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A b s t r a c t .  A variety of statistical problems (e.g. the x-intercept in linear re- 
gression, the abscissa of the point of intersection of two simple linear regression 
lines or the point of extremum in quadratic regression) can be viewed as ques- 
tions of inference on nonlinear functions of the parameters in the general linear 
regression model. In this paper inferences on the threshold temperatures and 
summation constants in crop development will be made. A Bayesian approach 
for the general formulation of this problem will be developed. By using nu- 
merical integration, credibility intervals for individual functions as well as for 
linear combinations of the functions of the parameters can be obtained. The 
implementation of an odds ratio procedure is facilitated by placing a proper 
prior on the ratio of the relevant parameters. 

Key words and phrases: Bayesian inferences, threshold temperatures, sum- 
mation constants, regression, intervals of highest posterior density, posterior 
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1. Introduction 

Consider the general linear regression model  y = X ¢  + ~ where y is a n x 1 
vector  of observable r andom variables, X a n x p mat r ix  of known constants,  ¢ a 
p × 1 vector of unknown parameters  and e a n x 1 vector  of unobservable r andom 
variables, referred to as errors. It  is assumed tha t  e is normal ly  dis t r ibuted with 
mean  0 and covariance mat r ix  cr2In where 0 is a n x 1 vector of zeros and In the  
ident i ty  mat r ix  of order  n. Also (X~X) is assumed to be nonsingular. 

Our interest  is in nonlinear functions of the parameters  ¢. Examples  where 
nonlinear functions of the parameters  are of interest include: 

(i) the x- intercept  in linear regression, 
(ii) the abscissa of the point  of intersection of two simple linear regression 

lines, 
(iii) the  point  of ex t r emum in quadrat ic  regression, 
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(iv) relative potency in a slope ratio bio-assay and 
(v) bio-equivalence of two treatments. 

In this note, inferences on nonlinear functions in crop development models will be 
considered. The simplest crop development model assumes a linear relationship 
between temperature (x) and rate of development (y) (Holmes and Robertson 
(1959), Edey (1977), Robertson (1983)) and can be written as y = a +/3x + 
e. In crop development models, nonlinear functions of the parameters a and/~ 
have certain physical meanings. For example the x-intercept, 7 = - a / ~ ,  is the 
"apparent" threshold temperature at which development begins to take place while 
k -- 1//3 is the value of the summation constant, the number of degree days, or 
the sum of the daily temperature remainder indices required for the crop to pass 
through the phenological phase in question. 

The Department of Agricultural Meteorology at the University of the Orange 
Free State has studied the influence of temperature on the rate of wheat develop- 
ment. Five wheat varieties, namely Wilge, Betta, Karee, Scheepers 69 and SST 
102, were used in the experiment and the research was conducted at a number of 
experimental stations throughout South Africa. The main reasons for doing this 
research were 

(1) to obtain sample data for the construction of confidence intervals on the 
threshold temperatures and summation constants and 

(2) to do tests of hypotheses. 
An example of such a set of data and the regression analysis is given in van 

der Merwe et al. (1989). The data for the other wheat varieties is available on 
request. 

The usual tests for normality, heteroscedasticity, outliers, serial correlation, in- 
fluential observations, etc. show no violations of model assumptions. The only ex- 
ception is that the error variances among the five varieties (according to Bartlett's 
test) seem to differ from each other, which makes pooling inappropriate and the 
estimation of a common •2 invalid. 

In the next paragraphs a Bayesian approach for the general formulation of 
this problem will be developed. By assuming improper priors on the parameters 
a, /3 and a, the posterior distributions for 7 and k can be derived. By using 
numerical integration, credibility intervals for individual functions as well as for 
linear combinations of the functions of the parameters can be obtained easily. The 
implementation of the odds ratio procedure is facilitated by placing a proper prior 
on the ratio of relevant parameters. 

