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A b s t r a c t .  In the absence of four-factor and higher order interactions, we 
present a series of search designs for 2 TM factorials (m > 6) which allow the 
search of at most k (= 1, 2) nonnegligible three-factor interactions, and the 
estimation of them along with the general mean, main effects and two-factor 
interactions. These designs are derived from balanced arrays of strength 6. In 
particular, the nonisomorphic weighted graphs with 4 vertices in which two 
distinct vertices are assigned with integer weight oa (1 ~ w < 3), are useful 
in obtaining search designs for k = 2. Furthermore, it is shown that  a search 
design obtained for each m > 6 is of the minimum number of treatments among 
balanced arrays of strength 6. By modifying the results for m > 6, we also 
present a search design for rn = 5 and k = 2. 
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1. Introduction 

Consider factorial experiments with m factors each at the level 0 or 1 (i.e., 2 m 
factorial designs). These designs are vastly popular and important for practical 
usages. Although they are unable to explore fully a wide region in the factor 
space, they can indicate major trends and so determine a promising direction for 
further experimentations (see Box et al. (1978)). The main object of the designs 
is to estimate certain factorial effects of interest, assuming that the remaining 
effects are negligible. For example, a design of resolution V gives the estimation 
of the general mean, the main effects and the two-factor interactions, under the 
assumpt ion  t ha t  the  three- fac tor  and  higher order  interact ions are zero. 

Empirical ly,  it has been  justified t ha t  in mos t  exper iments  the  effects tha t  are 
assumed negligible, are ac tua l ly  negligible. However  it m a y  also be t rue  t ha t  in 
some exper iments  there  do occur  effects which are assumed negligible in advance,  
but  which are not  ac tual ly  negligible. Of  course, the  number  of such effects is very 
small.  In view of the  above,  we need a search design such tha t  the  nonnegligible 
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effects occurred in the experiments can be searched, and the inference about them 
can be given along with the effects of interest. 

The concept of search designs was introduced by Srivastava (1975). Research 
on the constructions of search designs has been done by various authors. In par- 
ticular, Srivastava and Gupta (1979), Ghosh (1980, 1981), Gupta and Carvajal 
(1984), Ohnishi and Shirakura (1985) and Gupta (1988) treated the problem of 
finding search designs for 2 m factorials which allow the search of at most one non- 
negligible interaction, and the estimation of it along with the general mean and 
main effects. Srivastava and Ghosh (1976, 1977) also presented search designs for 
2 m factorials such that at most one nonnegligible effect can be searched among 
the three-factor and higher order interactions, and it can be estimated along with 
the general mean, main effects and two-factor interactions. We are now interested 
in the construction of search designs which make it possible to search at most 
two nonnegligible effects. Very little work on such designs has been done so far 
because of combinatorial difficulties which the designs possess. In the absence of 
the three-factor and higher order interactions, Shirakura (1991), and Shirakura 
and Tazawa (1991) obtained search designs for 2 m factorials yielding the search of 
at most two nonnegligible two-factor interactions. 

In this paper, we assume that  the four-factor and higher order interactions are 
negligible. Then we present a series of search designs for 2 "~ factorials (m _> 6) 
which allow the search of at most k (= 1, 2) nonnegligible three-factor interactions, 
and the estimation of them along with the general mean, main effects and two- 
factor interactions. That is, in setting of a design of resolution V, we here consider 
the situation where the effects to be searched may lie in lower order (three-factor) 
interactions. Resolution V designs for which the two-factor interactions are in- 
cluded in the effects of interest, have been widely used in various experimentations. 
Our search designs are derived from balanced arrays of strength 6. In particular, 
the consideration of the nonisomorphic weighted graphs with 4 vertices in which 
two distinct vertices are assigned with integer weight w (1 < w < 3), is useful in 
obtaining search designs for k = 2. Furthermore, it is shown that the search de- 
sign obtained here for each m _> 6 is of the minimum number of treatments among 
all search designs derived from balanced arrays of strength 6. By modifying the 
results for m _> 6, we also present a search design for m -- 5 and k -- 2. 

