear 
unbiased estimator. But since designing is mainly important if the costs or time of 
an observation cannot be neglected, the experimenter is interested in exact optimal 
designs. 

Another hybrid approach is to choose a suitable design only from those which 
are optimal in the uncorrelated case (cf. Kiefer and Wynn (1981), Budde (1984)). 
Note, the covariance function must be known for designing in the cases mentioned 
above. 

In this paper exact D-optimal designs for regression models with correlated 
observations are considered where the covariance matrices are not fully known. 
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In fact, let 7" be an exact D-optimal design for a given regression model Yr = 
Xrj3 + Zr and let 17r = X r ~  + Zr be a second regression model. Then sufficient 
conditions are given for designing so that  not only 7" is D-optimal for the second 
model, too, but also that the best linear unbiased estimator (BLUE) of fl stays 
fixed for the design 7", although the covariance matrix is changed from Cov(Zr. ) 
to Cov(Zr.) .  Hence under these conditions a best, with respect to D-optimality, 
BLUE of J3 is known for the second model. The results may also be considered 
as determination of exact D-optimal designs for regression models with special 
correlated observations where the covariance matrices are not fully known. In 
Section 2 the above problem is explained more exactly. For that  purpose D- 
optimal-invariance will be introduced and discussed in Section 2. Also a real 
example in electrocardiography is treated. 

In Section 3 sufficient conditions for D-optimal-invariance are given for a 
rather general linear model, see Theorem 3.1. Afterwards in Subsection 3.1 Theo- 
rem 3.1 is specialized in covariance matrices not depending on T and an application 
to regression with intercept term is given. In Subsection 3.2 Theorem 3.1 is applied 
to special covariance matrices depending on 7 and the result is illustrated by poly- 
nomial regression. Afterwards two straight-line regression models are considered. 
The proof of Theorem 3.1 is given in Section 4. 

2. The regression model, the problem, and notations 

Consider a linear regression y(t) = ~ T  . f ( t ) ,  t E £ ,  where t is the controlled 
variable from the experimental region S, f = ( f l , . . . ,  fro) T is a given Rm-valued 
function on £ with linearly independent components, and/3 E R ,~ is the unknown 
coefficient vector. Assume that  under an exact design 7 = ( t l , . . .  ,tn) T of size 
n we have a linear model, where the expectation and covariance matrix of the 
observations are X r ~  and a2 Dr, respectively, and Xr  = (f j( t i)  )l <_i<_n,l<_j<_m, Dr 
is a known positive definite (n x n)-matrix, and a 2 > 0 known or unknown, but 
independent of 7. This linear model will be written LM(Xr, D~). Denote by £~ 
the set of all exact designs of size n under which 13 is estimable, that is 

~n = {7 ~--- ( t l , . . .  , t n )  T : t i  E £ for all i = 1 , . . . ,  n, and rank(X~) = m}. 

So, for T ranging over Cn, we have a class of linear models which we denote by 
LM(Xr, Dr : r E £n). Now suppose that the covariance structure is changed from 
a2Dr to ~2Cr for all r E £~, where C~ are given positive definite matrices and 
/~2 ~> 0 known or unknown, but independent of T. This leads to another class 
LM(Xr, Cr : T E £n) of linear models. Suppose that  T* E £n is D-optimal (for 
estimating 8) in LM(Xr, Dr : T E £,) ,  that  is 

det(X T. D~.lXr • ) = max det (XT D;1Xr) .  

The question is, when r* remains D-optimal and its BLUE for j3 remains un- 
changed, when going to LM(Xr, Cr : r E £n), that is 

(2.1) T - -1  det(X~.C~. Xr , )  = maxde t (XTC71Xr)  
rE£~ 
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and 

(2.2) T - 1  • - 1  T --1 T D~Xx.r. ~ - - 1 ¥ - T  r ) - i  ) = , . 

If this is true, then we want to call T* D-optimal-invariant (for LM(X~, C~ : T E 
Cn) and LM(X~, D r  : T • En)).  

Condition (2.2) is a generalization of the question when the ordinary least 
squares estimator and the BLUE of a given linear model are identical. There is a 
large literature on this subject, see, for example, Zyskind (1967), Kruskal (1968) 
and Haberman (1975). 