2. Posterior distribution for 7 - - c ~ / ~  

2.1 Improper  priors  on the parameters  
One possible prior on a, ~ and a is 

1 
(2.1) p(a, /3 ,  a )  ~ - - co < a , /3  < oc 

O" 

which implies that a, /3 and log a are locally uniform and independently dis- 
tributed. 
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Then on combining (2.1) with the likelihood function 

1 
p(y l X,c~,D,a) c( - - e x p  O n = - - Z x i )  

and integrating with respect to a it can easily be shown (Zellner ((1971), p. 61)) 
that  the joint posterior distribution for the parameters a and fl is given by 

(2.2) f ( a , ~  I Y, X)  c( {1 + (a - &,fl - ~ ) ( v S 2 ) - l ( X ' X ) ( a  - &,~ - ~),}-~/2 

which is a vector Student t distribution with 

v = n - p ,  0:(;) 
(vS2)-I(xlx) _~ (vS2) -I 

n 

i~l x i E x 2 i  "= i=1 ~$21 $22 ' 

S 2 = (y - X~b)'(y - X ~ ) / v  and p = 2 in the case of simple regression. The 
posterior distribution serves as a basis for making inferences on 7 = - a / ~  and 
k = 

By using (2.2) it can be shown (Press (1969), Zellner ((1971), p. 279) and 
Hunter and Lamboy (1981)) that  the posterior distribution for the threshold tem- 
perature, 7, is given by 

(2.3) f (7  I Y, X )  (x hi~2 (V + 1)bl Fl(d) 
~'1 

where F(d) = fd  p(t)dt, Fl(d) = fdootp(t)dt, p(t) is the Student t p.d.f, with 
(v + 1) degrees of freedom, 

d = - { ( v  + 1)b1/bo}l/2b2, bl = ~ 2 s l l  -- 2~/S 12 -}- S 22, 

52 ---- -~/(~Sll -I- ((~ - 7/9)S 12 +/9S 22 and 

bl 

b0 = 1 + &2Sn + 2&/~S 12 +/~2S22 - [-~/&Sn + (& - 7/~)Sn +/~$2212 
bl 

The Bayesian posterior density for 7 is the posterior density for a ratio of 
bivariate t random variables and yields a distribution that  has infinite moments.  
According to Hunter and Lamboy (1981) this fact is not disturbing because one 
can always plot the posterior density of 7 and readily interpret it. One may choose, 
for example, to find its mode and the highest posterior density (HPD) interval. 
From a Bayesian point of view, the existence of a finite variance is unnecessary. 
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Theoretically, if one's model is adequate, all the relevant information is contained 
in the appropriate posterior distribution. Furthermore, it is easy and natural for 
practitioners to use posterior distributions in making inferences. 

The classical frequency approach for making inferences on -y is to estimate 
it by ~ = -&/f~ (the maximum likelihood estimate) and apply FieUer's theorem 
(Fieller (1932, 1954)) for the construction of confidence intervals or tests. It is, 
however, well-known that the Fieller region can be empty, the whole line, or the 
complement of a finite interval and that this tends to occur when the F statistic for 
testing 13 = 0 is sufficiently small. Since this cannot occur with a proper posterior 
distribution (such as (2.3)), the Bayesian approach is preferred. 

On the other hand, it is true that Fieller's theorem will sometimes provide 
adequate approximations for the desired Bayesian results. Hunter and Lamboy 
(1981) conjectured that Fieller's method will provide approximate (1 - a)100% 
intervals differing by not more than 2 Pr(tv >_ I/~I/S 22) from the probability actu- 
ally contained in the (1 - a)100% HPD intervals. The posterior density function 
f(Y I Y, X) for variety Wilge is given in Fig. 1. 
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Fig. 1. Density functions f ( .  [ X ,  y) ( . . . . . .  ) and f ( .  I X ,  y) ( . . . . .  ) - - for  variety Wilge. 