2. Search designs 

For 2 rn factorial experiments, let #, Fi, F~li 2 , and Fili2~3 be the general mean, 
the main effect of i-th factor, the two-factor interaction of i l - th and i2-th fac- 
tors, and the three-factor interaction of il-th, i2-th and i3-th factors, respectively. 
Consider the vectors ~j(vj x 1), j = 1,2, of effects: 

~1 = (#; F1, F 2 , .  . . , Fro; F12, F 1 3 , . . . ,  F , ~ - t , m ) ' ,  

~2 = (F123, F124," • " , Fm-2,m-l,m) t' 

where Vl = (m 2 + m + 2)/2 and v2 = m ( m  - 1)(m - 2)/6. Throughout this 
paper, note that the four-factor and higher order interactions are assumed to be 
negligible. 
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Let T be a design of n t rea tments  ( t reatment  combinations or assemblies). 
For an observation vector y (n  × 1) of T, the following linear model can then be 
considered: 

(2.1) E(y) --  A1~1 4- A2~2 a n d  V(y) = a2In, 

where Ay(n × vj) are the design matrices for ~3 (J = 1, 2), a2 is a variance of the 
observations, and In is the identi ty matr ix  of order n. We assume tha t  at  most 
k (=  1, 2), the effects of ~2 are nonzero, but  it is not known which effects these 
are. We want to find a search design T for each case of k -- 1, 2 such tha t  the 
nonzero effects of ~2 can be searched and they  can be est imated along with ~z. 
The following theorem has been established by Srivastava and Ghosh (1977): 

THEOREM 2.1. Let T be a design of resolution V (simply, design(V)). In 
Model (2.1), a necessary condition for T to be a search design is that for every 
n × 2k submatrix A20 of A2, 

(2.2) rank(W) = 2k 

holds, where 

(2.3) W A~oA20 ' --1 ! = -- A2oAIM AIA2o. 

Here M(tJ  1 × //1) ----- A~A1 is said to be the information matr ix  for ~1 of T. 
It is noted tha t  T is a design(V) if and only if M is nonsingular. In the case of 
a = 0 (called a noiseless case), the above condition is also sufficient. The procedure 
for searching and est imating the extra nonnegligible effects has been discussed in 
Srivastava (1975). 

DEFINITION 1. A design T is said to be a search design of resolution V.k 
(simply, search design(V.k)) if (2.2) holds for every submatr ix  A2o. 

3. Balanced array and W matrix 

Let T be a balanced array of s trength 6, size n and m (> 6) constraints with 
index set A4 = {#0 ,#1 , . - . , #6}  (briefly, BA(n ,m;A4) ) .  For the definition of a 
balanced array, e.g., see Srivastava (1972) and Yamamoto et al. (1975). Denote 

3'o = #6 + #0 + 6(#5 + ~1)  + 

7 Z = # 6 - - # 0 + 4 ( # 5 - - # 1 ) +  

72 = #6 + /~0 + 2(tt5 + #1) -- 

73 = #6 - #0 - 3(#4 - #2), 

74 = ~6 + ~0 -- 2(#5 + ~1) - 

~'~ = # 6  - # o  - 4 ( ~  - ~ 1 )  + 

76 = #6 + #0 - 6(#5 + #1) + 

15(#4 -4- #2) + 20#3, 

5 ( ~ 4  - ~ 2 ) ,  

(~a + ~2) - 4t~a, 

(#4 +/~2) + 4tLa, 

5 ( ~ 4  - ~ 2 ) ,  

15(#4 + #2) - 20~t3 
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/£,001 = ml/2'71, /~002: {m(m-- 1)/2}1/7"/2 , 