Condition (2.1) means T* is D-optimal in LM(X~, C~ : 7 E En). In a treat- 
ment design situation, most papers to date assume that the underlying correlation 
structure does not depend on the treatment allocation. More, exact D-optimal de- 
signs for linear regression models are mostly only known if the condition D~ = In 
is fulfilled for all ~- • Cn where Is is the (n x n)-unity matrix. Little is known on 
D-optimal designs of polynomial regression for uncorrelated observations but with 
variances depending on 7- (see Karlin and Studden (1966), Bischoff (1988) and 
cf. Federov (1972)). Something is known about exact designs for special factorial 
linear models with correlated observations not depending on ~- (see Budde (1984), 
Kunert and Martin (1987)). Literature on exact D-optimal designs for correlated 
observations depending on T is not known by the author. 

Now let T* be a known D-optimal design of LM(X~, D~ : T E £n) then the 
meaning of D-optimal-invariance is that T* is not only a D-optimal design of an 
in general more complicated LM(X~, C~ : T E Cn) but also the best, according to 
D-optimality, BLUE of/3 can be evaluated. This is not always possible, compare 
the following example. 

Example 2.1. Consider the linear model of straight-line regression on C = 
[ -  1, 1], that  is, Xr  is a design matrix of the regression functions f l  (t) - 1, f2 (t) = 
t, t E E = [-1, 1]. For T = ( t l , . . . , t n )  T • £n let Dr  = In and 

Cr(a, b) --- diag(atl + a + b , . . . ,  atn + a + b), a • [0, oo), b • (0, oo). 

- 1  1 ) 
Satz 6.5 of Bischoff (1988) implies T{ ---- [n/2] [(n + 1)/2] and T~ = 

[(n + 1)/2] [n/21 are the only D-optimal designs for LM(X~-, D,- : r • ,f.,~) 

t 
as well as for L M ( X , ,  C,-(a, b) : ~- E gn) where as usual k means k experiments 

are performed at t and [s] = max{k e N U {0} I k _< s}. (Note, even if we write 
designs as above we want to understand them as elements of gn.) But obviously 
the BLUEs of fl in LM(X~7, D,7) and LM(Xn., C~-(a, b)) do not coincide nei- 
ther for i = 1 nor for i = 2, if a ¢ 0. Hence, although all D-optimal designs 
of LM(X~,C~(a,  b) : T E gn) are known no best, with respect to D-optimality, 
BLUE can be calculated for LM(X~, C~(a, b) : T E En) if a is unknown. This 
shows also that (2.2) is not superfluous in the definition of D-optimal-invariance 
in mathematical sense as well as from a practical point of view. 
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The results of this paper are applicable to many practical situations. For 
example, consider body surface potential mapping (BSPM), which is the repre- 
sentation of cardiac electric potentials as they occur on the body surface during the 
electric activity of the heart. If cylindrical regression (see Bischoff et al. (1987)) 
is used to evaluate the data by the BLUE, then the covariance matrix C of the 
observations is needed. If C = er2In then a D-optimal design ~-* is well-known 
(see Bischoff et al. (1987)) but if the data are obtained at the same point of time 
as usually, C = a2In is not suitable. Then C = ~21In + ~211 T is more convenient 
(cf. Bischoff et al. (1987)) where 1 = (1 , . . . ,  1) T E R n. The next example may be 
considered as one of the simplest models of BSPM. 

Example 2.2. Consider the linear model of trigonometric regression on ~ = 
[0, 27r), that is, Xr  is a design matrix of the regression functions 

f l ( t )  - 1, f2k(t) = coskt,  f2k+l(t) = sinkt, 

t e C = [ 0 , 2 r ) ,  k = l , . . . , r  ( r E M f i x e d )  

(that is, m = 2r + 1) and for T e Cn let Dr = In and 

Cr(/9) = In +/9. l i  T, /9 E ( - l / n ,  ~ )  known or unknown. 