By performing numerical integration on f(~/I Y, X),  the modal values and 95% 
highest posterior density (HPD) intervals for the five varieties were calculated and 
are given in Table 1. 



BAYESIAN INFERENCES ON NONLINEAR FUNCTIONS 205 

Table 1. The modal values and 95% highest posterior density (HPD) intervals of the threshold 
temperatures for the five varieties. 

Varieties Modal values 
95% HPD intervals 

Lower limits Upper limits 

Wilge 7,60 4.13 9.91 

Betta 8.51 3.30 11,45 

Karee 8.45 0.63 11.81 

Scheepers 69 9.51 5.58 11.62 

SST 102 6.65 -0.18 9.98 

2.2 Proper prior on 7 
Another approach for obtaining the posterior distribution of 3' is to put a prior 

on 3' itself, independent of the locally uniform priors on ~ and log a, so that  

(2.4) p(3', ~, ~) ~ g(3')~-1. 

This is similar to an approach used by Buonaccorsi and Gatsonis (1988). The 
likelihood function is then written as 

. f (y  i X ,  3', ¢~, a )  cx a,  ex p 1 ~ ( y ~  + ~(3' _ x~))2 " 

The posterior distribution of "7 is given by 

] (7  I X ,  y) ~ g(7)G(~ I X,  y) (2.5) 

where 

(2.6) 

and 

G(3" I X ,  ~1) = [Sxx Jr- rt(3" - ~)2]n/2--1 
• [nSuu(3" --  b') ~ + S~(1  - r2)(Suu + n~2)] -(~-I)/2 

~t  n 

s ~  = ~ ( x i -  ~)2, s ~  = ~ ( y ~ -  9) 2, 
4=1 i=1 

b' = ~- SxY- r2 _ $2.~ . 
Syy y' S** Sy~ 

71, 

i----1 

Note that  G is not integrable on ( -oo ,  oo) and thus an improper prior on 3' 
will lead to an improper posterior for 3" and should not be used. However, any 
proper prior on 3' will lead to a proper distribution, since G is a bounded function. 
If a uniform prior is used on the interval [L, U], then 

(2.7) ] (7  I X ,  y) oc G(3' I X ,  y), L < '7 < U. 
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The posterior is quite robust to the actual values of L and U, as long as the 
integrated likelihood G is effectively covered by the interval [L, U]. 

In Fig. 1 the posterior distributions (2.3) and (2.7) for variety Wilge are given 
and it can be seen that they are fairly close together. Similar patterns of agreement 
were observed for the other wheat varieties. 

The range of integration for obtaining ] ( .  I X ,  y) as shown in Fig. 1 was 
quite large, from - 1 0  to 15. This approach (i.e. the procedure leading to (2.7)) 
will be used in the next section for the posterior odds ratio, mainly because of less 
complicated numerical calculations than in the case of (2.3). 

3. Comparing threshold temperatures 

3.1 Credibility intervals 
As mentioned in the introductory paragraph one of the main reasons for con- 

ducting this experiment was to determine whether the threshold temperatures of 
the five varieties differ from each other, i.e. to test the hypothesis 

(3.1) Ho : ")/1 ~-~ ')'2 : "Y3 : ')'4 = ")'5( = "Yo), 

where 1 stands for Wilge, 2 for Betta, etc. in the same order as given in Table 
1. The classical frequency approach is to obtain the likelihood ratio statistic, 
which is extremely difficult to derive. Even if this was done, the result would be 
complicated and not of much practical use. 
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Fig.  2. T h e  posterior d is tr ibut ion of the  difference in threshold  t emperatures  be tween  

B e t t a  and Karee.  
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In the Bayesian case, the posterior distribution contains all the available infor- 
mation about a parameter. Therefore, one approach to determine if the threshold 
temperatures of the five wheat varieties differ from each other is to calculate the 
95% credibility intervals of the differences between parameter values for all pos- 
sible pairs. If these intervals contain zero, the conclusion will be made that the 
hypothesis (3.1) is true. 

