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Abstract .  In many situations two populations are compared on the basis of 
subsets of the available data. If this is done using the same fraction of "best" 
records, then the expectations of the arithmetic means of these fractions are 
strictly ordered in magnitude by the ordering of the sample sizes. The results 
are illustrated with the speciM cases of the uniform and negative exponential 
distributions, for which further inequalities are derived. 
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1. Introduction 

In many situations when populations are compared, this is achieved on the 
basis of subsets of the available data. Thus in animal breeding studies, one common 
procedure for evaluating the genetic value of sires, is to compared known fractions 
of the total progeny records reported, from sub-samples comprising just the best 
progeny records (Scheaffer et al. (1970)). Other investigations, for example the 
UGC evaluation of research performance in British universities, have attempted 
to compare populations on the basis of a constant number of "best" records from 
each population. If these "best" records are compared using some simple index, 
for example their arithmetic mean or median, then clearly a bias exists in favour of 
the population providing the largest sample (see Gillet (1989)). However, it is not 
obvious that a bias in favour of the largest sample, persists when the sub-sample 
of best records is a constant fraction of the full sample. 

Burrows (1972, 1975) considered the standardized expectation of the selection 
differential, k(a). This is the expectation of the arithmetic mean of the fraction c~ 
of the "best" records. This expectation was evaluated numerically for the normal 
and exponential cases and an algebraic formula was given in the uniform case. Nu- 
inerical results had been given earlier by Becker (1968) using the results of Harter 
(1961). Burrows (1975) noted that k(~) increases as the sample size increases for 
the normal case, though this was based only on numerical evidence. Nagaraja 
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(1981, 1982, 1984) has produced some finite sample as well as asymptotic results 
for the selection differential. 

The main purpose of this note is to establish a conjecture, due to Gillett, that 
k(a) increases as the sample size increases, irrespective of the underlying (assumed 
common) distribution of the sampled populations. 

2. Notation and main results 

To establish our main result we use the following lemma. 

LEMMA 2.1. For real numbers xl ,  x2 , . . . ,  xn, necessary and su~cient  condi- 
tions for ~-~.inl aixi >_ 0 to hold for all nondecreasing sequences of real numbers 
a l ,  a 2 ,  • • • ,  a n ,  are 

(2.1) x i ~ 0  ( r = l , 2 , . . . , n - - 1 )  and x i = O .  
i----1 i : l  

PROOF. 
mula 

Sufficiency follows immediately from Abel's partial summation for- 

n n - - 1  r n 

i = 1  - -  i = 1  / i = 1  

Necessity for n 0 follows if we select ai i or ai • • ~-~i=lXi . . . .  1(i  = 1,2, . ,n)  
r and of ~ i=1  xi _< 0 (r = 1 , 2 ~ . . . , n -  1) if we select ai = - 1  (i -- 1 , 2 , . . . , r )  with 

ai = 0 (i = r + 1, . . .  ,n). Further, if {ai} is a strictly increasing sequence, then 
the strict inequality ~-~i~1 aixi > 0 holds, provided at least one of the inequalities 
of (2.1) is strict. [] 

The above lemma is contained as a particular case of inequalities due to 
Popoviciu (see Mitrinovid (1970), p. 38) and Minkowski (Beckenbach and 
Bellman (1961), p. 119). 

Let #i,n denote the expected value of the i-th order statistic from a sample 
size of n independent and identically distributed observations. Let Sk,~ and Ak, n 
denote respectively the sum and the arithmetic mean of the expected values of the 
k smallest order statistics from this sample. 

Expect in the degenerate case, when the sampled population consists of a 
single point, the inequalities obtained are strict. In the subsequent discussions we 
assume, without further comment, that the population is non-degenerate. 

THEOREM 2.1. I lk1,  k2, nl ,  n2 are integers satisfying nl > n2 and k l / n l  <_ 
k2/n2 < 1, then Akl,nl < Ak2,n2. 

PROOF. Note, if kl _< k2 (and nl > n2) then ki ln1 < k2/n2, and the theorem 
follows immediately from the simple inequalities Ak,n+l < Ak,n < Ak+l,n. Hence, 
we only need consider the case kl > k2. 
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For an arbi t rary  distr ibution (see for example David (1981)), the expecta- 
tions of order statistics for samples of size of n and n + 1 satisfy the recurrence 
relationship 

(2.2) #i,n = {(n - i + 1)#i,n+l + i~i+l,n+l}/(n -]- 1). 

Summing (2.2) over i = 1 to k gives 

(2.3) Sk,~ : {riSk,n+1 + k#k+l,n+a}/(n + 1). 