It is well-known that the design r* = (0, 2r /n ,  2 .2rr /n ,  3 . 2 7 r / n , . . . ,  (n - 1) • 
2r /n)  T E £n is D-optimal in the ordinary trigonometric regression model, that  is, 
in LM(Xr, Dr : r E Cn). Corollary 3.2 will show that  ~-* is D-optimal-invariant 
for LM(Xr, Dr :~- E En) and LM(Xr,Cr(O) : T E ~n) for each 0. So, even if the 
true/9 of Cr(/9) is unknown, the best, according to D-optimality, BLUE of/~ in 

T • - 1  T LM(Xr, Cr(/9) : T E ~ )  is the ordinary least squares estimator ( X r . X r )  X~. .  

3. Statement of the main results and examples 

In the following, no distinction is made between a matrix and the linear map- 
ping induced by that matrix in respect of the standard basis of unit vectors. In 
this section let 

Vr := range(Xr), Ur := nullspace(XT), T E Cn, 

and the set of all real symmetric positive definite (n × n)-matrices is denoted by 
M.  In the sequel for D E M and a subset W of R n the following subset of A/[ is 
needed 

F ( D ; W ) : =  D +  a ~ ' c h a T E M i r E N ; a i E R ,  a ~ e W f o r i = l , . . . , r  • 
i-----1 

THEOREM 3.1. Let T* E gn be D-optimal in LM(Xr, Dr : T E Cn). I f  C~ E 
r(Dr; Yr u Dr(V~)) and 

(3.1) d e t ( X T D ~ l X r )  • det(Dr)  • det(Cr.  ) 

<_ det( XT. D~.l Xr .  ) • det(Dr*) ,  det(Cr), 
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for all r E En, then d e t ( X T C r l X r )  < de t (XT.Cr . lXr . )  and (xTcr lxr )  -1. 
x T C ~  1 = ( X T D ~ I X ~ ) - I X T D ;  1 for all T E Cn, and hence T* is D-optimal- 
invariant. 

Remark. (a) Notice, range(Cr - Dr)  C Vr U Dr(Ur) is sufficient for C~ E 
F(D~;Vr U nr(u~)) .  (b) Since 7" is D-optimal in LM(Xr ,Dr  : T E Cn) the 
condition 

(3.2) det Dr • det Cr* _< det Dr* • det C~ 

is sufficient for (3.1). (c) Condition (3.1) may not be omitted as the following 
example shows. 

Example 3.1. Consider the linear model LM(X~, C~ :T E C3) of straight-line 
regression on $ = [-1, 1], that is, Xr  is a design matrix of the regression functions 
f l ( t )  - 1, f2(t) = t, t C $ = [-1, 1] and let be 

Vr ---- (tl,t2, t3) r E ~a : Cr -- I3 + Itl ' t2" tal" 11 T. 

It is well-known that  7" = (1, 1, - 1 )  T E £3 is D-optimal but TO = (1, 0, --1) T E $3 
is not D-optimal in LM(X~,/3 : T E $3)- Put  Dr = I3 then range(Cr - Dr)  _C 
range(X~) for all T E E3. But condition (3.1) is not fulfilled for T* and ~- = ~'0. 
Further we obtain det(XT.C~.IxT.)  = 2 < 6 = de t (XTC~lXro) ,  that is, T* is not 
D-optimal in LM(X~, Cr :T E ~3). 

The next two subsections concern with specializations of Theorem 3.1. In 
Subsection 3.1 the case is considered that Dr - D and C~ - C for all T E Sn, 
afterwards in Subsection 3.2 the matrix C~ may depend on T. 

3.1 The covariance matrices do not depend on T 
Theorem 3.1 implies Corollary 3.1 and Corollary 3.2 is a consequence of Corol- 

lary 3.1. 

COROLLARY 3.1. I f  ~-* E Cn is D-optimal in L M ( X r , D  : T E En) and if  
C E F(D; VrUD(Ur)) for all T E En then 7-* is D-optimal-invariant for LM(Xr, D : 
T E En) and LM(X,,  C : T E Cn). 

COROLLARY 3.2. I f  T* E E~ is D-optimal in LM(Xr, D : T E £=) and if  
1 E Vr U D(Ur) for all T E En then T* is D-optimal-invariant for LM(Xr, D : T C 
Sn) and LM(Xr, D + 011 T : T E Sn) where 0 E ( - n  -2 .  1TD1, oc) is known or 
unknown. 