~003 = {m(m-- 1) (m- -  3)/6}1/Z73 , 

,41 = % + ( m -  1)'72, ,%'~ = { ( m -  1)/2}~/~{2"y~ + ( m -  2)'y3}, 

~ = { ( m -  1 ) ( m -  2 ) / 6 } z / 2 { 3 7 2  + ( m -  3)74} ,  

,~2 = % + 2(m - 2)'7~ + { ( ,~  - 2 ) ( m -  3)/2}'74, 

t~  3 = { ( m  - 2 ) /3 } ' / 21371  + 3 ( m  - 3)73 + { ( m  - 3 ) ( m  - 4 ) / 2 }75 ] ,  

t~33 = '70 + 3 ( m  - 3)'77 + { 3 ( m  - 3 ) ( m  - 4)/2}'74 

+ {(m - 3 ) ( m  - 4)(m - 5)/6}'76; 

m oo = '7o - '72,  . O l  = ( m  - 2 ) 1 / 2 ( ~  - %), 

,~o2 : { ( . ~  _ 2 ) ( ~  - 3 ) / 2 } ~ / 2 ( ' 7 ~  - 0 '~ ) ,  

~ 1  ---- '70 + (m -- 4)'75 -- (m -- 3)'74, 

~ 2  : {(m -- 3)/2}1/2{2'71 + (m -- 6)'73 - (m -- 4)'75}, 

t~22 : '70 + (2m - 9)'72 + {(m -- 4 ) (m - 9)/2}'74 - {(m - 4) (m - 5)/2}'76; 

,~oo : '70 - 2.~2 + ' 7 4 ,  ,~o1 : ( . . ,  _ 4 ) v 2 ( ' 7 ~  _ 2 %  + %), 

a~l = '70 + (m - 7)72 - (2m - 11)'74 + (m - 5)76. 

Fur ther  define 

 oOl .o2] [moo 
70 /%11 t~12 = 

Ko = , K1 ; 
(3×3) (Sym,) ~ 2  (2x2) [/~01 ~}1J 

t 03 13 23~t 
~o = ~o ,no ,no ~, ~, = (~o2,~),; ~ = 2%~. 

(3xl) (2xl) 

Now we denote  the element of W in (2.3) corresponding to three-factor  in- 
teract ions F~1~1~1 and F~2~2~ by 1 1 1 2 2 2 e(tlt2t3 : t l t2t3).  The  following lemma can be 1 2 3  1 2 3  

obtained from Theorem 2.1 of Shirakura and Ohnishi (1985) for g = 2: 

LEMMA 3.1. Let T be a BA(n,  m; A4) such that Ko and K1 are nonsingular, 
and m oo is not  zero. Then the element of W ,  1 1 1 2 2 2 e( t l t2t  3 : t l t2t3) depends only on 
thecardinality°fsetl{t~,ta2,t~}O{t21,t2t21L2, 3,J. Tha t i s ,  f o r a  ~-~ 3 __ I{t l , t2 ,  t3 } 1  1 1 0  
{t21,t22, t~}[, the element can be given by 7ra (c~ = 0 , 1 , 2 , 3 ) s u c h  that 
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(3.1) 

6 6 

7to = m ( m  - 1)(m - 2) a° + m ( m  - 2) al  

3(m - 3) m - 5 
+ ( m  1)(m 2) a 2 + -  - -  - -  m - ~ a 3 ,  

6 2(2m - 9) 
7rl = m ( m  - -  1)(m - 2) aO + m ( m  - 2)(m - 3) al 

m - 7  m - 5  
+ ( m -  1 ) ( m -  2) a2 - ( m -  2 ) ( m -  3) a3' 

6 2(m - 9) 
zr2 = m ( m  - 1)(m - 2) a° + m ( m  - 2)(m - 3) al  

2(2m - 11) 2(m - 5) 
- (m - 1)(m - 2)(m - 4) a2 + (m - 2)(m - 3)(m - 4) a3' 

6 18 
1r3 = m ( m  - 1)(m - 2 )  a °  - m ( m  - 2)(m - 3 )  a l  

18  6 

+ ( m -  1 ) ( m -  2 ) ( m -  4) a2 - ( m -  2 ) ( m -  3 ) ( m -  4) a3, 

where 

(3.2) 
ao : ~033 -- ~ ) K o  1~0, 

= _ 
a l  =/~122 - t C I K l l / ~ l ,  

a3 = /~3- 

It is noted tha t  the array of Lemma 3.1 yields a balanced design(V) (see 
Yamamoto  et al. (1975)). 