Using the approach that leads to (2.3) it follows that the posterior distribution 
of H i j  = ~i - "~j (i = 1 , . . . ,  5, j = 1 , . . . ,  5) is given by 

F flI,,~ (II) : f ( H  + ~i) f (~y)d '~j .  

By using numerical integration the posterior distribution of H 2 , 3  - -  7 2  - 7)'3 
(i.e. the posterior distribution of the difference in threshold temperatures between 
Bet ta  and Karee) was calculated and is shown in Fig. 2, while in Table 2 the 
95% credibility intervals of the differences between threshold temperatures for all 
possible pairs are given. 

From Table 2 it is clear that all these intervals contain zero, which is a good 
indication of no real differences among the threshold temperatures of the five 
varieties. We must, however, warn that indiscriminate use of this procedure may 
be dangerous, for if we have say r varieties, where r is large, then the probability 
is high that  at least one of the r ( r  - 1)/2 differences will, due to chance alone, 
be judged significantly different. In other words, this method will tend to give 
too many significantly different cases. Having obtained none in this case means 
that we can be confident that  there are no real differences among the threshold 
temperatures. 

Table 2. 95% credibility intervals of the differences between the threshold temperatures. 

95% credibility intervals of Hi,j -- "h - ~j 
Pair (i ,j)  

Lower limit Upper limit 

(1,2) -3.95 5.98 
(1, 3) -5.49 8.66 
(1, 4) -7.66 7.29 
(1, 5) -3.24 8.00 
(2, 3) --7.67 9.06 
(2, 4) -11.00 7.30 
(2, 5) -5.10 8.a6 
(3,4) -9.13 6.34 
(3, 5) -7.99 10.05 
(4, 5) --3.98 8.92 
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(3.5) 

and 

3.2 Bayes factor 
Another method to determine if the threshold temperatures differ from each 

other is to examine the posterior odds ratio or Bayes factor in favour of the null 
hypothesis (3.1). Using the approach described in Subsection 2.2, it follows that  
the likelihood function of all the data under H0 is given by 

5 

(3.2) I Ip(yJ  I x , ~ . , ~ , ~ 0 )  
j----1 

= (2~)E~, /21- [  ~ '  exp - V ' ( y ~  + ~j('r0 - x~j)) 2 
j=l j=l 3 i=l 

5 and by 1-Ij=l P(Yj I X ,  ~j, at, ~j) under a composite alternative. 
The Bayes factor is then defined by bf = fo/fÂ where 

5 

(,..) ,o-/.-. / n.(., i 
j=l 

5 

j=l 

The prior distributions under the null and alternative hypotheses are 

5 

j----10"j 

(3.6) 
5 

1 
pl (~ ,  f~,O*) (3(: g l (~)  H 0"--~ 

j = l  

respectively, where f~,~f E R 5, "7o E R 1 and 0 < ai < oc. 
The density functions go(') and gl( ' )  should be proper, since they are of dif- 

ferent dimensionalities and the Bayes factor can then be extremely sensitive to an 
improper prior used under the alternative. The same does not apply to the other 
parameters fl and a. Since we assume identical distributions for these parameters 
under both hypotheses, the Bayes factor is quite robust with respect to these pri- 
ors. For a discussion of improper priors for hypothesis testing, see Shafer (1982) 
and Groenewald and de Waal (1989). Equations (3.3) and (3.4) reduce to 

5 

j= l  

and 
5 

i j=l 
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where 

(3.9) 
(a.m) 

T0j = Szxj + nj(Vo -  j)2, 
Roj n jSyy j (7o  b )9- + Sxxj (1  - 9- n _9. = - rj)(&y  + jyj) ,  

and the quantities in the equations are defined as in Subsection 2.2, but  for the 
j - th  sample. Tlj and Rl j  are as (3.9) and (3.10) with % replaced by 7j. 