Example 3.2. If 7" is a D-optimal design for an ordinary polynomial or 
trigonometric regression or in general for every linear model with intercept term 
then Corollary 3.2 implies that T* is D-optimal-invariant for LM(Xr, In : ~- E En) 
and LM(Xr, In + ~11 T :T  E ~n) where t9 E ( - 1 / n ,  oo) is known or unknown. For 
ordinary polynomial regression of order k and special numbers n of observations as 
well as for ordinary trigonometric regression of each order exact D-optimal designs 
are well-known, cf. Federov (1972); see also Gaffke (1987). 
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3.2 The covariance matrices depend on T 
Consider the linear model LM(X~, D~ :7- E ~,) .  In short, we only investigate 

the case C~ E F(D, ;  V~) in the following, although it would have no difficulties to 
consider C,  E P(D~; V, U D~(U,)). Let a(T) e V r \ { O }  then for all 0 E [0, oc) we 
define 

(3.3) C~(O) := D, + O . [a(T) T D ; '  a(7")] -1 .  a(7)a(7-) T. 

Obviously range(Cr(0) - D~) c_ V, for each T E g~ and 0 E [0, oc). Using a 
standard matrix result we get detCr(O) = (det D r ) .  (1 + 0). So condition (3.2) is 
fulfilled and Theorem 3.1 can be applied. Hence the following result is proved. 

COROLLARY 3.3. fiT* E gn is D-optimal in LM(X, ,  D,  : 7- E En) then r* is 
D-optimal-invariant for LM(X, ,  D~ : T E g~) and LM(X,,C,(O) : T E £n) where 
C~(O) is defined in (3.3) and 0 E [0, oo) is known or unknown. 

Example 3.3. Consider the linear model LM(X~, D ,  : 7- E E~) of polynomial 
regression of order k with 

Dr := d iag(v( t l ) , . . . ,  V(tn)), v :  £ ~ (0, oc) arbitrary function 

where r = ( t l , . . .  ,tn) T E Cn. For special variance functions v and for n --- k + 1 
Karlin and Studden (1966) determined exact D-optimal designs. By Corollary 3.3 
these designs are also D-optimal-invariant for LM(X~, D,  +0. [a(T)TD~ 1 a(T)] -1.  
a(7-)a(7-) T : 7- E gn) and LM(X~,D~ : T E gn) where {1(7-) E range(Xr) \{0},  
0 E [0, c~) are known or unknown. For example, it may be chosen as a(T) = 1 for 
all T E gn. 

Now we give two further examples where Theorem 3.1 may be applied. 

Example 3.4. Consider the ordinary straight-line regression LM(X~, In : 7- E 
£n) on £ = [-1, 1], that  is, X~ = (1 7-) for 7- E £~. It is well-known that  7-*, 
i = 1,2, considered in Example 2.1 is D-optimal in LM(Xr,  In : 7- E En). Let 
c > 1, 0 E (0, oc) and for all 7- E £n 

c (0, c) :=  + 0(7-rT) -c  • 7-Tr 

then Ti* is D-optimal-invariant for LM(X~-, In : ~- E £,~) and LM(X~., C~.(0, c) : T E 
£n) where c > 1 and 0 E (0, oo) are known or unknown; indeed, the assertion 
follows by Theorem 3.1 since 

VT E £n :  det C~(8, c) -- 1 + 0. (TTT) 1-c ~ 1 + O. (v~TT*) 1-c = det C~* (8, c) 

Example 3.5. Consider the linear model LM(X, ,  D~ : r E En) of straight-line 
regression on 8 = [-1, 1] with 

D~(v) = diag(v(tl),.. .  ,v(tn)), v :  g --* (0, oo) arbitrary function 
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where ~- = ( t~ , . . . ,  tn) T 6 Cn. Bischoff (1988), Satz 6.5, showed that  T*, i = 1, 2, 
considered in Example 2.1 is D-optimal in LM(X,,  Dr(v) : T 6 g~) iff v(t) > 
[(t--1)2V(--1)+(t+l)2v(1)]/4 for all t 6 g. If we assume v( -1 )  = v(1), v(t) <_ v(1) 
for all t • $ and for the sake of simplicity v(1) -- i the inequality above is equivalent 
to: 

(3.4) Vt • £ :  ~(t 2 + 1) _< v(t) <_ 1. 