4. C o n s t r u c t i o n  o f  s e a r c h  d e s i g n s ( V . 1 )  

From Theorem 2.1 and Lemma 3.1, we establish the  following theorem (see 
Shirakura and Ohnishi (1985)): 

THEOREM 4.1. The array of  L e m m a  3.1 is a search design (V.1) i] and only 

i f  lr~l ~ [lrol hold for  ~ = 1,2,3. 

Using this theorem, we obtain a search design(V.1) for m > 6. In what  follows, 
suppose ~ ( m ,  s) is the set of all distinct t rea tments  in which the number  of l-levels 
is exactly s (0 < s < m). 

THEOREM 4.2. The designs 

(A1) T --- ~(6, 0) U 12(6, 3) U D(6, 5) U (6, 6), m ---- 6, 

(A2) T = ~2(6, 1) U ~(6,  4) U D(6, 5) U (6, 6), m = 6, 

(A3) T = ~(6, 0) U ~(6, 1) U ~(6, 4) U (6, 5), m = 6 

and 
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(B)  T = D ( m ,  1) (J f } (m,  m - 2) U D ( m ,  m - 1), m _> 7 

are search designs(V.1) with n = 28 and n = re(m+3)~2 treatments, respectively. 

PROOF. First consider the design of (B). It is clear tha t  T is a BA(n, m; ~ t  -- 
{#0 = m - 6, #1 = 1, P2 = 0, ]~3 "= 0 , / / 4  ----- 1, #5 = m - 5, #6 = (m - 5)(m - 6)}). 
In view of the previous section, we obtain det(Ko) = 16m(m - 2)2(m - 3) 2 > 0, 
det(K1) = 64(m 2 - 5 m + 8 )  > 0 and a~0 = 16. We further get al  = 3 2 ( m -  
2 ) ( m -  3 ) / (m  2 - 5 m  + 8) and a0 = a2 = a3 = 0 in (3.2). It follows from (3.1) tha t  
~r0 ¢ r t ,  ro  ~ =t=r2 and ~r0 ¢ -~3  hold for m _> 7. Next consider the designs of 
(A1, A2, A3). Similarly, the design of (A1) gives ao > 0, a3 > 0, a t  = a2 = 0, and 
the designs of (A2, A3) give ao > 0, a l  > 0, a2 = aa -- 0. These yield t~01 ¢ Ir~l, 
a -- 1, 2, 3. The proof follows from Theorem 4.1. 

From Shirakura and Ohnishi (1985), it may be remarked tha t  the design of 
(A1) and the designs of (B) for m = 7, 8 are optimal search designs with respect 
to a certain criterion due to Srivastava (1977). Also, the design T = ~(m,  1) U 
12(m, m - 2) LJ ~ (m,  m - 1) U ~ (m,  m) is a search design of Srivastava and Ghosh 
(1976) which permits the search of at  most one nonnegligible effect among three- 
factor and higher order interactions. 

5. Representat ion of  W mat r i x  for k : 2 

We are interested in constructing a search design(V.2). From Lemma 3.1, the 
4 x 4 matr ix  W of (2.3) for four distinct three-factor interactions F~1+1~1, F~2~2~2 

I ' 2 " 3  ~1 " 2 " 3  ' 
Ft3,3÷3 and F÷4~4+4 c a n  be given in terms of ira's as follows: 

1~2~3 - I ~ 2 ~ 3  

7[" 0 7~¢:X 12 

71" 0 
(5 .1)  w : 

(Sym.) 

~['ot 13 ~ro~14 

71"~23 71"~2 4 

71" 0 7raz 4 

7to 

where (~ij = 3 -1{ t~ , t~ , t~ }N {~ , ~ , ~}  I, 1 <__ i < j < 4. However, for every m _> 6, 
it may  be impossible to check the nonsingularities of W in (5.1) for all possible 
sets of four distinct effects in ~2- 

Let ~ t  be the class for all the 3-subsets of {1, 2 , . . . ,  m}. Then it follows tha t  
the determinant  of W of (5.1) is dependent on U1, U2, U3, U4 E ~ t  only through 
the cardinalities of Ui NUj, 1 _< i < j < m, i.e., there exists a function ~o for which 

de t (W) -- ~(a12, a13, a la ,  a23, a24, O~34), 

where a i j  = 3 - I Ui N Uj[. In what  follows, we consider ~ as a function over 
,4 -- {w -- (0312,0313, 0314,0323, 0324,0334) 103ij -- 1, 2, 3; 1 < i < j < m}. Note tha t  
for w E .4, the ( i , j ) - th  elements of W are ~r0 or r ~ j  according as i = j or not, 
where 03ij = OJji. 