To obtain a reasonable prior distribution for 7 for the application to threshold 
temperatures, experts at the Department of Meteorology were consulted. Consen- 
sus was reached on a range of about 15, from - 2  to 13, approximately symmetrical 
and with values near the end points highly unlikely. So we assume identical nor- 
mal prior distributions under the null and alternative hypotheses, all with standard 
deviations of r = 2.5. 

The Bayes factor is then a convex function of the prior mean with minimum 
b f* = 2.71 at a prior mean # = 7.35. This indicates that the data supports the 
null hypothesis. 

This lower bound on the Bayes factor is of course sensitive to the dispersion 
of the prior and will move from zero to infinity as T moves from zero to infinity. 
For example, if r = 2, then b f* = 1.84 at # = 7.46, and b f* < 1 when r < 1.2. 

The minimum Bayes factor for a uniform prior was also examined and gave 
similar results. For a uniform prior over an interval of length 8 (2.9 to 10.9), it was 
found that b f* = 2.63 and b f* drops below 1 only when the length of the interval 
is reduced to about 4. 

The conclusion is that  the null hypothesis should be accepted unless the prior 
opinion about the value of "y is very strong, i.e. a small prior variance. Clearly the 
prior opinion in this application is not strong enough to reduce the Bayes factor 
to a critical level. 

4. Credibility intervals for the summation constant k = 1/13 

It is well-known that the (1 -c t )100% credibility (confidence) limits for/3 are 
given by the interval 

(4.1) 

where [~7(/})] = $2C and S 2 = (y - X¢ ) ' ( y  - X ¢ ) / v  and C is obtained from 

( X ' X ) - I  = ( A c ) .  Once againtv;a/2 is the (1-~ /2)  percentileof the Student 

t distribution with v degrees of freedom. 
From (4.1) it can be seen that a (1 - ~)100% credibility interval for k -- 1//3 

is given by 

(4.2) 1 . 1 

÷ t,~;o~/~[V(,~)] ' /~ '  , 3 -  t~,;o/~[V(,~)]~-/~ 
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Contrary to (4.1), the interval (4.2) is not a symmetrical interval nor is it the 
shortest possible interval. The reason for this is that  the transformation k -- 1//3 
is not linear which means that  the posterior density for k, i.e. 

(4.3) f (k  I X ,  y) = 
F (V2--1) (VS2)v/2~/En=I(Xi--'X) 2 

[ r (2) v/-~k2 vS2 Jr- ~i~l(Xi- ~)2 _ 

- c¢  < k <  c~ 

can be non-symmetrical. This can be seen from Fig. 3 where the posterior density 
f (k  I X ,  y) for variety Betta is given. 

f(klX,v) 

o 
200 300 400 500 600 700 800 900 1000 

Fig. 3. The posterior density f (k  t X,  y) for variety Betta.  

1100 

k 

The shortest possible HPD interval (symmetrical round the modal value) can 
be obtained by numerically integrating f(k) or by interpolating in tables of the 
Student t distribution. The lower and upper boundaries of these intervals are given 
in Table 3. 
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Table 3. 
varieties. 

The 95% inverse intervals (equation (4.2)) as well as the HPD intervals for the 5 

Varieties Modal 

95% credibility intervals 

values 
Inverse HPD 

interval interval 

Wilge 462.5 376.9--627.8 374.9-621.6 

Betta 460.0 356.1-738.5 302.9-675.2 

Karee 394.1 292.6-792.9 252.6-697.4 

Scheepers 350.7 273.9-556.0 256.5-520.7 

SST 102 526.5 402.5-919.1 384.8-863.1 

The average lengths of the inverse and HPD intervals are 386.46 and 361.25 
respectively. The largest improvement in interval length is for variety Karee where 
the difference between the inverse and HPD interval is 55.5, an improvement of 
11.1%. 

The construction of credibility intervals and hypothesis testing can be done in 
the same way as for the threshold temperatures. 
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