Now let 8 • ( -1 / (2n) ,  c~) and 

Cv(v, O) := d iag(v( t l ) , . . . ,  v(tn) ) + O . 11 T 

where ~- = ( t l , . . . , t n )  T • En and v fulfills (3.4). Obviously range(Cr(v,0) - 
Dr(v)) c_ range(Xr). S incedetCr(v ,0)  = rL=z V(ti).(1 0 n + "Y'~i=l v- l ( t i ) )  we get 
for each T • £n: 

det D "  (v) " det Cr(v'O) = det D "  (v) " det Dr(v) " ( l + O " ~ v - l  

~_ det Dr (v ) .  det Dr* (v). (1 + 0. n) 

= det Dr(v)" det C%. (v, 0). 

So by Theorem 3.1 follows that T~ and 7~ are D-optimal-invariant for 
LM(Xr ,D~(v)  : T 6 En) and LM(Xr,  Cr(v,O) : T 6 C~) where 0 • ( -1 / (2n) , co )  
and v satisfying (3.4) are known or unknown. 

4. Proof of Theorem 3.1 

Let X be a real (n × m)-matrix with rank(X) = m, let x~ 6 R n be the i-th 
columnvector of X, and let D 6 ]v[; we define 

V := range(X),  U := nullspace(XT), UD := nullspace(XTD-1), 
VX, Z 6 R n : <X, Z}D := xTD-lz. 

Note, UD = D(U). Before Theorem 3.1 is proved we consider some lemmas. 

LEMMA 4.1. Let a ~ + l , . . . ,  a~ 6 R ~ be chosen so that x l , . . . ,  x~, O.m+l,..., 
an is a basis of R ~, define A := (a~+l  I " "  ] a~), and let D 6 Ad then 

d e t ( X T D - 1 X ) ,  de t (ATD-1A _ A T D - 1 X ( X T D - 1 X ) - I x T D - 1 A )  

= d e t ( X T X )  • det(ATA - A T x ( x T x ) - I x T A ) .  det D -1. 

PROOF. Let B be an (n x n)-matrix that  is partitioned as follows B = 
[ Bn Bi2~ 

22 ] \B21 B , where Bij is a real (ni × nj)-matrix, i,j -- 1,2, and where nl + 
n2 = n. If Bn is a nonsingular matrix, the determinant of B can be written 
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as det B = det Bll  • det(B22 - B21B~llB12) (cf. Graybill ((1983), Theorem 8.2.1, 
p. 183)). Hence, we obtain for the patterned matrix (X I A): 

det((X I A ) T D - I ( X  I A)) 

I X T D - 1 X  X T D - 1 A ~  
= det ~ A T D _ I X  A T D _ I A )  

= d e t ( X T D - 1 X ) ,  de t (ATD-1A _ A T D - 1 X ( X T D - 1 X ) - I X T D - 1 A ) .  

On the other hand, since (X I A) and D -1 are (n x n)-matrices we obtain: 

det((X I A ) T D - I ( X  I A)) 

= det((X I A)T( X I A)) .  det D -1 

= de t (XTX)  • det(ATA - A T x ( x T x ) - I x T A )  • det D -1. [] 

Let P denote the unique matrix representation of the projector on U along V 
in respect of the standard basis of unit vectors: P -- In - x ( x T x ) - I X  T .  

LEMMA 4.2. Let D E 34, let am+l , . . . ,  an be an orthonormal basis o lD(U)  
with respect to (., ")D and define A := (a~+l  I " "  I a~) then 

det (XT D - 1 X )  = det(XT X)  • det(AT pA)  • det D -1. 

PROOF. Since A T D - 1 A  = In--m and X T D - 1 A  = Ore,n--m, where 0i,j is the 
(i x j)-null-matrix, Lemma 4.1 implies: 

det(XT D - 1 X )  = det (XT X)  • det(AT (In - x ( x T  x ) - I  x T ) A )  • det D -1 

= de t (XTX)  • de t (ATpA)  • det D -1. [] 

LEMMA 4.3. Let D , C  E Ad. Let a ~ + l , . . . , a ~  and bin+l , . . . ,  b~ be or- 
thonormal bases o lD(U)  and C(U) with respect to (., ">D and (., "}c, respectively. 
Further define A := (a~+l  ] . . .  I a~) and B := (bm+l I "'" I b~) then 

d e t ( X T C - 1 X )  

= d e t ( X T D - 1 X )  • de t (BTpB)  • de t (ATpA)  -1 • det D .  det C -1. 