Repea ted  application of (2.3) yields 

r 

#k+l ,nTj  
- n~sk'~+~ + k n E  ( n + j ) ( n + j  - 1) (2.4) Sk,.  n + r  ' j= l  

Hence 

(2.5) def . 
i = Ak,n -- Ak+t,n+r 

(nt - kr) 

r 

#k+l,n+j  
+ n E  ( n + j ) ( n + j - 1 )  

j = l  

t 

1 E #kWj,nTr. 
(k -~- t) j= l  

To establish the theorem we employ the following identity of Sillitto (1964). 

(2.6) 
( n + r )  ~ C + j - 1 ) ( n + r - i - j )  

r Pi,n : . #i+j,n+r. 
j=o 3 r - j 

Using (2.6) with (2.5) provides an expression for A in terms of the expectat ions 
of order statistics from samples of common size (n + r). Thus, 

r t (nt-  kr) 1 E'k+J,-+r, 
(2.7) A = k ( ~  ~)(--k~ t) Sk'n+r ~- j=IE Wj#k+j 'n+r (k "~ t) j = l  

where 

r - j + l  

(2.8) E 
i=I 

k (n+r)  ( ; : 1 )  ( n + i -  \ k - 1 2 ) / ( ~ + r - + j -  

If  kl, k2, hi ,  n2 satisfy the conditions of Theorem 2.1 with kl > k2, then there 
are positive integers n, k, r and t such that  n2 = n, k2 = k, nl  -- n + r, kl = k + t 

x"~k+r and satisfying nt - kr <_ 0, t < r. Thus from (2.7) A has the form ~--,j=l Xj#j,n+ r 
where {pj,n+r; 1 <_ j <_ k+r} i n" " k+r s a increasing sequence and ~-~j=l xj -- 0. It follows 

• i from Lemma 2.1, tha t  Theorem 2.1 is established If ~-'~-j--1Xj ~ 0 for 1 < i < k+r.  
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For 1 < i < k, these inequalities are a trivial consequence of nt - kr  < 0, while 
those for k + t < i < k + r, follow immediately from ~--]~+~ xj  = 0 and wj > 0. The 

1 remaining inequalities are established if we can show that ~-~j=l(Wj- / ( k + t ) )  < O, 
which follows using (2.8), since with i* = r - j - i + 1 we have 

Wj - -  
" -'( )(" " 

- 1  k -  k k + j  

n-k+r-j  
_ . .  (.; )( , .  k ( n + r )  E j - 1  n + r - j  1 

- 1 k - i  k k  + j 
i* =0 

n 1 

k ( n + r )  - k + t "  
[] 

If A'k, n denotes the arithmetic mean of the expectation of the k largest order 
statistics, then by changing the sign of each observation and applying Theorem 
2.1, we obtain immediately the following corollary. 

COROLLARY 2.1. I f  kl ,  k2, n l ,  n2 are integers satisfying nl > n2 and 
k l / n l  ~_ k2/n2 < 1, then n~l.n 1 ~ A*k,2,n2. 

The basic recurrence relationship (2.2) is valid for any moment of the order 
statistics (if they exist), and holds also for their distribution flmctions. Further, 
the assumption of independent random variables may be relaxed to exchangeability 
(see David (1981), p. 104). Thus the theorem also established formal inequalities 
for these quantities. 

COROLLARY 2.2. I f  a, b and n are integers, such that 0 < a < b, then Aan,b n 
is a decreasing funct ion of n and A*n,b, ~ is an increasing funct ion of n. 

3. Special cases 

We investigate the implications of the theorem for two particular distributions 
for which tractable results are available; the uniform and negative exponential 
distributions. We demonstrate that  for these distributions A*an,bn, in addition to 
being bounded above by A:n+a,bn+b, is bounded below by A*n+a+l,bn+b. The 
corresponding inequality is established for Aan,bn. Thus for such samples, the 
direction of bias is reversed by the inclusion of a single observation in the larger 
sample. We present these results in the following theorem. 

THEOREM 3.1. I f  a, b and n are integers such that 0 < a < b, then for  the 
uniform and negative exponential distributions we have 

(3.1) 
(3.2) 

Aan+a,bn+b ~ Aan,bn ~ Aan+a+l,bn+b, 

A*an+a,bn+ b > Aan,bn > A*an+a+l,bn+b. 
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PROOF. The first inequality in each of (3.1) and (3.2) is of course a special 
case of Corollary 2.1. 

(i) Uniform distribution. If the sample consists of observations of a random 
variable X having a uniform distribution on [0, 1], then #i,n = i / ( n  + 1) and 
Aan,bn = ( a n +  1 ) / (2bn+2) .  In this case (3.1) and (3.2) are easily verified directly. 