Let @; be the symmetric  group of degree 4 on {1,2,3,4}.  For r E ql and 
03 : ( 0312 ,0313 , . ' - ,  0334) E .4 ,  suppose 

0Jr = ( 0 3 r ( 1 2 ) , 0 3 r ( 1 3 ) , ' ' ' , 0 3 r ( 3 4 ) ) ,  



SEARCH DESIGNS FOR 2 m DESIGNS OF RESOLUTION V 191 

where wr(ij) : wr(i)~(j). Then it is easy to see that the function ~0 has the property 

( 5 . 2 )  = 

for all w E `4 and ~- E 6 .  Since w ~ E .4, we can also introduce an equivalence 
relation as follows: Two elements w and & in A are equivalent, w ~ & ( m o d e )  if 
there exists a permutation T E ~ satisfying & ---- w ~. This means that the set .4 is 
partitioned by equivalence classes, i.e., 

(5.3) A = A1 u A2 u . . .  u AR, 

where Wl, oJ2 E .A[u if and only if wl ,~ w2 (mod ~ ) ,  and A~ NAv = 0 (u ~ v). 
These A~ are so-called the orbits of .4. 

Clearly, for any wl and w2 in `4~, ~(wl) -- ~(w2) holds. In obtaining a search 
design(V.2), therefore, we may calculate the matrix W and check its nonsingularity 
only for a representative 4-plet (U1, U2, U3, U4) of ~ t  such that wij = 3 - IUi M Uj[ 
for a representative w in each orbit of .4. 

Consider a weighted graph with the vertex-set V -- {1, 2, 3, 4} in which two 
distinct vertices are adjacent with weight w, where w --- 1, 2,3. Between the 
elements w = (w12, w13,. . . ,  w34) E .4 and the weighted graphs, there exists a one- 
to-one correspondence such that two vertices i and j are adjacent with weight 
wij (i ~ j ) .  On the other hand, two weighted graphs are said to be isomorphic if 
there exists a one-to-one correspondence between their vertex-sets which preserves 
weights assigned to the pairs of vertices. It is observed that two elements of .4 
belong to distinct orbits if and only if the corresponding two weighted graphs are 
nonisomorphic. As a result, the number of R in (5.3) is equal to that of noniso- 
morphic weighted graphs with vertex-set V. Moreover, each of the nonisomorphic 
graphs corresponds to a representative of some orbit of A. From Shirakura and 
Tazawa (1986), it is known that R -- 66. In fact, the 66 nonisomorphic graphs 
have been listed in Table 2 of their paper. In their paper, note that the weights 
assigned are equal to 0, 1 and 2. For a representative w E .4~, however, there 
does not always exist a representative 4-plet (U1, U2, U3, Ua) of ~ .  The following 
theorem can easily be established: 

THEOREM 5.1. For an element w = (W12,W13,Cd14,W23,W24,W34) E , ,4 ,  a nec- 
essary and sufficient condition for the existence of a 4-plet (U1, U2, U3, U4) E ~3t 
satisfying IUi n Uj] = 3 -  wij (1 < i < j < 4) is that the following conditions hold: 

(i) For any integers i, j ,  t (1 < i < j < / < 4), there exist integers rijt 
satisfying 

rij t  ~_ max{0, 3 - wij - wit, 3 - wij - wit, 3 - wit - wit} ,  

rijt  ~_ min(3 - wij, 3 - wit, 3 - wit, m - wij - wit - wit}, 

(ii) for  the above integers rizt, there exists an integer r satisfying 

r _ > m a x / 0 ,  bij ( l < i < j _ < 4 ) ,  

r123q-r124q-r13a+r234q- ) - : _ . Z w i j - m - 6 } ,  
l(_i<~j~_4 

r < min{r123, r124, r13a, r234, c/ (1 < i < 4)), 



192 TERUHIRO SHIRAKURA AND SHINSEI TAZAWA 

Table 1. 