PROOF. Apply Lemma 4.2 to d e t ( X T C - 1 X )  and d e t ( X T D - 1 X )  then the 
result of Lemma 4.3 is a direct consequence. [] 

LEMMA 4.4. Let D, C E .£4 then 
(a) range(C - D) C_ V =~ Vx, z E D(U) :  <x, 2~)D = (X, Z)C, 
(b) range(C - D) C_ D(U) ~ Vx, z E V :  (x, 2~>D ~ - -  <X, Z>C. 

PROOF. (a): Since range(C - D) C_ V implies Du = Cu for all u E U the 
assertion follows. (b): Exchange V for D(U) in (a) then we obtain (b). [] 
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For C, D E A4 we define 

g(C) = ( x T c - 1 x ) - I x T c  -i, g(D) ---- ( X T D - 1 X ) - I X T D  -1. 

The next lemma gives a necessary and sufficient condition for g(C) = g(D). 

LEMMA 4.5. Let C, D • A/[ then g(C) = g(D) ¢~ C(U) = D(U).  

PROOF. "=~" follows since nullspace(g(C)) = C(U) and nullspace(g(D)) = 
D(U).  "~" :  Remember V -- range(X). Since 

Vv E V 3 y  E Rm : X y  = v ~ Vv E V :  g (C)(v )  = y = g(D)(v) ,  

Vw E C(U) = D(U) : C - i T  E U , D - i w  • U 

=~ Vw E C(U) = D ( U ) :  g (C ) (w )  = 0 : g (D) (w) ,  

and V N D(U) -- {0} we obtain g(C) = g(D). [] 

We recall the definitions Vr -- range(Xr) and Ur = nullspace(Xf). 

PROOF OF THEOREM 3.1. Because Cr E F(Dr; Vr U Dr(Ur))  implies 
Cr(Ur) = Dr(Ur)  we have ( x T c ~ i x r ) - I x T c ~  1 = ( X T D ; 1 X r ) - i X T D ;  i for 

all T E C~ by Lemma 4.5. 
Since Cr E r(Dr; Yr u Dr(Ur)) a matrix Cr E M exists with Cr E r(Dr; Yr) 

and 0 r  E F(Cr; Dr(Ur))  for all T E En. By Lemma 4.4(b) we obtain X T C 7 1 X r  = 
x T C ~ I X r ,  hence we may assume r a n g e ( C r - D r )  C_ Vr for all T E ~ in the sequel. 
Taking into account Lemma 4.4(a) there exists an orthonormal basis a~+i ,  • • •, an 
of Cr(Ur) = Dr(Ur)  with respect to (., ")c~ and (., ")Dr. So Lemma 4.3 implies 

d e t ( X T C ~ I X T )  

= d e t ( X T D ~ i X r ) ,  d e t ( A T p A )  • d e t ( A T p A )  -1 .  det Dr 

= d e t ( X T D ~ l Z r )  • det Dr"  det C~ -1 

_< det(X~, 0 2  Xr.). det Dr*.  det C~-. l, 

. det C~ -i  

where A := (am+i I "'" I an). Considering range(Cr. - Dr . )  c_ Vr. and Lemma 
4.4(a) there exists an orthonormal basis bin+l, . . - ,  bn of Cr.(Ur*) = Dr* (Ur*) 
with respect to (-, ")c** and (., ")Dr.. Again Lemma 4.3 implies: 

det(XT. D~. 1Xr* )" det  Dr*" det  Cr .  1 
T -1 = de t (Xr .  Dr.  Xr*)"  d e t ( B T P B )  • d e t ( B T p B )  -1 • 

= det(XT, c ~ . i x r .  ), 

det Dr- • det C~-. ~ 

where B := (bm+l I "'" I b~). Hence ~-* is D-optimal in LM(Xr, Cr : ~- E Cn). [] 
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