(ii) Negative exponential distribution. If the sample consists of observations of 
a random variable X having a negative exponential distribution with unit mean, 
then it may be verified (see Feller (1971), p. 20) that #k,~ = ~-~n_-n_k+l 1/i,  from 
which 

1 , 1 
(3.3) A~, n = 1 + - and Aan,b n = 1 + - .  

i=k+l i=an+l 

bn  
Summations of the f o r m  E i = a n + l  1/i  (for a, b and n satisfying the conditions 
of the theorem) have been investigated by Adamovid and Taskovid (1969) (see 
Mitrinovid (1970)), who prove directly that such sums are increasing functions of 
n .  

Also 

a + l  b 1 1 
(3.4) A'n ,  bn - A'an+a+1, bn+b = E an + i Z bn + i" 

i=1 i=1 

The second summation of (3.4) is an increasing function of b, thus to establish the 
second inequality of (3.2) it sufficient to prove that 

a+l 1 b ( 1 )  
i=~an~-i > lim ~ 1 - ln  1+ b--,~'---" bn'+ i 

i=1 

which may be justified as follows; 

a+_~ 1 fa+l 1 ( ) > i n ( l + 1 ) .  - - >  d x = l n  a n + a + 2  
i=l an + i ao an + x + l an + l - 

Since the negative exponential distribution is asymmetric, the corresponding 
inquality for Aan,b n does not follow immediately. However, from the identity 

(3.5) Ak,n = {n#  -- (n -- k)A~_k, ,~}/k,  

where # = E ( X ) ,  the inequality of (3.2) does imply the corresponding inequality 
of (3.1). Using (3.5) with (3.3), we have 

(3.6) Aan+a+l,bn+b -- Aan,bn 
an an÷a+l 

1  n+c-i 

--  a c n - +  i a--n-+ a + i c n + c + i - 1  
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Now consider the function ¢(k) defined by 

an+k 
d)( k ) _ __cn + kr i ~  1 1 

an + k cn + kr + i 
for k = O ,  1 , . . . , a + l ,  

where r = (c - 1)/(a + 1). To demonstrate that the right-hand side of (3.6) is 
positive, it suffices to show ¢(k) decreases for 0 < k < a + 1. 

This follows as 

¢(k  - 1) - , ( k )  

1 

a n + k -  1 
an+k- 1 

_ c n + k r - r + i  

r + l  

( an  + k ) ( a n  + k - 1) 
an+k- 1 

c +kr ( 
an + k \ cn + kr + i 

+ 
cn + kr + i + l 

i { ( n -  1)(cn + kr) + n(i + 1)} 
E ( c n + k r - r + i ) ( c n + k r + i ) ( c n + k r + i + l )  > 0 .  [] 
i=1 

In view of (3.1) it is natural to enquire whether the deletion of a single ob- 
servation from the smaller sample reverses the bias established in Corollary 2.2. 
Further, we note that for general nl, n2 (nl > n2) we cannot conclude from (3.1) 
that Aan2,bn2 < Aam+l,bnl, except when nl = n2 + 1. This prompts us to seek 
bounds for the smallest value of k for which the inequality Aan2,bn2 < Aanl+k,bnl 
holds. These questions are addressed in the following corollary. 

COROLLARY 3.1. I f  the inequalities of (3.1) hold for some distribution then 
(i) for all integers a, b and n such that a < b we have Aan-l,bn < Aan+a,bn+b; 

(ii) for integers kl, k2, nl, n2 such that k l / n l  = k2/n2 and nl > n2 we have 
Ak2,n2 < Ak~+m+l,nl ; where m denotes the integer part of (nl/n2). 

PROOF. (i) From the second inequality of (3.1) Aan-l,bn < A2an-l,2b,~; and 
noting that 2bn > b(n + 1) and (2an - 1)/(2bn) < (an + a)/(bn + b), Theorem 2.1 
implies A2an-l,2bn < Aan+a,bn+b. 

(ii) Repeated application of the second inequality of (3.1) yields Ak2,n2 < 
A2k2+l,2n2 < A4k2+3,4n2 < "'" < A2t(k2+l)-l,2~n2 and thus Ak2,n2 < A2t(k2+l),2tn2 
for all positive integers t. Hence, if t' is such that t ~ > m + 1 we have Ak2,n2 < 
A2t'(k2-kl),2 t'n2 < A(m+l)(k2+l),(m+l)n2 < Akl+m+l,nl. The second inequality fol- 
lows from Corollary 2.2, while the third follows from Thorem 2.1 on noting that 
(m + 1)n2 > nl and (k2 + 1) /n2  < (kl + m + 1 ) / n l .  [] 
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