NO. •12 w13 ~g14 ~23 u124 u/34 U2 U3 U4 m* 

1 1 1 1 1 1 1 124 134 234 4 

2 1 1 1 1 1 2 124 234 125 5 

3 1 1 1 1 2 2 124 134 135 5 

4 1 1 2 2 1 1 124 135 145 5 

5 1 1 1 2 2 2 124 134 236 6 

6 1 1 2 1 2 2 124 125 345 5 

7 1 1 2 2 1 2 124 135 245 5 

8 1 1 2 1 3 3 124 125 367 7 

9 1 1 3 1 2 2 124 125 456 6 

10 1 1 2 2 1 3 124 235 146 6 

11 1 1 3 1 3 3 124 234 567 7 

12 1 1 2 2 2 2 124 235 256 6 

13 1 2 2 2 2 1 124 256 156 6 

14 1 1 3 2 2 2 124 135 456 6 

15 1 1 2 2 3 2 124 236 357 7 

16 1 2 2 3 2 1 124 356 156 6 

17 1 2 2 3 3 1 124 367 357 7 

18 1 1 3 2 2 3 124 135 467 7 

19 1 2 3 3 2 1 124 356 456 6 

20 1 1 3 2 3 3 124 135 678 8 

21 1 3 3 2 3 1 124 456 567 7 

22 1 3 3 3 3 1 124 567 568 8 

23 1 2 2 2 2 2 124 345 156 6 

24 1 3 2 2 2 2 124 456 167 7 

25 1 2 2 2 2 3 124 345 167 7 

26 1 3 2 3 2 2 124 567 345 7 

27 1 3 3 2 2 2 124 456 478 8 

28 1 2 3 2 2 3 124 156 478 8 

29 1 2 3 3 2 2 124 356 457 7 

30 1 2 3 2 3 3 124 348 567 8 

31 1 3 2 3 3 2 124 567 358 8 

32 1 3 2 2 3 3 124 456 378 8 

33 1 2 3 3 3 3 124 356 789 9 

34 1 3 3 3 3 2 124 567 589 9 

35 1 3 3 3 3 3 124 567 89,10 10 

36 2 2 2 2 2 2 145 246 356 6 

37 2 2 2 2 2 3 145 246 357 7 

38 2 2 2 2 3 3 145 246 378 8 

39 2 2 3 3 2 2 145 267 468 8 

40 2 2 2 3 3 3 145 267 389 9 

41 2 2 3 2 3 3 145 246 789 9 

42 2 2 3 3 2 3 145 267 489 9 

43 2 2 3 3 3 3 145 267 89,10 10 

44 2 3 3 3 3 2 145 678 69,10 10 

45 2 3 3 3 3 3 145 678 9,10,11 11 

46 3 3 3 3 3 3 456 789 10,11,12 12 
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where  bij = ri jp + ri jq  -b o)ij -- 3 f o r  { p , q }  = {1 ,2 ,3 ,4} \{ i , j}  and  ci ---- ri j , j2 + 

rijxj3 d- rij2ja ~- Wij l  J[- Off'j2 ~- O')~j3 --  6 f o r  {jl,  j2, ja} = {1, 2, 3, 4, }\{i} (here r i j t  --  

r i o  = r j i t  . . . . .  rg j i ) .  

Using Theorem 5.1, we can obtain representative 4-plets ([/1, [/2, U3, U4) E m 
for representatives of w. Without  loss of generality, U1 : { 1, 2, 3} may be assumed. 
Table 1 gives the sets U2, [/3 and [/4 of m for w. The values of m* in this table 
denote the smallest values of m for which ([/1, U~, U3, Ua) exist for w. In Table 2, 
we present the number of representative 4-plets for each m > 6. 

Table 2. 

6 7 8 9 10 11 12 _< m 
16 27 36 41 44 45 46 

6. Construction of search designs(V.2) 

From Section 5, all possible matrices of W in (2.3) may be reduced to the 
matrices for w in Table 1. Denote the matrices of W according to Nos. i in Table 
1 by Wi (i = 1, 2 , . . . ,  46). For example, W4 and W19 become 

W4 
(rn~6) 

7o 

(Sym.) 

71 71 72]  

70 72 71 W19 
70 71 ' (m~6) 

70 

71" 0 

(Sym.) 

71 72 73 1 
70 73 72 

70 71 
70 

The determinants of these matrices are given by 

(6.1) det(W4)=(70 -72)2(70 +271 +72)(70 -271+72) ,  
det(W19) = (70 +71+72+73)(70 +71 --72 --73) 

"(70 --71 - -72 --73)(70 --71 --72--73). 

THEOREM 6.1. The  designs  

and  

(A1) T = f~(6, 1) U f~(6, 2) U D(6, 4), m --- 6, 

(A2) T = fl(6, 0) U 12(6, 3) U ~(6, 4), m = 6, 

(B) T = fl(7, 1) U fl(7, 4) U f~(7, 7), m = 7 

(c) T -- ~ (m,  2) U 12(m, m - 2) U 12(m, m), m > 7 

are search designs(V.2) with  n = 36, n = 43 and n = m ( m  - 1) + 1 t rea tments ,  
respectively.  



194 TERUHIRO SHIRAKURA AND SHINSEI TAZAWA 

PROOF. Consider the design of (A1). This  design is a BA(6, n; A4 = {it0 -- 
0,#1 = 1,#2 = 1 , / z 3  - -  0 , / z 4  --- 1,#5 = 0,#6 = 0}). By Section 4, this leads to a l  = 
192/13, a2 = 64 and a0 = a3 = 0. We thus have ~r0 = 2112/65, ~rl = - 1 2 8 / 6 5 ,  
7r2 = - 2 8 8 / 6 5  and 7r3 = 4896/65, for which the determinants  of the matrices 
W1 ,,~ WT, Wo, Wlo, W12 ~ W14, WI~, W19 and W23 are nonzero. For the design 
of (A2), similarly, we observe tha t  the above matr ices are also nonsingular. Next 
consider the design of (B). This  gives as = 64, a0 = al  = a2 = 0, and hence, 
~r0 = 128/5, ~rl = Ir3 = - 3 2 / 5 ,  Ir2 = 64/15. It  can be shown tha t  the 27 matr ices 
W~ defined for m = 7 are nonsingular.  

Consider the design of (C). This  design is a S A (m ,  n; A4 = {it0 = ( m -  6 ) ( m -  
= m -  6, 2 = 1, 3 = 0, 4 = 1, 5 = = ( m -  6 ) ( m -  7 ) / 2 +  1}), 

which leads to al  = 32(m - 4) and a0 = a2 = a3 = 0. Therefore,  by (3.1) we get 
~ro = 96(m-  3) (m-4)  / { ( m - 1 ) ( m -  2) }, ~1 = 32(m-4) ( rn -  7)/ { ( m - 1 ) ( m -  2) }, 
7r2 = - 6 4 ( 2 m  - l l ) / { ( m  - 1)(m - 2)} and 7r3 = 576 /{ (m - 1)(m - 2)}. Now the 
determinants  of W1 ,-~ W46 can be calculated and it can be shown tha t  each 
determinant  of Wi is positive for all values of m defined for Wi. For example, 

22°(m - 6)[(m - 5)(m - 6 ) { l l ( m  - 7) + 59} + 88(m - 5) + 24] 
det(W10) = (m - 1)(m - 4) 4 

> 0, m _> 7, 

det(W22) = 226(m - 7){(m - 5)(m - 6) + 3m - 5} 
(m - 1)(m - 4) 2 

> 0 ,  m>_8 .  

(It may  be remarked tha t  the  calculation of the  determinants  of matrices dependent  
on m was carried out  using the computer  soft "REDUCE" . )  This  completes the 
proof. 

7. Minimum treatments for search designs 

If  there exists a search design with n '  t rea tments ,  then  for any n (> n ') ,  we 
obta in  a search design with n t rea tments  by adding any ( n - n ' )  t rea tments  to it. 
Therefore,  we are interested in search designs of smaller values of t rea tments .  In 
view of Section 3, define the following matrices: 

K~ = ~033 , K 1 = 
(4X4) /~) (3X3) 

• [ K2 --" : i :  /~11J , K~ ~/~3. 
(2×2) (1×1) 

Then  it is known from Yamamoto  et hi. (1976) tha t  for a BA(n,  m; A4), the rank 
of the information ma t r ix  M is wri t ten  by 

(7.1) r ank(M)  = Po + (m - 1)pl + {m(m - 3)/2}p2 + {m(m - 1)(m - 5)/6}p3, 

where p~ = rank(K~) , /~  = 0, 1, 2, 3. The  following lemma can easily be shown: 
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LEMMA 7.1. Consider the array of Lemma 3.1. Then 3 - / 3  <_ p~ <_ 4 - / 3  
hold fo r /3  = 0, 1, 2, 3. Moreover, for each/3 = 0, 1, 2, 3, p~ = 3 - / 3  if and only if 
a3 = 0 in (3.2). 

Let Bkm be the collection of all possible BA(n, m; A/I) which yield search de- 
signs(V.k). 

THEOREM 7.1. For each m >_ 6, the search designs(V.2) of Theorem 6.1 are 
of the minimum value of n treatments in 13 2 .  

PROOF. Assume there exists a search design(V.2) in 13 2 with n < 35 for 
m = 6  a n d n  <_ m ( m - 1 )  for m___ 7. First  consider the case of m_> 7. Since 
rank(M)  < n, Lemma 7.1 and (7.1) imply 

0 < (P0 - 3) + (rn - 1)(pl - 2) + { m ( m  - 3)/2}(p2 - 1) 

+ {rn(m - 1)(m - 5)/6}p3 

<_ m ( m  - 3)/2 - 1. 

Since m ( m  - 1)(m - 5)/6 > m ( m  - 3)/2 - 1 for m > 7, we have p2 = 1 and P3 = 0. 
Again from Lemma 7.1, a2 = a3 = 0, and from (3.1), lr0 + 7r2 = 2¢rl must  hold. 
This leads to det(W4) = 0 in (6.1), a contradiction. Next consider the case of 
m = 6. Similarly, 

0 _< (Po - 3) + 5(p l  - 2) + 9(p2 - 1) + 5p3 _< 13. 

Suppose p2 = i and hence a2 = 0. Then  (3.1) gives ~ o - ~ r l  -Tr2+Tr3 = 0, imp l y i ng  
det(W19) = 0 in (6.2). Therefore a2 ~ 0 (i.e., P2 = 2) must hold. Hence, we get 
Pl = 2 and P3 = 0, i.e., a l  = a3 ---- 0, which leads to 7r0 = 7r3. This contradicts 
Theorem 4.1. The proof is now completed. 

By arguments  similar to the above, we eatablish 

THEOREM 7.2. For each m > 6, the search designs(V.1) of Theorem 4.2 are 
of the minimum value of n treatments in Blm . 

8. Search design(V.2) for m = 5 

Consider a balanced array of s t rength 5 and m = 5 constraints as a design 
T. Then the results discussed in Section 3 can easily be modified to the case of 
m = 5. As a result, the matr ix  W may be expressed by 7r0, ~rl and Ir2 in (3.1), 
where a0, a l  and a2 depend on the indices of a balanced array of s t rength 5. A 
search design(V.2) is derivable by checking the nonsingularities of the matrices 
W1 ~ Wa, W6 and W7 in Table 1. The proof for the minimum treatments  of a 
search design may  be given in the same way as in Section 7. 

THEOREM 8.1. The design 

T = ~(5,  0) U ~t(5, 2) U Ft(5.3) U gt(5, 5) 



196 TERUHIRO SHIRAKURA AND SHINSEI TAZAWA 

is a search des ign(V.2)  with n = 22 treatments. This design is of the m in imum 

treatments among all possible search des igns(V.2)  derived from balanced arrays of  

strength 5 and 5 constraints. 
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